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Abstract

The theory of nonparametric spectral density estimation based on an observed stretch
X1,...,Xn from a stationary time series has been studied extensively in recent years.
However, the most popular spectral estimators, such as the ones proposed by Bartlett,
Daniell, Parzen, Priestley, and Tukey, are plagued by the problem of bias, which effectively
prohibits v/N-convergence of the estimator. This is true even in the case the data are
known to be m-dependent in which case v/N-consistent estimation is possible by a simple
plug-in method.

In this report, an intuitive method for the reduction in the bias of a nonparametric
spectral estimator is presented. In fact, applying the proposed methodology to Bartlett’s
estimator results in bias-corrected estimators that are related to kernel estimators with
lag-windows of trapezoidal shape. The asymptotic performance (bias, variance, rate of
convergence) of the proposed estimators is investigated; in particular, it is found that the
trapezoidal lag-window spectral estimator is v/N-consistent in the case of MA processes,
and \/W -consistent in the case of ARMA processes. The finite-sample performance

of the trapezoidal lag-window estimator is also assessed by means of a numerical simulation.

Keywords. Bartlett’s estimator, bias reduction, mean squared error, lag-windows, nonpara-

metric spectral estimation, variance estimation.



1. Introduction

Suppose Xi,..., Xy are observations from a stationary time series {X;,¢ € Z} with mean
zero, i.e., EX, = 0. Assume that the spectral density function f(w) exists, and is defined by
f(w) = =352 R(s)e™#*¥, where R(s) = EX,X,,|s is the autocovariance; note that the
symbol j denotes the imaginary unit v/~1. Attention will focus on nonparametric estimators
of the spectral density function f(w), and on designing such estimators with small bias.

One of the first (and most intuitive) proposals for consistent estimation of f(w) at some

point w € [—x, 7] was given by Bartlett (1946) and is defined by
Fw) = = i (1- M)R(S)ff""’s (1)
T or =y M

where R(s) = x i\;-llsl X Xi4)s) is the usual sample autocovariance. The Bartlett estimator
f can alternatively be computed as an average of short periodograms (cf. Priestley (1981)), in
which case its computation is most efficient (cf. Gardner (1988)). Under regularity conditions
(cf. Priestley(1981), Zhurbenko (1986)), f(w) is a consistent and asymptotically normal esti-
mator of the spectral density function f(w). The regularity conditions are, roughly speaking,
moment conditions, weak dependence conditions (that sometimes are expressed by conditions
on the smoothness of f), and conditions on the design parameter M.

In particular, the asymptotic variance of f(w) is given by
= 2M
Var(f(w)) ~ 357 f*(w)(1 + n(w)), (2)

under some conditions’, where n(w) = 0 if w # 0(modr) and n(w) = 1 if w = 0, £r; following
the usual convention, the notation Ay ~ By is a short-hand for Ay/By — 1,a8 N — oo. In
addition, the large sample distribution of \/N/M(f(w)— f(w)) is the normal N(0,2 fA(w)(1+
n(w))), provided M ~ aN? for some a > 0 and 8 > 1/3,as N — oo.

1There is a variety of sufficient conditions guaranteeing that equation (2) holds; for example (cf. Priestley

(1981)) a sufficient condition is that {X;} is a linear process given by X, =y

I=—o00

0iZ:—i, where the Z’s are
iid. with EZ; = 0, and EZ¢ < oo, and the 6;’s are constants satisfying Yo e |3|*/2]8;| < o0. For different

sufficient conditions that are based on summability of cumulants and do not require that {X:} is a linear process

see Brillinger (1975, p.26 and p. 144), or Rosenblatt (1985, p.134).



It can also be calculated that the bias of f(w) is of approximate order ¢, ;/M, for some

o0
§=—00

Cw,; 7 0 depending on w and on f, under the regularity condition 3 |s||R(s)| < oo; since
the order of magnitude of the bias is rather large, subsequent research efforts were expended to
obtain spectral estimators with smaller bias. These efforts pointed to the direction of using a
different kernel that is smoother near the origin than Bartlett’s triangular one (cf. Grenander
and Rosenblatt(1957), Blackman and Tukey(1959), Parzen(1957a,b), Priestley(1981)). By ap-
propriately choosing the kernel, and assuming that f has a continuous second derivative, one
can have an estimator that is nonnegative, and possesses a bias of approximate order O(1/M?),
which is a significant improvement for large samples.

In this paper, a different perspective on the problem of bias reduction will be presented,
and a new way to look at such smoothing problems will be discussed. This will result in a
specific proposal for bias-corrected estimates that are related to kernel type estimators with
lag-windows of trapezoidal shape. These bias-corrected estimates will be shown to possess very
small bias of approximate order O(1/M"), while having \}ariance of order O(M/N) as usual;
here r can be intuitively interpreted as the number of derivatives that f has.

Attention will focus on Bartlett’s estimator because it is both most intuitive and simple
to calculate, and is the most needy for a bias correction; in addition, Bartlett’s estimator
(evaluated at point w = 0) comes up rather naturally as a variance estimate in the newly
developed areas of resampling and subsampling dependent data (cf. Kiinsch (1989), Liu and
Singh (1992), Politis and Romano (1992a,c)), and in the steady state simulation literature (cf.
Meketon and Schmeiser (1984), Welch (1987), Song and Schmeiser (1988, 1992)). With the
appropriate modifications, the same intuitive procedure can be carried out for bias reduction
of other spectral estimators. However, as will be apparent later on, bias-correcting Bartlett’s
estimator has the unique effect of taking the bias all the way down to order O(1/M"); applying
the bias-correction procedure to a different estimator with bias of order O(1/M?), with ¢ > 2,
would only bring the bias of the corrected estimator to order O(1/M?+?), which is bigger than
O(1/Mryifr>q+2.

The remaining of the paper is organized as follows. In Sections 2.1 and 2.2, the main

intuitive proposal for bias reduction is presented, and its good asymptotic properties are estab-



lished. Section 2.3 is concerned with the positivity of the proposed estimator, and Sections 2.4
and 2.5 establish the rates of convergence in the case of ARMA and MA models respectively.
Section 2.6 addresses the most important problem of choosing the bandwidth of the spectral
estimator in practice, and Section 2.7 discusses the use of the unbiased autocovariances in form-
ing the spectral estimator. Finally, Section 3 presents some numerical finite-sample results, and
Section 4 contains some further comments and conclusions. All technical proofs are placed in

the Appendix.



2. Bias reduction for Bartlett’s spectral estimator

2.1. The notion of bias-correction. From the data X,,..., Xy construct the Bartlett
spectral estimator f (w) at point w as given in equation (1) with some choice of M; the optimal
choice of M will be discussed later. Also construct an over-smoothed Bartlett spectral estimator
f(w) using a different block size 7 < M; f(w) can be thought of as a crude estimate of f(w).

Looking at f(w), E f(w), Ef(w) as functions of w € [—m,7] it is obvious (cf. Priestley
(1981)) that Ef(w) is a smoothed version of f(w), and, in turn, E f(w) is a smoothed version

of Ef(w). This observation leads to the heuristic approximation
Bias(f(w)) = Ef(w) - f(w) ~ Ef(w) - Ef(u). (3)

If the approximation (3) were somehow correct, then we could estimate E f(w) by f(w) and
Ef(w) by f(w), and we could therefore estimate the bias of f(w) by Bias(f(w)) = f(w)—-f(w).

