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Abstract

For iid observations from a multivariate normal distribution in p
dimensions with an unknown mean and a covariance matrix propor-
tional to the Identity, we revisit the issue of the apparent irreconcil-
ability of the classical test for a point null and the standard Bayesian
formulation for testing such a point null. With appropriate families of
priors on the alternative, we consider the threshold value of the apriori
probability of the point null required for the smallest ( over priors on
the alternative ) posterior probability and the classical P-value to co-
incide. We also consider, for an arbitrary but fixed apriori probability
of the point null, the ratio of the minimum posterior probability and
the classical P-value. The main results emphasize properties of the
null distributions of these two quantities, such as their quartiles, the
effect of the dimension by means of formal dimensional asymptotics,
etc. Among many theorems proved in the article are the results that
regardless of the dimension p, the threshold prior probability as de-
fined above has a median exactly equal to 0.5 in many cases, and
the ratio as described above has a median exactly equal to twice the
apriori probability assigned to the null. These and other results are
an attempt to clarify the issue of typicality : how often the Bayes -
classical conflict will arise and in what magnitude.
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1 Introduction

1.1 The goal of this article

It is very well known that in parametric testing problems where the null hy-
pothesis is sharp, the standard Bayesian method and the classical method of
testing the null hypothesis are sometimes hard to reconcile. There are many
results to this effect in the literature; the phenomenon known as Lindley’s
paradox is one of the first results in this direction. More recently, inspired by
the writings of Edwards,Lindman and Savage(1963), Berger and Sellke (1987)
made an illuminating contribution wherein they show that for testing a sharp
null hypothesis about the mean of a univariate normal distribution with a
known variance, even the minimum posterior probability of the null hypoth-
esis over really large classes of priors on the two-sided alternative can be
significantly larger than the P-value of the common classical test, regardless
of the sample size, provided the sharp null is assigned,apriori, a probability
of 0.5. This result is then given the interpretation that classical P-values
tend to understate the plausibility of the sharp null. This work was followed
by an array of similar results in different problems; Casella and Berger(1987)



is a notable contribution that showed such a conflict appears to be germane
to the sharp null.

The results in Berger and Sellke(1987) were widely discussed in the pro-
fession. Many were convinced, others skeptical. Some were skeptical because
they had a very fundamental objection to the standard Bayesian formulation
of the sharp null testing problem, some others because they did not actually
believe that sharp null hypotheses ever occur. We will not go into these
particular points in this article. Our intention is to explore, among other
things, a third obviously natural issue within the structure of the problem
. the relevance and the importance of the assumption made in all or most
of these articles that apriori the sharp null has a probability of 0.5. It is
fair to say that this assumption was also troublesome, and in any case, it
seems natural and necessary that one explores in greater depth the role of
this assumption in the Berger-Sellke phenomenon. It is clear that these au-
thors were undoubtedly aware of this issue, but did not pursue it in their
writings. The literature on this and the conditional-classical conflict in-
cludes Berger and Delampady(1987), Brown(1967,1978), Kiefer(1977), Ol-
shen(1973), Robinson(1979), Dickey(1977), Good(1967), Lindley(1957), De-
lampady (1989 a,b,1990), Casella(1988), Hall and Selinger(1986), Neyman(1976)
and Lehmann(1993).

1.2 An illustrative example

Consider the case of an i.i.d. sample of size n from the N(6,1) distribution
: we want to test Ho: 0 =0 vs. Hy: 0 # 0. We assign a prior probability
of 7o to the null Hy, and use an arbitrary symmetric and unimodal prior g
on the alternative ( symmetric and unimodal in the same sense as in Berger
and Sellke).

If the data are such that the P-value of the usual classical test is .10, then
the infimum ( over all g of the above type ) of the posterior probability of Hy
equals .390 if we use 7o = .5, equals 0.175 if we use 7o = .25, and equals 0.03
if we use g = .05. It is evident that there is a (unique) value of the apriori
probability such that the two quantities, namely the classical P-value and
the minimum posterior probability, are exactly equal. For these particular
data, this threshold value of mg is easily seen to be ( approximately) 0.148.
Naturally, the threshold value of 7o will be different for different data( i.e.,

different values of the sample mean ). The ( frequentist) question of typicality
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will then be the following : typically, what kind of an apriori probability is
needed for the Berger-Sellke phenomenon to just arise ? In other words,
what is the distribution of the threshold prior probability ? One can also
ask related questions such as what are its median, quartiles etc. Notice the
important fact that the threshold value of mo, as we define it, is in close
philosophical resemblance to the P-value itself : the P-value is exactly the
threshold-level ( type 1 error ) at which the null hypothesis is just rejected. In
any event, the threshold prior probability will clearly shed light on the issue
of the criticality of the 7o = .5 assumption made in the existing literature.