As a consequence, we could form a ‘bias-corrected’ Bartlett’s estimator by the formula
f(w) = f(w) - Bias(f(w)) = 2f(w) - f(w). )

Notably this proposed bias-correction is in the spirit of Quenouille’s (1949) original sug-
gestion of bias reduction for time series statistics. In Quenouille’s scheme, a crude estimate of
f(w) would be obtained by first splitting the series X, ..., X into, say, two subseries of length
N/2, secondly constructing Bartlett estimates from each subseries (obviously using a different
block size 7, smaller than the original M), and finally averaging the two estimates arising
from the two subseries. The bias-corrected estimate would then be calculated by subtracting
this crude estimate from twice the original Bartlett estimate f(w) In our proposal, the crude
estimate f(w) is obtained in a slightly more general fashion, employing the whole time series
anew.

Of course, it is most optimistic to expect that the approximation (3) would hold. However,
the following heuristic argument indicates that (3) is at least qualitatively true, in which case
f(w) might still have reduced bias as compared to f (w). Suppose that the true spectral density
f(w) has a peak around wy; for example, see Figure 4 (a) that is related to the simulation

experiment of Section 3, and where wy ~ 0.88. In this case, the bias of f(w) is intuitively



due to either ‘smoothing out’ the peak (for w close to wy), or to ‘leakage’ from the peak (for
w away from wy). It is then easy to see that for w close to wy, both quantities, f(w) — f(w)
and f(w) — f(w) are negative; similarly, for w away from w,, both f(w) — f(w), as well as
f(w) — f(w) are positive.

In other words, the proposed simple bias estimate Bias(f(w)) = f(w) — f(w) will capture
the sign of Bias(f(w)), although not necessarily its absolute value. Hence, a reasonable next
step is to approximate Bias(f(w)) by hB/z'Es(f(w)), where h is a positive constant to be
specified later. So, by defining Bﬁs(f(w)) = hBias(f(w)) = h(f(w) — f(w)), we are led to a

general bias-corrected estimator given by
Julw) = f(w) ~ Bias(F(w)) = f(w) - hBias(f(w)) = (h+ Df(w) - hf(w). ()

It is interesting to note that empirical results of Song and Schmeiser (1988) concerning estima-
tion of f(w) at the point w = 0, pointed to a formula analogous to (5) as the linear combination
of spectral estimators with minimum mean squared error.

Since, as mentioned in the Introduction, E f(w) = f(w) + ¢y /M + o(1/M), and E f(w) =
f(w) + cu s/ + o(1/m), it is intuitively clear that letting b = /(M — m) yields E f(w) =
f(w)+o(1/M), so that the estimator bias is actually reduced from O(1/M) to o(1/M); however,
the bias reduction is actually quite more dramatic, as Theorem 1 will demonstrate later on. It
is to be noted though, that by putting & = m/(M — m), the proposed bias-corrected estimator

is actually a nonparametric spectral estimator of the lag-window type, i.e.,

[ee]
-

faw) = 5= 3 As)R(s), (©)

where the lag-window A(s) has the general trapezoidal shape given below, i.e.,

1 for [s] <

As)= 1L form < s < M

0 for |s| > M.

A more precise notation for the above trapezoidal lag-window might be A 3(s), where h =

m/(M — 1), but we will generally drop the subscripts h, M since it does not lead to confusion.



2.2. Performance of the general trapezoidal lag-window. As elaborated upon in
Section 2.1, the estimator f,(w) can be computed as a linear combination of the two Bartlett

estimators f(w) and f(w), by the formula

M m

falw) = (h+ 1) f(w) ~ hf(w) = 22— F(w) - 2 f(w), ()

with h = m/(M —m). The assumption that & is a constant is equivalent to assuming that 7 is
proportional to M, i.e., m ~ ¢M, for some constant ¢ € (0,1). Nevertheless, varying h € (0, 00)
a whole family of bias-corrected estimators is obtained; if A = 1, then the estimator fh(w) is
identical to f(w) defined in equation (4). Observe that at the extreme point where h = 0, i.e.,
m = 0, fh(UJ) reduces to a Bartlett estimator, and at the extreme point where h = o0, i.e.,
m = M, fu(w) becomes a ‘truncated periodogram’ = M . R(s)e~9*v.

It should be noted (cf., for example, Brockwell and Davis (1991)) that the estimator f(w)
can also be written as fy(w) = [ Ap(w')In(wHw')dw', where In(w) = & SN 'y R(s)e™i*v

is the periodogram, and
1 X :
Ap(w) = > E A(s)e™7* (8)
ﬂ- s=—M

is the so-called spectral window corresponding to the lag-window A(s). By the previous discus-

Ao(w) = 27r1M (Slzﬁﬁ7é?))z

sion, and since

is the well-known Fejér spectral kernel corresponding to the Bartlett estimator f(w), we have
an explicit formula for A,(w), that is,

Ap(w) = 2T 1 (sm(Mw/z)>2 h (sin(mw/2)>2

2rM \ sin(w/2) / 27w \ sin(w/2)

_ sin*(Mw/2) - sin®(mw/2)
©2n(M — m)sin®(w/2)
Since the extreme case h = oo corresponds to the truncated periodogram, it follows that

Ao(w) = sin(ﬁm%ﬂ)/%r sin(w/2) is the familiar Dirichlet kernel. Note that, in view of

(9)

representation (9), the spectral kernel Aj(w), for 0 < A < oo possesses many interesting

properties that are summarized in the following lemma.



Lemma 1 Ifh € [0,00), then

(a) An(w) is an even function of w, with period 27 ;

(8) [T, Mn(w) = 1

(c) for any € > 0, [ Ap(w) — 1, as M — oo.

(d) If h € (0,00), and k is any even positive integer, then [ wFAq(w)dw ~ by/M, while

7w Ap(w)dw = O(1/M?), as M — oo, where by, is a nonzero constant depending on k only.

Property (d) above points to another way of seing that that fh(w) has smaller bias than
fo(w) = f(w). For example, if 32 __ |s|®|R(s)| < oo, then by corollary 5.8.2 of Brillinger
(1975),

1

(/ tzAh(t)dt) fP(w) +0(1/M®) + O(M/N),

where f®)(w) is the 2nd derivative of f(w); it follows that the Bias(f,(w)) = O(1/M?3), if
M — 00, as N — oo, but with M*/N — 0.

Much more is true however, and the following theorem quantifies the bias-variance perfor-
mance of fh as an estimator of f. If f is smooth enough, the estimator fh is shown to have
smaller (by orders of magnitude) bias than the Bartlett estimator f, while its variance remains

of the same order of magnitude.

Theorem 1 Assume thaty .. .. |s|"|R(s)| < oo, for some positive integer r. Also assume that

m ~ cM, for some constant ¢ € (0,1), and that M — oo, as N — oo, but with M"/N — 0.
Then

sup ]|Bias( fu(w))] = o(1/M"). (10)

we[—7,7

Suppose in addition that the time series {X.} is such that equation (2) holds. Then we also

have

Var(fh(w)) ~

3h+1
h



The interpretation of Theorem 1 is that, for the case r > 1, the bias of fh(w) is smaller than
the bias of the Bartlett estimator f(w) by orders of magnitude. In particular, if f is smooth
enough, (i.e., if r is large), the bias of fh(w) can be considered negligible even for moderately
large M. From the theorem’s proof it is obvious that the small bias of fh is a consequence
of the ‘flatness’ of the trapezoidal lag-window A(s) for |s| < 7. Indeed, one can conceive of
other lag-windows with a ‘flat-top’ that have favorable bias performance, but we will focus on
the trapezoidal one because it arises naturally in the process of bias-correcting the Bartlett
window, and it is the simplest to describe and use; the reader is referred to Devroye (1987) for
a discussion on ‘flat-top’ kernels in the analogous context of probability density estimation.