1.3 Description of main results and notation

We will , in general, consider the multivariate case : Xi,..., X, are iid
random vectors with the N(@,0%I) distribution. A point null hypothesis
Hp : 6 = 0 is tested against a two-sided alternative Hy : ¢ # 0. mo will
continue to denote the Bayesian’s apriori probability on Hp. The family of
priors on the alternative will have the generic notation I'. Several choices of
T will be used; the intention is to show that the same intriguing phenomena
hold over many commonly used choices of I'. In particular, the following
families are used :

Tayny = All multivariate normal N(0,72I) priors ( I'nvor = All

normal N(0,7?) priors in one dimension);

Issyr = All scaled versions of a fixed functional type , with a
Monotone likelihood ratio property( the precise definition is given
later);

I'yss = All spherically symmetric unimodal priors.

The Berger-Sellke case is therefore covered as a special case. Throughout the
article, the following notation will be used :

f(z]6) = The likelihood function

mg(z) = fozo f(z10)9(6)d0



m(z) = f(z|0)mo + (1 — mo)my(z), the overall marginal
B,(z) = The Bayes factor with respect to a given g
P(Ho|z,T') = infoer P(Holz)

P = The P-value of the usual classical test

mo(z) = The threshold apriori probability in the sense defined
earlier

R(z) = M%I:M ( notice the implicit understanding in this
line that this is with respect to a specified apriori probability 7).

Finally, since everything depends on the sample data through the standard-
ized z = \/nT, we will treat z as the observation itself.

In section 2, we consider the null distribution of the quantity mo(z). In
section 3, we consider the null distribution of the quantity R(z), for an arbi-
trary but fixed 7o ; note that R(z) can be regarded as the magnitude of the
Bayes-classical conflict ( differences rather than ratios are also sensible; such
results are available in the Ph.D. dissertation, Oh(1993)). Section 4 gives an
overall discussion and in addition some results which are specialized to the
case of one dimension : for instance, the mathematically interesting result
that mo(z) has a unimodal distribution is sketched. Due to the substantial
evidence that the conflict is less pronounced in high dimensions, dimensional
asymptotics are also considered in section 4, although we have kept it brief
due to length considerations. The message is that even as the dimension
tends to infinity, the conflict does not completely go away. A large number
of the proofs are technically complex, and therefore for easy comprehension
of the results, we have deferred practically all the proofs to an appendix in
section 5. Two particular results among others are that in any dimension,
for any of the families described above, the median of mo(2) equals exactly
1/2 and the median of R(z), for an arbitrary given 7o, equals exactly 2mq.
The implication, for example, is then that with the choice my = .5 as in
Berger and Sellke (1987), the Berger-Sellke phenomenon will just arise in



50% of sharp testing problems. Many other interpretations will emerge and
will be provided in the appropriate sections. Using the theoretical results we
prove, we also provide tables for Py,(R(Z) > 1) and Pg,(z < R(Z) < k).
These tables provide valuable information about the frequency with which a
Bayes-classical conflict arises for general my and p, not just 7o = 0.5,p = 1.
In fact, we are able to prove analytically that for any mg > P( X;z, > p) for any
p > 1, Py, (R(Z) > 1) is exactly equal to mo. So for instance, with mo = 0.4,
a Bayes-classical conflict in the sense of Berger and Sellke(1987) arises ex-
actly 40% of the times when p= 1. One can evidently make the argument
on the basis of Table 2 that in strlctly frequentist sense, the Berger-Sellke
phenomenon will not occur too "often even with 7o = 0.3. We would like to
clarify that arguably one should ( or can ) consider the null distributions of
7o, R conditioned on an event of the type .001 < P—value < .3 ( other values
are statistically unprovocative). Our methods apply with modifications to
this case, although the neat nature of the results we present are clearly lost
in the process. The principal results in this article are of the following type :

a. investigation of quartiles, means and standard deviations of 7o(Z) and

R(Z) ;
b. investigation of their distributions, in particular shape properties ;
c. dimensional asymptotics ;
d. brief investigation of large sample behavior under the alternative ;
e. numerical illustration of the theorems proved.

We believe the mathematics of this article may work for nonnormal problems
; distributions under the alternative or the marginal distributions are also of
interest but not treated here. Figure 1 is given for visual illustration of the
difference between the P-value and P(Ho|x,yor) for mo = 0.5.
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Figure 1: (a) Plots of the P-value and P(Hp|x,'nor) (b) The Plot of the
P(Ho|x,TnoR) vs. the P-value



2 Threshold Prior Probability

2.1 Normal distributions

Let us consider a family of Normal priors on H;. That is , g(8) € T'amww,
where

Tpvw = {all MYN(Q,771,) distributions, 0 < 72 < co}.
Since a sufficient statistic for § is X which is distributed as MVN(¢,1/nl,),
mg(X) is a MVN(O (72 4+ 1/n)1L,) distribution. Then m,(X) is maximized
at 72, where 72 = max{0, (Z')/p — 1/n}. Let z = \/nT. We then have
me(T) { 1 if ||2]]* < p

sup

— RIE .
seCrvn F(Z10) T if || ]| > p.

(ellzl?/p)P/?
Thus the infimum of the posterior probability of Hp is
o if [|l2]|* < p

P(Hol|z, Tpmvn) = 1omg &M g .
( ° ) (1+ P (e||z||2/p)P7 ) voif ”2”2 > p.

Note that since || Z||? = n-XtX has a Chisquare distribution with p degrees
of freedom, the P-value is given by

P = P(x; > ||2I*)-
Solving the equation P(Ho|z, I myar) =P-value for mp produces
{ P(x; = |l=1I) if [|z||* < p

Tol2) =

P(x22=l1%) . 2
= if ||z]]* > p.
P22 ||21f2)+(ellzl|? /p)P/2e=1/20121% P(x2<|2]12) &l P

Hence mo(z) is a function of ||z]|? alone, as expected. Let

(et/p)P/2e ?P(x2 < t), _,
P(X2 > t) )~

n(t) = (1+

so that mo(z) = n(||||?) for ||z||> > p. Let us now consider some interesting
features of the distribution of mo(Z) under the null hypothesis such as the
median, first and third quantiles. To derive these quantiles, we will use
the monotonicity of 7o(z) in ||z||?, for proving which the following lemma is
needed (see Barlow, Proschan and Hunter (1965)).
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Lemma 1. Let f,(z) and F,(z) denote the density function and the cumu-
lative distribution function of the Chisquare distribution with p degrees of
freedom, respectively. Then for any p > 1, f,(z)/(1 — Fp(z)) is increasing in
z > 0.

Now, the monotonicity of mo(z) in ||z||* is shown as follows.
Lemma 2. mo(z) is decreasing in ||z||* for any given p.

Proof :
Clearly, P(x2 > ||z||*) is decreasing in ||z||*. To show that n(]|2||?) is
decreasing in ||z||?, it is sufficient to show that

tP2e t/2P(x2 < 1)
P(xz =1)

is increasing in t for ¢ > p. But from Lemma 1,
tp/?—le—t/Z

P(x2>t)

is increasing in ¢ for ¢ > 0, for any p > 1. Also, it is obvious that tP(x2 < t)
is increasing in t for ¢ > 0. Combining these facts, the result follows immedi-
ately. O
By using the fact that the P-value =P(x2 > ||Z||?) is distributed as Uni-
form(0,1) and by Lemma 2, we can derive following result. The proof is
outlined in section 5.

Theorem 1. For the null distribution of mo(Z) in any given dimension p,

the median is 1/2 and the third quartile is 3/4. Also, the first quartile is

given by n(xig), where Xf}; is third quartile of the Chisquare distribution
’4 '4

with p degrees of freedom.

Thus if the prior probability on Hp is mo = 0.5, then in a large sequence of
experiments the infimum of posterior probability over the family of Normal
distributions on H; will be less than the P-value 50% of the times. This
result helps put the results in Berger and Sellke(1987) and the subsequent
results on this issue in perspective and aids in a clear understanding of the
role of their assumptions that 7o equals 0.5.
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2.2 Spherically Symmetric Unimodal Priors
Let us consider g(§) € T'yss, where
Lyss = {B(¢9)|8 is nonegative and [ A(8'9)df = 1}.

The following result can be found in Berger and Delampady(1987).
Lemma 3. (Berger and Delampady (1987))

inf_By(2) = exal—llelf/2)sup s [ exp(=10 — 2l/2)d6)

9€luss >0 V(r)J|

where V(r) = pf,’(r:;;)rp is the volume of a sphere of radius r in p-dimension.