It should be noted that the assumption } ._. |s|"|R(8)| < co implies that f has r con-

tinuous derivatives; conversely, if f has r derivatives and the rth derivative satisfies a uniform

oo
S§S=—00

Lipschitz condition of degree @ > 1/2, then ) |s|"|R(s)| < oo follows (cf. Katznelson
(1968)). An important class of time series possessing very smooth spectral densities is the
family of ARMA models; see the discussion after Theorem 15 in Section 2.4.

Under the assumptions of Theorem 1, the estimator f,(w) is consistent for f(w), since its
mean squared error MSE(fy(w)) = E(fi(w) — f(w))? > 0, as N — co. Returning now to
the deferred question of proper choice of M, it follows that by letting M ~ aN'/Z+1) for
some constant @ > 0, the MSE(f,(w)) becomes of order O(N-2/(7+1)), One can further
try to choose the constant a to also minimize the proportionality constant in M SE(f,(w)) =
O(N~2r/Cr+1))  although this is quite more difficult and will not be pursued here.

It is interesting to observe that the bias of f,(w) will be of asymptotic order o(1/M")
regardless of the choice of h (or, equivalently, of the choice of ). This goes to show that the
choice of h is not as important as the choice of M, and thus the ‘2f — f’ rule of equation (4)
might be preferred in practice to the more general formula (7) in view of its simplicity. What

is, of course, of great importance concerning the design of a spectral estimator, is the choice of

M in practical applications; this problem will be taken up again in Section 2.6.

2.3. Taking the positive part. A question that has been overlooked until now is whether



the estimator fh(w) is nonnegative or not. Since the spectral density is nonnegative, it is quite
important that its estimators be nonnegative as well. Following Parzen (1957a), we define the
‘characteristic exponent’ of a lag-window k(s) to be the largest positive integer ko such that
lim,_q %}2 exists, is finite, and is non-zero. If lim,_.o %’;—f“éf) exists for any positive integer ko,
the characteristic exponent is said to be oco. It is apparent that the characteristic exponent
quantifies the smoothness of the lag-window near the origin.

Classifying all lag-windows according to their characteristic exponent yields the following
insights: (a) lag-windows with characteristic exponent equal to 1 (e.g., the Bartlett triangular
lag-window) lead to heavily biased spectral estimates; and (b) lag-windows with characteristic
exponent greater than 2 correspond to spectral kernels that are not everywhere nonnegative,
and hence may lead to negative spectral density estimates (cf. Priestley (1981, p. 568)). In
view of this, the focus of researchers in the spectral estimation literature has been focused
to those lag-windows with characteristic exponent equal to 2 that correspond to nonnegative
spectral kernels (cf. Priestley (1981, p. 463) for a list of examples).

However, it is easy to see that the characteristic exponent of the trapezoidal lag-window A(s)
is 0o, and hence fh(w) is mot necessarily nonnegative. To intuitively see this, consider fh(w)
with h = 1, i.e., fl(w) = 2f(w) — f(w), with 72 = M/2. Tt is apparent that the spectral (Fejér)
kernel of f(w),i.e., Ao(w), has twice as many zeros as the spectral kernel of f(w); consequently,
at the location of a zero of Ag(w) that is not a zero of the spectral kernel of f(w), the spectral
kernel of f;(w), i.e., A,(w), goes negative. In Figure 1, the spectral kernel Ag(w) is plotted (for
M = 40), while in Figure 2, the spectral kernel A;(w) is shown. For further comparison, the
spectral (Dirichlet) kernel A, (w) corresponding to the ‘truncated periodogram’ (where again
M = 40) is plotted in Figure 3; in all three plots, w varies from —27/5 to 427 /5.

Nevertheless, an immediate modification of fh(w) can be constructed to yield a surely

nonnegative spectral estimator. Define

FiF (w) = max(fr(w),0), (12)

i.e., f(w) is the positive part of f,(w). Since f(w) is consistent, this modification obviously
makes sense for large samples; if f(w) > 0, then with high probability fit (w) = fh(w) > 0, and

if f(w) = 0, then it might as well be estimated by zero. In the following theorem it is shown

10



that, even in finite samples, taking the positive part results in a better (with respect to MSE)

estimator.
Theorem 2 Let w be any point in [—7,7]. Then MSE(ff(w)) < MSE(fu(w)).

It now follows that, under the assumptions of Theorem 1, the estimator fi(w) is also
consistent for f(w), and has the desirable property of being nonnegative, in that case, the
two estimators f; (w) and fh(w) are asymptotically equivalent as the following corollary of

Theorem 2 states.
Corollary 1 Let w be any point in [—m,n|. Then E(f,;"(w) - fh(w))2 < 2M.5’E(ﬂ(w)).

The above equation is true for finite samples, but since M SE(fy(w)) — 0 under regular-
ity conditions, Corollary 1 can be expressed in asymptotic notation as E( fit (w) — fAh(w))2 =
O(MSE(fuy(w))). Nevertheless, a sharper asymptotic result is also true under some assump-
tions, and will be proven later on, in our Section 4.

Although Theorem 2 does not explicitly quantify the bias of f; (w), the following obvious

corollary gives a a rough estimate which will be improved upon as well in Section 4.

Corollary 2 Let w be any point in [—=,7]. Then |Bias(fif(w))| < v/ MSE(fu(w)).

As a consequence of Theorem 1 and Corollary 2, by letting M ~ aN*/(?+1)_for some con-
stant @ > 0, the mean squared error of fi (w) is of very small order, that is, MSE(ff(w)) =
O(N=2r/Cr+D) and | Bias(fif (w))| = O(N-7/+1), In particular, if f is smooth enough, (i.e.,
if 7 as defined in the assumptions of Theorem 1 is large), the bias of f,’:‘ (w) can be considered

negligible even for moderately large M, and the rate of convergence of f,;" (w) can be very close

tO\/N.

2.4. The case of very smooth spectral densities and ARMA models. A compar-
ison of the performance of fit(w) and the performance of the usual nonparametric estimators
possessing characteristic exponent equal to two is in order. Each of the latter results in an esti-

mate with bias of order O(1/M"), where I = min(2,r), while fi (w) has bias of order o(1/M").

11



In other words, the fact that the characteristic exponent is finite and equal to 2 sets a ceiling on
the bias-performance of the usual estimators, and does not allow the bias to become of smaller
order, even if the true spectral density is known to be very smooth. It is worthwhile to note that
for a large class of stationary time series, namely the class of Auto-Regressive processes with
Moving Average residuals (ARMA), the spectral density f possesses any number of derivatives,
(that is, r can be thought of as being infinite), and thus the bias of fi (w) is negligible.

To see this, recall that the time series {X,} is said to follow an ARMA (n,m) model if it

satisfies the difference equation

Xt - ¢1Xt—1 et ¢nXt—n = Zt + ¢1Zt-1 -4 T/’mZt—ma (13)

for any integer t, where the Z;’s are uncorrelated random variables, with mean zero, and
common variance 0. It is easy to show (cf., for example, Brockwell and Davis (1991)) that,
provided the characteristic polynomial 1 — ¢,z — - -+ —¢,2™ = 0 has no roots on the unit circle,
the autocovariance R(s) of {X,} decreases geometrically fast, i.e., |R(s)] < De~4:l, for some
positive constants d and D, in which case Y .o [$["|R(s)| < 00, for any positive integer r. It
follows that, in the case the data are generated by such an ARMA model, M can be taken to
increase very slowly with N, and the rate of convergence of f;"(w) will be /N/Tog N which is
very close to /N, although the v/N rate is not exactly attainable.