The above result can be significantly strengthened as follows. It is instru-
mental for proving Theorem 2 following thereafter.

Lemma 4.

inf By(z) =1, if 2] < p.
9€lyss

Thus by Lemma 3 and 4,
o if |2 < p
P(Ho|z,Tuss) = { {1450 exp(—||z[*/2)
[sup,s0 7 fiener exp(= 110 — 2117/2)d61* 174 if [|]* > p.

By solving the equation P(Ho|z,Tvs) = P-value in mo, we have

P(x2 > |12|I*) | if |z <p
mo(z) = POE>1#l12) if [12]]2 >

POESTFP) +exp(—1I2IP /2) POESTEIP /@ UTAIP) P,

where
1
2) = sup —— exp(—1|6 — z[|2/2)d6.
Q") = 598 5 g, P10 = #I°72)

Define

—t/‘ZP 2 <« 1
() = S e =Dy e )
P(x2 2 t)Q(t)
so that mo(z) = (14 6(t))~* for ||z||* > p. By showing that mo(z) < 1/2
(i.e., §(t) > 1) for ||z||*> > p and by the Uniformity of the distribution of the
P-value, we have the following result.

9



Theorem 2. For the null distribution of mo(Z), the median is 1/2 and the
third quartile is 3/4.

2.3 Symmetric Scale-Parameter distributions with M.L.R.
property in one dimension

We begin with a definition of the needed concepts.

Definition 1. The real-parameter family of densities pg(z) is said to have
monotone likelihood ratio(m.l.r.) in T'(z) if there exists a real-valued function
T(z) such that for any 6 < ¢’ the distributions Py and Py are distinct, and
the ratio pe (z)/ps(z) is a nondecreasing function of T'(z).

Note that any Normal prior on H; with mean 0 and variance o? is the form
of %f(g—), where f is the standard Normal density and f(g) has m.l.1. in |6].
Clearly therefore, this is a very special case of

Fssm = {lf(g)la > 0, f is symmetric about 0 and f(£) has m.Lr. in |]}.
oo

In the above, f is treated as a fixed function and o varies freely in (0, 00).
Such priors were considered by earlier authors in the area : in particular,
see Casella and Berger(1987). Let us derive the infimum of the posterior
probability P(Ho|x,ssm). By symmetry of f,

sup m,(x) = sup H(o),
9€l'ssm >0

where

H(o) = sup ” % f(g)(e-“’-z)"’/2 4 e~ 0+2)/2) 4.

>0 /0
Let
w(f) = e (0-2)%/2 + e~ (0+2)%/2

Then by a change of variable, we get
] 8
Ho) = [~ —f(5)u(0)do
/0 Fly)u(oy)dy.
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So

O Ho) = /Ooof(y)U'(dy)ydy

o
© gz x.,
- /0 ZIC W (@)ds.
By investigating the sign changes of u/(z), we have the following lemma which
is proved in the appendix.

Lemma 5. For |z| <1, £H(c) <0 and for |2| > 1, 2 H(o) changes sign
ezactly once.

Thus for |z| < 1, H(o) is decreasing in o for ¢ > 0 and for |2| > 1, H(o) has
a unique extremum. To show that the extremum of H(o) is the maximum,
ie., %H (o) changes sign once in direction from the positive to the negative,
for |z| > 1, the following well-known lemma due to Karlin(1957) is used.

Lemma 6. (Karlin(1957)) Let po(z) be a family of densities on the Real
line and suppose { pg(z) } is m.L.r. in x.

(i) If ¢ is a nondecreasing function of z, then Eq(¥(X)) is a nondecreasing
function of 0.

(ii) Assume that ps can be differentiated n times with respect to 8 for all z.
Suppose ¥ changes sign n times. Then Eg(1(X)) changes sign at most n
times. Moreover, if Eg(¥(X)) changes sign ezactly n times, then ¢(z) and
E5(¢p(X)) change signs in the same order.

Note that

a%ﬂ(a) - /0 ” 2 FC (@)de.
and since f(z/o) has the m.L.r. property, we have that for oy < 03,
(z/o})f(z/01) _ of f(z/o1)
(z/03)f(z/o2) ot f(z]02)
is nonincreasing in z. Thus C% f(z/o) has m.L.r. with respect to o for z > 0,
where the constant C is given by

¢ = ([ Sf(e/o)dy)”
= (/Oooyf(y)dy)‘l-
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It is proved that u'(z) changes sign once in the direction from the positive
to the negative for |z| > 1 in the proof of Lemma 5. Thus by Lemma 5 and
6, H(c) has a unique maximum for |z| > 1 and so we have the following
proposition. ‘

Proposition 1. For |z| < 1,
supH(o) = lir%H(a)

>0

—22/2

and for |z| > 1, H(o) is maximized at a unique point such that 2 H(o) = 0.

Thus
To if [2] <1
E(H0|X, PSSM) = { (1 + I_:roﬂ_H(a-)ezz/z)—l if |Z| > ].,

where & satisfies that 2 H(0)|,=; = 0. Since the P-value is 2(1 — ®(|z])) in
one dimension, solving the equation P(Ho|X,'ssp) =P-value in 7o produces

2(1 - &(|Z|) if 2] <1
mo(2) = 1-(Z
0 _=%(2) _ if |Z] > 1.
1-8(2)+e==12(22(12])-1)/(2H(3))

For the proof of Theorem 3 following shortly, we require the following Lemma.
Let us define as a notational convenience

Uz, 7) = e @2 4 o~e+2/2

Lemma 7.

max U(LE Z) max{e—($-2)2/2 + e—(1:+z)2/2}
z>0 >0

is decreasing in z for z > 1.

Proof :
For a given z > 1, 2U(z,2) = 0 implies that €?** = ZX£ where e is
positive for z > 0. So the maximizing value of z has to be greater than
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z. It will be proved that maxzsoU(z,21) > maXzso U(z, z;) for any given
1 < z; < z3. Note that

e = rtz &z —z=r(z,z2),
T—z

where r(z,z) = (z + 2)e"**. Since r(z,z) is decreasing in z for z > 2z and
z — z is increasing in , the maximizing value of z for a given z is unique.
Let z; maximize U(z, ;) for a given z;, ¢ = 1,2, respectively. First, it will be
shown that z; < z,.
(i) Suppose that z; < z;. Then since z2 > 29, it is clear that z, < z,.
(ii) Suppose that z; > z;. Now, we assume that z; > zo. Then since for a
given z > 0, r(z,z) is decreasing in z for z < z, 7(22,21) > 7(22,22). Also,
2 — 27 is on the right side of £ — z; with the same slope. Consequently, r(z, z2)
decreases at most as fast as r(z, z;) decreases in z. But

0 9
8z 0z

which is positive for 1 < z < z. That 1s,

r(z,z) = 4e7***(z + z)(zz — 1),

0 r(z,z1) <
Oz ! Oz

Since r(z,z) is decreasing in z for ¢ > z, r(z,2) decreases faster than

r(z,23). So we have a contradiction. Hence z1 < 2».

Next, it will be proved that U(z1,21) > U(zz,22). Note that

r(z, z2).

maxU(z,z) = e 12672 (7 4 e777)
z>0
— —22/2 —.1:2/2 , ’
_ e—z2/2 —1:2/2
- :c2 — z2

which is decreasing in z for z > z when z > 0 is given and is decreasing in
z for z > z when z > 1 is given. This completes proof. i

Theorem 3. When the family of priors on Hy is Issy, the median of the
null distribution of mo(Z) is 1/2.

13



Remark : Using the closed form formula for mo(Z), it is easy to find the
density of mo(Z) itself. A typical picture is presented in Figure 3. The visual
impression that the density of mo(Z) is unimodal is justified in an important
special case in the appendix.

3 Distribution of the ratio of P(Hy|z,'mvn)
and the P-value

In the previous section, we investigated the prior probability on Hy, o,
required for the conflict between the infimum of the posterior probability of
H, and the P-value to just arise. In a different approach to this, they will
now be compared by their ratio for a fixed prior probability mo. Let R(z)
denote the ratio of P(Holz, [ rmvar) to the P-value, i.e.,

P(Holz, T pmvn)
P(x2 > ||=||?)

R(z) =

It is important to keep in mind that mo is now held fixed. Using the formula
of section 2.1, one has

R(z) = { PG2IFIP) el <P
L+ =22 (el|2]/p) 7 exp(|l2I2/2)}P 0 2 213 i Izl > p

By using Lemma 1, it can be shown that R(z) is increasing in ||z||%. As a
consequence, one has the following result in Theorem 4. The plot of R(z) is
given in Figure 2 when p = 1.