Theorem 3 Let w be any point in [—7, 7|, and assume that the autocovariance R(s) decreases
geometrically fast, i.e., |R(s)| < De=%l, for some positive constants d and D. Also assume
that m ~ cM, and that M ~ Alog N, where c € (0,1) and A > 1/(2cd) are some constants.
Suppose in addition that the time series {X,} is such that the Bartlett spectral estimator f(w)

has a large-sample variance of order O(M/N). Then, as N — oo,

MSE(f(w)) = O(E) (14
and
log N

MSE(fif(w)) = O(

)- (13)

12



In the next section it will be shown that, in the special case where the time series {X,} can
be thought to follow a Moving Average model of order m, i.e., if {X,} satisfies equation (13)
with ¢, = 0,k > 1, the rate of convergence of f,f‘ (w) is actually ezactly /N, and M can be

taken to be a fized number, not necessarily increasing to infinity.

2.5. The case of m-dependence and v/ N-consistency. Suppose now that the station-
ary time series {X,} is m-dependent, meaning that the set of random variables {X;,¢ < 0}
is independent of the set of random variables {X;,t > m}. Alternatively, just suppose that
R(s) = 0, for all |s| > m, i.e., that the time series {X,;} can be thought of as arising from a

Moving Average (MA) model of order m, (cf. Brockwell and Davis (1991)). In both cases, the

m
S$=—m

spectral density is given by the finite sum f(w) = & R(s)e™7*¥, and it is quite obvious
2n

m
s=—m
1

Similarly, the ‘truncated periodogram’ 5- Y v R(s)e‘j % is v/ N-consistent, if M is fized to

that the simple ‘plug-in’ estimate ;- 3° R(s)e™#*¥ is a v/N-consistent estimator of f(w).
a constant value greater or equal to m.

However, a nonparametric spectral estimator with finite characteristic exponent will not
estimate f(w) at v/N rate of convergence, even if it is known that m-dependence holds. This
loss of accuracy is of course due to the fact that if the lag-window is not exactly flat at the
origin, there is a bias in the spectral estimator that can be made negligible only by letting M
tend to infinity as IV tends to infinity. On the other hand, since the variance of a nonparametric
spectral estimator is generally proportional to M/N, it follows that the rate of convergence is
VNIM << +/N.

Recall that the truncated periodogram is just an extreme case (with A = 0o0) of the estimator
fh(w). It would be quite interesting if fh(w), and therefore, in view of Theorem 2, f,;" (w) as
well, share this desirable property of v/N-consistency in the case R(s) = 0, for all |s| > m.

This is in fact true, and is the subject of the next theorem.

Theorem 4 Let w be any point in [—7, 7|, and assume that R(s) = 0, for all |s| > m. Let
m, M be constants satisfying m < m < M. Suppose in addition that the time series {X,} is

such that the Bartlett spectral estimator f(w) has a large-sample variance of order O(M/N).

13



Then, as N — oo,

MSE(fu(w)) = O(1/N) (16)
and
MSE(f#(w)) = O(1/N). (17)

The point to be made here is that nonparametric spectral estimators given by f(w) =
e B k(s)R(s)e™3**, with lag-window k(s) = 0, for |s| > M, are essentially spectral den-
sities of the Moving Average type of order M. Hence it might be reasonable to expect that
the performance (bias, variance, rate of convergence) of f(w) should be significantly better
in the special case the true spectral density f(w) is itself of Moving Average type of order
m < M, i.e., if the data arise from an MA(m) model. This is indeed true for the trapezoidal
lag-window, although this is not the case for the more popular lag-windows possessing finite

characteristic exponents. Note however that the trapezoidal lag-window was not tailor-made

for m-dependent data; indeed its overall desirable properties were established in Theorem 1.

2.6. Choosing M in practice. Theorem 4 is extremely important for practical applica-
tions where the choice of the bandwidth parameter M is crucial. As mentioned in Section 2.2,
the choice of h, or equivalently the choice of m, is not nearly as important, and one might opt
for the simple choice h =1 and m = M/2.

To choose M given the data Xi,..., Xx, a practitioner will usually employ diagnostic tools,
the prime of which is a correlogram, i.e., a plot of R(s); see Priestley (1981, p. 539). If it is
observed that R(s) ~ 0, for all |s| > some number 72, then it may be inferred that 7 is an
estimate of m appearing in the assumptions of Theorem 4. It would then follow that m may
be taken equal to 72, M may be taken equal to m(h+ 1)/h, and the resulting estimators fa (w)
and f;f (w) would be very accurate, i.e., the error in the estimation of f(w) by fh(w) or by

fit (w) would be of very small order with high probability.
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Note that this simple procedure for choosing M does not work well for the nonparametric
spectral estimators possessing finite characteristic exponents. To see this, consider the simplest
example where the time series {X,} is produced by the MA(1) model X, = Z;, + Z,_;, and the
Z,’s are i.i.d. normal N(0,1). Suppose that the sample size N is large enough so that from the
correlogram it can easily be identified that /2 = 1. From the above discussion it follows that
f{" (w), with o = 1 and M = 2, will be an accurate estimator of f(w). However, it is apparent
that estimating f(w) by, say, a Bartlett estimator f (w) with M = 2 will be highly inaccurate.
In particular, since the sample is large enough to ensure that R(s) ~ R(s), for a large range
of s values, the absolute value of the systematic error in estimating 27 f(w) by 2« f(w) will
be approximately equal to |cosw|/2M, which can be made negligible only by taking M big

enough, certainly much bigger than two.

2.7. Biased vs. unbiased autocovariances. It is interesting to note that the main rea-
son the biased sample autocovariances R(s) are used in connection with a lag-window estimator
is that the sequence 1;3() is nonnegative definite. This property implies that, if the spectral
window is everywhere nonnegative, the resulting spectral estimator is necessarily nonnegative
as well.

However, if one is not using a nonnegative spectral window, one might just as well use
the unbiased sample autocovariances R(s) = R(s)N/(N — |s|); this is apparent considering
that the sample autocovariances are heavily tapered anyway by the lag-window A(s), and
the extra tapering by the factor 1 — |s|/N is negligible. Notably, using the unbiased sample
autocovariances R(s) instead of R(s) in definition (6) makes it possible to drop the condition
M™/N — 0 from the assumptions of Theorem 1, substituting it with the more natural (and
easier to satisfy) assumption M/N — 0. Similarly, using the unbiased autocovariances R(s)
results in fh(w) being ezactly unbiased for finite samples under the assumptions of Theorem

4,i.e., Bias(fh(w)) =0, for any w € [-7,7],aslongasm<m< M < N.
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3. Some finite-sample numerical results

Comparing equations (2) and (11) it follows that Var(f,(w)) ~ 3—;‘f‘1—1Var(f(w)); for exam-

ple, if b = 1, it follows that Var(f,(w)) ~ 2Var(f(w)). Since 3,3”%11 goes from 1 to 3 as h goes
from 0 to oo, this provides a further justification for the notion of the case h = 1 corresponding
to the ‘midpoint’ between A = 0 (Bartlett) and A = oo (truncated periodogram).