Theorem 4. For the null distribution of R(Z) for any given mo, the median
is 2w and the first quartile is %71'0. Also, the third quartile is given by

X23/2

11— - -
2ex?s/p) 2T,

4{1 +
where Xz s is the third quartile of the Chisquare distribution with p degrees
i

of freedom.

The assertion of this result is intriguing. In particular, with 7o = 0.5, the
ratio will thus be larger than 1 in exactly 50% of a long sequence of ex-
periments. Table 1 at the end gives the three quartiles, the means and the

14
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Figure 2: The Plot of ratio of the P(Ho|x,Tnor) to the P-value

standard deviations of R(Z) for various mo and p. Again, more is said later
of the distribution of R(Z) itself ; in particular, see Figure 4 and Proposition
6 which gives the result that the density of R(Z) is monotone decreasing in
an important special case. Table 2,3 and Table 4 give values for the impor-
tant quantities Pg,(R(Z) > 1) and Pyy(; < R(Z) < k). In addition, the
following very interesting result holds exactly.

Proposition 2. For any mo and any p > 1 such that mo > P(xfJ > p), one
has Py,(R(Z) > 1) = m. In particular, for any mo 2 1/2 and any p > 1,
Py, (R(Z) > 1) = mo.

Proof :
Immediate on noticing the fact that for ||z||* = p,
To
RG) = 5
) = Foazp
> 1,
for all p > 1 and mo > 1/2, since P(x2>p) < 1/2forall p>1 and the fact
that R(z) is monotone increasing in ||z||*. ]
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4 Discussion

4.1 Effect of dimension

It has been noticed that the Bayes-frequentist conflict is less in high dimen-
sions (see Berger & Delampady (1987) and Delampady (1990)). To explore
this issue a little, let us consider the limiting distribution of P(Ho|X, T myn)
under the null hypothesis as p — oco. Since the P-value is distributed Uni-
formlyon [0, 1], we can let | Z||* = F,;*(U) where F,, denotes the distribution
function of the Chisquare distribution with p degrees of freedom and U de-
notes a Uniform|0, 1] random variable. Then (in law)

o if U < F,(p)

P(Ho| X, Tpvw) = iy oB(F (U)/2) 1
(Hol ¥, Fatww) { (1 + Lz 2R M) ™ iU > Fy(p).

Let f(u) = F?(_If(_l)(/?)/:/)z Since the distribution of (x2 — p)/+/2p converges to
€. P U

the standard Normal distribution,

Fp_l(u) = /2p® ! (u) + p, asymptotically as p — oo.

By using a Taylor expansion,

lim log f(u) = (®7*(u))?/2.

p=>co
Also, lim,_.o, F,(p) = 1/2. Hence we have the following property.
Proposition 3.

P(Ho|X,Tmvw) =0 Y, as p— oo,
where, for U ~ Uniform(0,1), Y is defined in law as

Y = o if U <1/2
T {4+ ERexp(@7H(U))?/2)} U > 1/2.

Very interestingly, the limiting distribution has a point mass at 7. Similarly,
the limiting distribution of mo(Z), required for the equality of P-value and
P(Ho|X,Tmvn), is given as follows.
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Proposition 4.
WO(Z) —D V’ as p — oo,
where, for U ~ Uniform(0,1), V is defined (in law) as

V_{l—U ifU<1/2
T\ {t+ Zpexp(—(@7N(U))?/2)} iU > 1/2.

For the distribution of V under the null hypothesis, the median and the
third quartile are 1/2 and 3/4, respectively and the first quartile is {1 +
3exp((®71(3/4))%/2)}~* which is approximately 0.295. So the conflict be-
tween the P-value and P(Hp|X, T pynr) still exists in the limit, but somewhat
marginal (the case of no conflict corresponding to a uniform distribution for

7o(Z) in the limit).

4.2 Miscellany

Finally, some interesting properties in one dimension will now be discussed
very briefly. Consider the family of Normal priors on Hi, I'nor. Then the
prior probability on Hy, required for the equality of P-value and the infimum
of the posterior probability of Hy, is given by

2(1 —2(121)) if 7] <1
1

mo(Z) = { (1-8(12){1 — ®(12]) + Vel Zle=Z/*(22(|12]) - 1)} if 2] > 1.

Also, the ratio of P(Ho|x,'~vor) to the P-value is

R(z) = A0 (D) . if 2] < 1
(2(1 - ®(=))(1 + =BG i o] > 1

1. From Theorem 1, the median and the third quartile of mo(Z) are exactly
0.5 and 0.75 respectively and the first quartile is approximately 0.254. Fur-
thermore, the mean is approximately 0.508. Note that these values are almost
or exactly the same as the corresponding values of the Uniform distribution
on [0,1}.

The next result gives an interesting mathematical property of the null
distribution of mo(Z).

17



Proposition 5. The null distribution of 7o(Z) is unimodal and the mode is
approximately equal to 0.1356.

The proof is complex and is deferred till the appendix. The plot of the
density functions of mo(Z) is given in Figure 3.
2. Let us also consider the null distribution of R(Z) in more detail.

Proposition 6. The function R(z) > = for all 2. Furthermore, the density
function of Y = R(Z), is decreasing in y for y > mo.

Again, the decreasing density property is interesting. We give the proof in
the appendix. The plot of the density function of R(Z ) is given in Figure 4.
3. There is also some natural interest in the distribution of mo(Z) un-
der the alternative hypothesis H,. Note that under the alternative, as n —
00, v/n|X| — co almost surely and as z — oo, 1 — ®(z) ~ Lg(z) (see

Feller(1973)). So :

lVrX|(1 - o(vr X))
#(lvnX1)

almost surely, as n — oco. Thus,

N 1
X -
nmo(v/n|X|) — NV
almost surely as n — oo for the true 8 (# 0). In a similar fashion, as n — oo,

BZ) |, T frens?

n 1 —mo

almost surely under the true 6. These two results are saying that the more
seriously Hp is false, the more pronounced is the conflict (a smaller and
smaller prior probability is required for P(Ho) to equal the P-value, etc.).
One can regard these as remanifestations of the Lindley phenomenon (see

Lindley(1957)).

5 Appendix : Proofs

We will verify Theorems 1,2,3 and 4 together with Lemmas 4 and 5 and
Propositions 5 and 6.

18
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Figure 3: The density function of mo(Z)
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Figure 4: The density function of R(Z) when mo = 0.9
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Proof of Theorem 1 :
Since mo(Z) is decreasing in || Z||? by Lemma 2 and for z such that ||z||* =

p, mo(z) = P(xs 2 p) < 3,
P(rolz) > 3) = PPOG 2 417) > ) )

(Geometric thinking helps understand 2 ; see figure 3). Since the P-value
=P(x2 > ||Z|| ) is distributed as Uniform(0,1), (2) = 3. Similarly,the third
quartile is Z Now, let g1, denote the first quartile of the null distribution
of mo(Z) for any given p. First we show g1, < P(x% > p). If not, then one
must have

P(”O(%) < q1,p)
P(1Z]1?* = p)
P(x2 > p).

p) > ; for all p > 1 because P(x% > p) is increasing in p. Thus
> p). Hence

1
4

v

But P(x2 >
Q1p < P( ;2;

P(ro(2) S q1p) = PIZI) < q1)

P(I1Z)* 2 n™(q10)),
which implies that 77 (q1p) = X2: © @1p = 7 x2 3)) where X2 3 1s third
7p p 7p 4 4

quartile of the Chisquare distribution with p degrees of freedom. This com-
pletes the proof. a

Proof of Lemma 4 :
Since
. 1
RV

49”29 exp(—||0 — z||2/2)d8 = exp(—|||*/2),

lim, o infzery o5 By(z) = 1. So it is sufficient to show that

1
V(r)

Jpee, P10 = 2I1/2)d0 3)

20



is decreasing in r > 0, for ||z]|* < p. Let

1
£0) = 7 [ )P exp(=110 = /)0

Then since the expression in (3) is f(r?), we will show that f(r) is decreasing
in r if ||2]|> < p. Note that

Aonzq@”)—”/ 2 exp(—||0 — z|[?/2)d6 = P(6'0 <),

where § ~ MVN(z, 1,). Thus %0 has a noncentral chisquare distribution
with p degrees of freedom and noncentrality parameter ¢ = ||2]|?. Hence

m 1
tg < _ t/? ( ) / LP/2Am=1,=/2
P(6°60 <r) E T ()3 + ) e " dx

- 2/ TP, (Vi) da,

where I;(z) is the modified Bessel function of the first kind and order k (see
Tranter(1969)). Then

T4y = g [ e e S ey (ViR)da

or 2 t
tre” r+t)/2(t)p/4 I/QI /2 1(\/_)]
So
Ew (r)<0& —u(r)+w(r) <0
where p [T
u(r) = & [ e (V2P o (Viw)de
and

w(r) = re” 2 (VrPP o (Vir).