The question may be asked, ”since Var(fuy(w)) > Var(f(w)), how is it that f,(w) has
smaller MSE than the Bartlett?”; the answer lies with the choice of M. For a given sample
size N, one would pick an M of the order of N'/3 to use in conjunction with the Bartlett
estimator, while the same researcher would pick an M of the order of N/(>"*1) to use with
fa(w). In other words, Var(fi(w)) = O(NYCr+D/N) = Q(N~2/r+). if 7 > 1, this is orders
of magnitude less than the variance of the Bartlett estimator which is O(N'/3/N) = O(N~%/3).
Arguably, the number of derivatives r will not be given in practice but, considering the simple
example in Section 2.6, it is apparent that even a data-dependent choice would yield a much
smaller M for use with f,(w) than it would for use with the Bartlett estimator.

A further comparison is available if we define the integrated MSE (IMSE) of a spectral
estimator f by the formula IMSE(f) = (1/27) J2" MSE(f(w))dw. It is obvious that under
the assumptions of Theorem 1, IMSE(f;) = o(1/M?*") + O(M/N), which is of smaller order
of magnitude than the IM SE of the Bartlett estimator f, provided M is chosen optimally in
both cases, i.e., M proportional to N+ for f,. and M proportional to N/3 for f.

However, a criticism that might be raised is that the results offered so far are asymptotic in
nature. To shed some light on the finite-sample performance of fh(w), a simulation study was
conducted. Using the statistical language S+, 190 independent realizations of a time series { X, }
that obeys an ARMA (4,2) model of equation (13) with ¢; = —1.352, ¢, = 1.338, ¢35 = —0.662,
¢4 = 0.240, and 9, = —0.2, ¥, = 0.04, were generated; each realization consisted of a stretch
of 1000 observations, i.e., N = 1000 in this case.

The Bartlett estimator f was computed for M = 5,10, 20, 30,40, 50 as an average of short
periodograms; the Fast Fourier Transform (FFT) was employed throughout. Equation (5) was

then used to compute fh for the 15 possible different pairwise combinations of the available
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Bartlett estimators. Note that the FFT computes a periodogram only for w of the form
2rk/M, for k = 0,1,...,M — 1, where 1/M is the bandwidth, and M is the block size. Since
we needed to compare f and fh for different bandwidths, the technique of zero padding was
used (cf. Gardner (1988)), and interpolations of all estimated spectra were computed on the
grid 2mk/100, for k = 0,1,...,99; in all of our figures, w ranges from 0 to 7, i.e., w of the form
27k/100, for kK = 0,1,...,49.

To get a feeling about what kind of information would be available to a practitioner faced
with a stretch of 1000 observations from series {X;}, one of the 190 realizations was selected
at random, and some of the computed spectral estimators f and fh with different bandwidths
are presented in Figures 4 and 5 respectively; the true spectral density f is also shown for
comparison. Just from looking at the pictures, it is apparent that the Bartlett estimator f
with M = 20 is the best among the different Bartlett estimators, and that the estimator
fn with M = 10 and m = 5 is best among the different bias-corrected estimators, although
the one with M = 20 and m = 5 is a close competitor; this intuitive observation is in fact
true and will be confirmed by the MSE calculations that follow. Similarly, it is quite obvious
that the Bartlett estimator f with M = 5 is quite oversmoothed, while f with M = 50 is
undersmoothed, both extremes being suboptimal. In terms of the bias-corrected estimators fr,
it seems that the worst among them is the one with M = 50 and m = 40, both because its
corresponding bandwidth is too small, as well as because its trapezoidal window more closely
approximates the Dirichlet than any other window used in this simulation, i.e., it is the one
with highest h; its bad performance can be appreciated just from the fact that it goes negative
near w = 0.88 which is the mode of the true f.

In addition, a sample correlogram was also computed from the same chosen realization, and
displayed in Figure 6 together with the true correlogram. Note that the true correlogram tapers
off exponentially for large lags, and R(s) ~ 0, for s > 6; similarly, despite the spurious waves
displayed by R(s) for large lags, an experienced data analyst might infer that really R(s) ~ 0,
for s > some 1, where m = 6 or 7. Hence, following the rationale of Section 2.6, he/she would
choose a m of about 6 or 7; thus, the previously mentioned observation that the bias-corrected

estimators with m = 10 or 5 are the ‘best’ reinforces the validity of the recommendations in
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Section 2.6.

Nevertheless, the main point of the simulation is that the expected value of a spectral
estimator (which is required to calculate its bias) can now be approximated by the empirical
average of the 190 independent spectral estimators that are available. However, because of the
zero padding employed, the apparent variability of the 190 independent spectral estimators
was reduced, rendering empirical variances unreliable. For this reason, equations (2) and (11)
were used throughout, whenever variance estimates were needed, e.g., for the computation of
the MSE of estimators. Note though, that in a case where no zero padding was used, the
empirical variance of the Bartlett estimator f with M = 50 was found to be very close to the
asymptotic equation (2); see Figure 7. This observation leads us to believe that the asymptotic
equations (2) and (11) are reasonably good approximations for a sample of this size. It should
be stressed however, that the asymptotic equations (2) and (11) would rot be readily available
to the practitioner, because he/she would not know the true value of f; the practitioner would
likely substitute an estimator in place of the unknown f, and the variance estimator would
consequently suffer from all the inaccuracies inherent in spectral estimation.

In Figure 8, the bias and (asymptotic) standard deviation of Bartlett estimators with dif-
ferent bandwidths are compared; as expected, increasing M reduces bias and increases the
standard deviation so the different curves shown are ‘nested’ within one another. Similarly,
in Figures 9 to 12, the bias and (asymptotic) standard deviation of some of the available
bias-corrected estimators with different combinations of 7 and M are shown; comparing these
bias-standard deviation curves for a fixed w near w = 0.88 where the true f has its mode, it is
apparent that the estimator fh with M =10 and m=5 is the best in the MSE sense among the
ones shown.

In order to provide a more thorough comparison of pointwise performance, the MSE of all
available estimators is shown in Figures 13 to 17 as a function of w. Figure 13 contains the
MSE of Bartlett estimators from which it follows that the choice M = 20, which is pictured in
both Figures 13 (a) and (b), is optimal for any chosen w. Figures 14 to 17 present the MSE
performance of the bias-corrected estimator f, for different combinations of M and m; the

grouping of curves to the figures was done with the purpose of having the curves in each figure
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nested within one another, so that the figures are easily interpretable. Is is easy to see that,
except in a neighborhood of w = 0.5, the estimator f, with M=10 and m=>5 dominates all
the available estimators in terms of their MSE. Even in the the neighborhood of w = 0.5, the
MSE of f, with M=10 and m=5 is comparable to the MSE of its closest competitors, therefore
allowing us to conclude that it is globally the best.

To have a further confirmation of the above conclusion, the integrated MSE (IMSE) of all
available estimators was computed and presented in Table 1 as a global measure of performance.
Not surprisingly, it follows from Table 1 that the best (in an IMSE sense) estimator is f; with
M=10 and m=5, i.e., h = 1, followed by f, with M=20 and m=>5, i.e., h = 1/3, in turn
followed by the Bartlett estimator f with M = 20.

The information presented in Table 1 serves to confirm that there is a definite finite-sample
advantage in employing the proposed bias-correction. In particular, the MSE of an optimized
bias-corrected estimator (in this case: f» with M =10 and m=>5) can be significantly less than
the MSE of an optimized Bartlett estimator (in this case: the one with M =20); in our simu-
lation the MSE was reduced by more than 25%. This reduction in MSE is essentially achieved
because the optimized bias-corrected estimator requires a smaller M (larger bandwidth) as com-
pared to the optimized Bartlett estimator!

Similarly, Table 1 exemplifies the fact that the choice of the design parameters M and m
is still crucial; however, it also provides some empirical support for our recommendations of
Section 2.6 regarding these choices. More specifically, choosing m ~ 71, where 0 is the smallest
integer such that R(s) ~ 0 for s > 7 seems to work. Having chosen , it remains to choose
M, or equivalently, h. From Table 1 it is apparent that choosing h = 1 seems advisable, thus
indicating the choice M ~ 2. Using an A that lies between 0 and 1 might be an acceptable
choice as well, with a subsequent choice of M ~ m(h + 1)/h.

Since all our discussion so far pertained to the estimator fh, one might inquire about the
MSE and IMSE performance of f,;" . As it turns out, the empirical IMSE’s of f,;" were generally
found to be a bit smaller than the corresponding IMSE’s for fh. However, the difference is so
small that the IMSE table of f; for different combinations of M and 77 agrees with Table 1

to the first three or four decimal points; thus it is not given here, especially because, since the
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entries to the Table are empirical, one would not trust them to be accurate to more than the
two decimals shown. However, it is interesting to ask how often f,f was identical to f, in our
simulation, i.e., how often f, yielded negative estimates. For this purpose, Tables 2 and 3 are
presented that have as entries the empirically estimated probabilities Prob{ fh(0.88) < 0}, and
Prob{ fh(ﬂ) < 0} respectively, for different combinations of m and M; note that w = 0.88 is
the mode of f, while w = 7 is where f achieves its minimum.

From Table 2 it is apparent that only the very bad estimators, that possess both too high
M’s as well as too high an h parameter, show any occurence of fh(0.88) < 0. On the other
hand, Table 3 shows that occurences of fh(7r) < 0 are quite frequent, even in our best estimator
fn with @ = 5 and M= 10. Note however, that estimating f(m) =~ 0.073 by 0 would actually
be most accurate; therefore, it is exactly in this case where f(7) is of very small magnitude and
f» has a good chance of being negative that the estimator f; (7) would present a significant
improvement over fh(ﬂ'). To explain the fact that the IMSE of f,;" is the same to that of f,
(both with 7 = 5 and M= 10), note that the IMSE is dominated by the large MSE’s occuring
near the mode w = 0.88. The MSE of f;(r) is significantly less than the MSE of fu(w), but

the latter is extremely small to start with; in other words, the relative reduction in MSE might

be significant, while the the absolute reduction (the difference of the two MSE’s) is not.

M=5|M=10 | M=20 | M=30 | M=40 | M= 50
m=0 2.85 0.83 0.45 0.50 0.59 0.71
m=35 0.33 0.41 0.54 0.67 0.81
m = 10 0.54 0.68 0.81 0.95
m = 20 0.95 1.08 1.22
m = 30 1.37 1.50
m = 40 1.85

Table 1. Entries are the empirically estimated integrated MSE (IMSE) of fy for different
combinations of m and M; the case m = 0 corresponds to a pure Bartlett estimator with

parameter M.
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M=5|M=10 | M=20 | M=30 | M=40 | M= 50
m=>5 0.000 0.000 0.000 0.000 0.000
m =10 0.000 0.000 0.000 0.000
m = 20 0.000 0.000 0.000
m = 30 0.026 0.005
m = 40 0.105

Table 2. Entries are the empirically estimated probabilities Prob{ fh(0.88) < 0}, for f, result-

ing from different combinations of m and M.

M=5|M=10 | M=20 | M=30 | M=40 | M= 50
m=25 0.368 0.105 0.042 0.021 0.005
m =10 0.121 0.058 0.032 0.011
m = 20 0.242 0.080 0.058
m = 30 0.310 0.163
m = 40 0.337

Table 3. Entries are the empirically estimated probabilities Prob{f,(r) < 0}, for fy resulting

from different combinations of m and M.

21



4. Practical comments and conclusions

4.1. Some practical comments. In Sections 2 and 3, an intuitive proposal for bias-
corrected nonparametric spectral estimators was introduced and analyzed, and it was shown
that it essentially reduces to taking the positive part of a spectral estimator with trapezoidal
lag-window. It was also shown that the proposed estimator can be easily computed as (the
positive part of) a linear combination of two Bartlett estimators with different bandwidths.
However, the presented bias reduction methodology is not limited to the example studied here
in detail; indeed, a general method was introduced to combine two function estimators in order
to obtain a third estimator with smaller bias.

To focus on a specific important application of the proposed bias reduction scheme, consider
the case in which the objective is estimation of Var(v/NXy), where Xy = N™13N, X, is
the sample mean. It is easy to see that 2w f(O), which is a constant multiple of the Bartlett
spectral estimator evaluated at point 0, is a consistent estimator of Var(\/lv Xn), and therefore,
/27 £(0) is a consistent estimator of the standard error 1/Var(v/NXy). As a matter of fact,
the estimator 27 f(0) comes up very naturally as the resampling (‘moving blocks’ bootstrap)
and subsampling (‘moving blocks’ jackknife) variance estimator ((cf. Kiinsch (1989), Liu and
Singh (1992), Politis and Romano (1992a,c)); it also comes up as the ‘batch means’ variance
estimator in the steady state simulation literature (cf. Meketon and Schmeiser (1984), Welch
(1987), Song and Schmeiser (1988, 1992)). The bias reduction methodology developed in
Sections 2 and 3, can be used to combine two such estimators (with different block-batch sizes)
to obtain a more accurate variance estimate.

Regarding the important problem of setting confidence intervals for f(w) on the basis of
fh(w) or f,f (w) there are two avenues, one based on a central limit theorem, and the other
using resampling and subsampling methods; for more details on the second approach, see
Politis and Romano (1992a,c), and Politis, Romano, and Lai (1992)). To elaborate on the
first method, note that fh(w) will be asymptotically normal under regularity conditions (cf.
Hannan (1970), Brillinger (1975), Rosenblatt (1984, 1985)), and so will f;(w) as the following

theorem demonstrates.
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Theorem 5 Under the conditions of Theorem 1, the additional condition that NY/Cr+1) —
O(M), as well as the assumption that \/JW(fh(w) — f(w)) is asymptotically normal, the
following are true:

(a) If f(w) = 0, the large-sample distribution of either \/N/—th(w) or \/]T’/_Mf,;"(w) degen-
erates to a point mass at the origin as N — oo,

() If £(w) > 0, then /NTH(fy(w) ~ f(w)) and /NTH(f (w) - f(w)) have the same asymp-

totic normal N(0,07) distribution, where o® = SEEL2 f2(w)(1 4 n(w)).

Note that choosing M big enough to ensure that N/(?+1) = O(M) ensures that the limiting
normal distributions of Theorem 5 have zero mean, and thus probability statements using the
approximate normal distributions can be inverted to yield confidence intervals for f(w). In other
words, the choice of M should be such that Bias(fy(w)) = o(/M/N), Var(fo(w)) = O(M/N),
and MSE(fy(w)) = O(M/N) as well.

The two cases where f(w) > 0 and f(w) = 0 can actually be included in a single formulation,
namely that /N/M(fu(w)—f(w)) and /N/M(f} (w)—f(w)) have the same asymptotic normal
N(0,0?) distribution, and allowing for the fact that ¢ = 0 if f(w) = 0. However, in the rather
more interesting second case where f(w) > 0, much more can be said regarding the closeness
of f,':' (w) to fh(w). The following lemma sharpens some results of Section 2.3 in that case; it
is proven under conditions similar to the conditions of Theorem 5, albeit a bit more general,

allowing for the possibility that there is a remaining bias in the limiting normal distribution.

Lemma 2 Let w be any point in [—7,w] such that f(w) > 0. Assume that as N — oo,
M — oo but M/N — 0, \/N/MBias(fy(w)) = Cs, (N/M)Var(fi(w)) — C2 > 0, and that
VNJM(fy(w) — f(w)) has an asymptotic normal N(Cy,C?) distribution; here C; and C? are
constants that may depend on f and w. Then E(f(w) — fo(w))? = o( MSE(fi(w))).

Lemma 2 has the following interesting corollary.

Corollary 3 Under the assumptions of Lemma 2 the following are true:
(a) Bias(fif (w)) = Bias(f,(w)) + o(x/M/N), and
(b) Var(fif (w)) = Var(fi(w)) + o( M/N).
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4.2. Conclusions. Spectral density estimation is now an almost fifty year old field, and it
would seem at first that whatever could be said about it has already been said, and one should
be able to look it up in a textbook, say Priestley’s (1981) comprehensive treatise. Nevertheless,
this premise is not necessarily true; to make the point we will now compare the results of the
present paper to its closest relative, namely the general theory of Parzen (1957a,b).

To start, note that in Parzen’s (1957a,b) pioneering development it was proved that, if the
characteristic exponent of a lag-window is equal to g, then the bias of the corresponding spectral
estimator is of order O(1/M?), where p = min(g,7), and r was defined in the assumptions of
Theorem 1. It is apparent that the order O(1/M") for the bias will be achieved only if the
practitioner happens to choose a lag-window with ¢ > r; since r is not given in any practical
application, choosing ¢ for each data-set becomes a very hard issue.

In addition, the possible nonpositivity of estimators corresponding to lag-windows with large
q was considered to be a major drawback, sufficient to limit consideration to lag-windows with
characteristic exponent not greater than two. In Section 2.3 it was shown how this nonpositivity
is easily side-stepped without sacrificing the good MSE performance of the estimator.

In the same vein, the only estimator with infinite characteristic exponent considered in
Parzen (1957a) was the truncated periodogram, which is well known to possess undesirable
properties (cf. Hannan(1970)). Observe that the spectral window A, (w) of the truncated
periodogram (see Figure 3) exhibits quite prominent positive and negative side-lobes which
may introduce spurious details in the estimate of a spectral density containing sharp peaks. It
is important to point out that the spectral window A;(w) of the ”2f — f” trapezoidal rule (see
Figure 2) does not exhibit such behaviour.

Note also that Parzen (1957a) introduced the family of lag-windows given by

1—-\s/M|? for|s|< M

He) = {0 for |s| > M,
parameterized by the characteristic exponent ¢. Similarly to the family of trapezoidal lag-
windows, Parzen’s family has the Bartlett estimator and the truncated periodogram at its
extreme points (¢ = 1 and ¢ = 00). Nonetheless, the two families of lag-windows are remarkably
different; in particular, all lag-windows in the trapezoidal family for A € (0, 00) have an infinite

characteristic exponent, and share the same properties that are summarized below.
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e Both fy(w) and f; (w) can be computed easily and fast, taking into account that the ac-
tual computation of Bartlett’s estimator as an average of short periodograms is extremely

fast (cf. Garduner (1988)).

e The MSE of fh(w) and f,f (w) can be of very small order provided the function f(w) is

smooth, having a number of derivatives.

e The rate of convergence of f,(w) and f;(w) is v/N/Tog N if the data are generated by
an ARMA model, and v/N if the data are MA(m) or m-dependent.

e Last but not least in importance is that working with f,(w) and/or f;f (w) significantly
simplifies the difficult problem of choosing the bandwidth of the spectral estimator in
practice, at least in the case where the sample autocovariances seem to be negligible from

some point on.
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Appendix: Technical proofs.

Proor or LEMMA 1. Parts (a)—(c) follow immediately from representation (9) and the
properties of the Fejér kernel (cf. Brockwell and Davis (1991)). The proof of part (d) can be
found in Politis and Romano (1992b).

Proor or THEOREM 1. Let w be any point in [—7, 7], and observe (cf. Parzen (1957a),

Priestley (1981, p. 459)) that
Bias(fh(w)) = th(w) - fw)=A; + A, + 4;

where

Ai=o Y ()= DR

s=—N+1
;M-
Ay = —os |s|A(s)R(s)e~7*"
2r N $=—N+1
A 1 R(s)e~ 7
3= —5= .
2T |azN

But [As] < - Fon [B(S)] < 575 Do 18I IR(s)] = o(1/N7), since 3 |s|"| R(s)| < oo.
Similarly, |As| = O(1/N), using the facts [A(s)| < 1, and T |s||R(s)} < o0.
To complete the proof of equation (10), the term A; will now be shown to be of order

o(1/M™). Note that A; can be split into three terms, A; = a; + a, + a3, where

a = 2% 3 (A(s) - 1) R(s)e™i*v

lsi<m

ay = % S (A(s) - 1) R(s)e™*v
m<|s| <M

a;;:% S (A(s) = 1) R(s)em*w.
M<|s|<N

First observe that a; = 0, because A(s) = 1 for |s| < m. Now

i<z ¥ 6 - IR

m<s<M
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But A(s) = 1 — = for m < s < M. Thus,

m

1 S—m
las| < p Z M_ mlR(s)l

m<s<M

It is obvious that if r = 1, then a; = o(1/M). On the other hand, if > 1, we have

Y ST |R(s) = o(1/M7),

m<s<M
where it was used that ) |s|"|R(s)| < oo, and that both m and M — m are asymptotically
proportional to M. By a similar argument it is also shown that az = o(1/M") as well; since all
the bounds above do not depend on w, equation (10) follows.

Now by computing the Hilbert /; norm of the lag-window A(-), equation (11) follows, and

the theorem is proven.

Proor oF THEOREM 2. The proof of Theorem 2 is a consequence of the following general
proposition; note that for the proof of the proposition, no assumptions whatsoever are required

(independence, stationarity, etc.) regarding the probability structure of the sample.

Proposition 1 Let 6 > 0 be an unknown parameter, and let 8y be an estimator of 0 based on

a sample of size N. Then, MSE(0%) < MSE(6y), where 8} = max(fy,0).
Proor oF ProrosITION 1. Note that
6% — 6] < |6n — 0] (18)
always. Indeed, either 9}'\} =0y and equality holds in the above, or 8y < OAR} = 0, in which case

|6 — 8] < |n — 0]. Squaring and taking expectations in equation (18) proves the proposition.

Theorem 2 now follows from Proposition 1 by making the obvious identification 8 = f(w),
by = fu(w), and 0% = i (w).
Proor or THEOREM 3. Recall from the proof of Theorem 1 that
Bias(fp(w)) = Ay + Ay + A3
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where A, is of order O(1/N); under the extra assumptions we have Az = O(e~*") now. Since
a; = 0, we just need to consider the terms @, and az; by a simple calculation it follows that
both a; and aj are of order O(e~4™).

Thus the Bias(f,(w)) = O(e~**™), uniformly in w € [—=, 7], where ¢ = /M, and it is easy
to show that the M SE( fh(w)) is asymptotically minimized by letting M ~ Alog N, for some
A > 1/(2¢d). By this choice of M, Bias(fy(w)) = O(1/v/N), Var(fy(w)) = O(log N/N), and
MSE(fy(w)) = O(log N/N). Finally, Theorem 2 implies that MSE(f;i(w)) = O(log N/N) as

well.

Proor orF THEOREM 4. Note that since N — oo, we can assume without loss of generality
that N > M. As in the proof of Theorem 3, we only need to consider the terms As, a;, and
as, in the decomposition of the bias; however now Az = 0, since it is assumed that R(s) = 0,

for |s| > m. The term A; now can be written as

A=ae 3 (- DR = 3 (M)~ DR),

s=-N+1 s=—m
where again it was used that R(s) = 0, for |s| > m. But A(s) = 1 for |s| < m, and since it is
assumed that m > m, it follows that A; = 0.

Putting it all together, it is seen that Bias(fy(w)) = O(1/N), uniformly in w € [—m,x].
Now Var(fy(w)) = O(M/N) = O(1/N) by Theorem 1 and the assumption that M is a con-
stant. Hence, equation (16) follows. To complete the proof of the theorem, note that equation

(17) follows from equation (16) and Theorem 2.

PRrOOF OF THEOREM 5. Since MSE(f;f (w)) < MSE(fy(w)) by Theorem 2 and M SE(f,(w)) =
o(M/N) by our assumptions, part (a) follows.
Now note that, since f(w) > 0, an application of Chebychev’s inequality yields

MSE(fu(w))
fH(w)

as N — co. So the estimators f;(w) and f,(w) are identical with probability tending to one;

Prob{fyf(w) # fa(w)} = Prob{fu(w) < 0} < -0,

thus they have the same limit distribution, and part (b) follows.
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Proor oF LEMMA 2. The proof of Lemma 2 is a consequence of the following general
proposition, by making the identifications 7v = /N/M, 0 = f(w), fy = fh(w), and 6} =
fif (w).

Proposition 2 Let § > 0 be an unknown parameter, let Oy be an estimator of 0 based on a
sample of size N, and let é;’(, = max(éN,O). Assume that Ty 1s a sequence such that Ty — o0
as N — oo, E (TN(éN - 0)) — b(0) >0, and Var (TN(éN - 0)) —0%0) >0, as N — oo, and
that Ty (Ox — 0) has an asymptotic normal N (b(8),0%(8)) distribution. Then, T2 E(8% —0x)? —

0, as N — oo.

PrOOF OF PROPOSITION 2. Let Zy = TN(éN — 0), and note that, by the asymptotic
normality and the convergence of the first two moments, {Z%} is uniformly integrable; cf., for
example, Serfling (1980, Lemma B, p. 15).

We want to show that, for any € > 0, there is a Ny such that 73 E(6} — 6x)? < ¢, for all
N > Ny. So fix € > 0; by the uniform integrability of {Z%} it follows that there is a ¢ > 0 such
that supy E (Z%1{|Zn| > ¢}) < €, where 1{B} is the indicator of set B.

Now let N, be the smallest integer such that 750 > ¢ for all N > N, and observe that

R B(0% — On)? = 3B (3 1{fn < 0})

< E(Z31{Zy < tn0}) (because if 5 < 0, then |0y — 0| < |0y — 8])

< E(ZGZ1{Zy < —c}) (forall N > Ny)

< E(Z%1{|Zn| > ¢}) < € (by construction).

Hence the proposition is proven, and so is Lemma, 2.
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CAPTIONS FOR FIGURES.

FIGURE 1. The spectral (Fejér) kernel Ayo(w); case M = 40.

FIGURE 2. The spectral kernel A,(w); case M = 40.

FIGURE 3. The spectral (Dirichlet) kernel A, (w); case M = 40.

FIGURE 4. Bartlett estimators with different bandwidths (dotted line) vs. the
true spectral density (solid line):
(a) M= 5;
(b) M=10;
(¢) M=20;
(d) M=30;
(e) M=40;
(f) M=50.

FIGURE 5. Bias-corrected estimators fh(w) (dotted line) vs. the true spectral
density (solid line):
(a) M= 50 and m=
(b) M= 30 and m=

I

(¢) M= 20 and m=
(d) M= 10 and m= 5;

(e) M= 40 and m= 10y
(f) M= 20 and m= 10;
(g) M= 50 and m= 20;
(h) M= 30 and n= 20;
(i) M= 50 and m= 30;
(J) M= 50 and m= 40.
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FIGURE 6. A sample correlogram (dotted line) vs. the true correlogram (solid

line).

FIGURE 7. Empirical variance of the Bartlett M = 50 estimator (dotted line)

vs. the variance given by the asymptotic formula (solid line).

FIGURE 8. Bias and (asymptotic) standard deviation of the Bartlett estima-
tors with M = 5,10,20,30,40 shown as functions of w € [0, r]; the curves are nested
within one another:

(a) Smallest -in magnitude- bias corresponds to M =40, and largest -in magnitude-
bias corresponds to M=5;
(b) Smallest standard deviation corresponds to M =5, and largest standard devia-

tion to M =40.

FIGURE 9. (a) Empirical bias of the bias-corrected estimator f,(w) with M=
10 and m= 5 as a function of w € [0, 7];
(b) Asymptotic standard deviation of fh(w) with M= 10 and m= 5 as a function
of w € [0,7].

FIGURE 10. (a) Empirical bias of the bias-corrected estimator f,(w) with M=
20 and m= 5 as a function of w € [0, 7];
(b) Asymptotic standard deviation of f,(w) with M= 20 and m= 5 as a function
of w € [0, 7].

FIGURE 11. (a) Empirical bias of the bias-corrected estimator f,(w) with
M=30 and m= 5 as a function of w € [0, 7];
(b) Asymptotic standard deviation of f,(w) with M=30 and m= 5 as a function of
w € [0,7].
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FIGURE 12. (a) Empirical bias of the bias-corrected estimator f,(w) with M=
20 and 7= 10 as a function of w € [0, 7];
(b) Asymptotic standard deviation of f,(w) with M= 20 and m= 10 as a function
of w € [0, 7).

FIGURE 13. Mean squared error (MSE) of the Bartlett estimators with
M = 5,10, 20,30,40,50 shown as a function of w € [0,7]; the MSE curves are nested
within one another:

(a) Curves for M = 5,10,20, with largest MSE corresponding to M =5 and smallest
MSE corresponding to M =20;

(b) Curves for M = 20,30,40,50, with largest MSE corresponding to M =50 and
smallest MSE corresponding to M=20.

FIGURE 14. Mean squared error (MSE) of the bias-corrected estimator f,(w)
with m= 5 and M = 10,20, 30,40, 50 shown as a function of w € [0, 7]; the MSE curves
are nested within one another (except in a neighborhood of w = 0.5): largest MSE

corresponds to M =50 and smallest MSE corresponds to M=10.

FIGURE 15. Mean squared error (MSE) of the bias-corrected estimator f,(w)
with m= 10 and M = 20,30,40,50 shown as a function of w € [0, 7]; the MSE curves
are nested within one another: largest MSE corresponds to M =50 and smallest

MSE corresponds to M=20.

FIGURE 16. Mean squared error (MSE) of the bias-corrected estimator f,(w)
with m= 20 and M = 30,40, 50 shown as a function of w € [0, 7]; the MSE curves are
nested within one another: largest MSE corresponds to M =50 and smallest MSE
corresponds to M=30.
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FIGURE 17. Mean squared error (MSE) of the remaining bias-corrected esti-
mators f,(w) as a function of w € [0,7]; the smallest MSE corresponds to M=40
and m= 30, the middle line corresponds to M=50 and m= 30, and the largest MSE

corresponds to M =50 and m=40.
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