Let us set v = p/2 — 1. The rest of the proof consists of showing that for
any p > 1, —u(r) + w(r) is decreasing in r > 0if ¢ = lz]|> < p and that
u(0) — w(O) — 0. Of these, the second step is trivial. For the first step, note
that

0 P /2 v
EU(T) =3¢ I2(/r)* L (Vir)
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bre BRI + B = DELWE) + 2 1)
where I (v/tr) = 21,(z) at = v/ir. Then the sign of 2 (—u(r) +w(r)) is
sgn{ =3 L(Vir) = S L(Vir) + —*éﬁf,c(x/t‘r)}. (4)

Now, since (see Tranter(1969)) I(z) = %I,(z) 4 I,4+1(z), the expression in
(4) equals

—EL,(\/t_T) + —\/jjhﬂ(\/ﬁ)

00 (\/t_,r')2m+u . t

{5 mz=:0 22m+vm!I‘(m+V+1)( + 2(m+1/-|—1))}'

But t/(2m + 2(v + 1)) < 1 if t < 2(v + 1)(= p) for all m > 0. Hence
—u(r) 4+ w(r) is decreasing in 7 > 0 if ||z||* < p. This proves the first step.
O

Proof of Theorem 2 :

Since the P-value = P( 2 > ||z|I?) is Uniformly distributed on [0,1], i
we can show that 7o(z ) 1 for all ||z||> > p, it will follow as before that
P(ro(2) > }) = PP(c; 2 [2]7) 2 §) = § and also, P(ro(2) 2 ) = 1. 5o
we will show that wo(g) 3 for all ||z||2 > p which is equivalent to o(t )
where §(t) is defined as (1) in section (2.2). Note that §(¢) = 61(t)P(x2 S

0/(#1Q(1)), where
tp/2—1 —t/2

51(t) P(Xp Z t)

Now, since 6(t) is increasing in ¢t > 0 by Lemma 1, 6;(¢) > 6:1(p) for t > p.
Let us consider now an upper bound of t?/271Q(¢). Towards this end, note
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that

1
e exp(—||0 — z||?/2)db
707 fope, SN0 = #1772

p/2 2p 2 & r? j—1_—x
= pr+2] ,21/ gP/Pti-1e=o/2 gy

2rp

= I, say,

where
o—t/24p/2+i-1
(1) = -
fp+21( ) F(p/2 +j)2p/2+‘1,

the density function of the Chisquare distribution with p + 25 degrees of
freedom. But note that f,42;(t) < fp(p) for all j > 0 and ¢ > p. Thus

p/2 o r2 .
I S pr(p2/2p)2 '12]/ .'I}p/2+‘7_16~x/2d$
r
pl'(p/2)2%/* P e (2/2)
) [ e /2;,( e
]:
— pp/2—le~p/2_
- Hence
P(x2 <p)
6(t) Z 61(p)pp/2-—ple—p/2’

pP/2=1¢—P/2
P(x2>p)

§(t) = P(x2 < p)/P(x; = p),

(x
which is greater than 1 because P(x;‘; <p 2 -% This completes the proof as
explained earlier. a

where 6;(p) = . So

'ﬁl\')

Proof of Lemma 5 :
Note that



Let vi(z) = —(z — z)e"=*/2 and let vy(z) = (z + z)e~@+9*/2 Without
loss of generality assume z > 0. Then

lim, n(e) = Jim (2) =0

Also,

—a%vl(m)=0¢)$:z—l or z=2z+1

and
vi(z—1) >0 and v(z+1)<0.

Since vi(z) = vo(—z), it is easy to see that vy and v, meet only once at 0 if
z < 1 and they cross three times at —(, 0, { for some 0 < ( < z if z > 1.
Furthermore, for z < 1, u/(z) < 0 for z > 0. Thus ZH(s) < 0 for z < 1.
For z > 1, w/(z) changes sign once and in the direction from the positive
to the negative if at all for z > 0. We will prove that %H (o) changes sign
exactly once by showing ZH (o) < 0 for all ¢ > 0 or 2 H(o) > 0 for all
o > 0 are each impossible. Furthermore, each statement will be proved by
contradiction.

(i)Suppose that = H (o) < 0 for all ¢ > 0. Then sup,q H(o) = 3u(0). But
since u/(z) changes sign in the direction of the positive to the negative, u(z)
is maximized at { > 0. Then

supH() = sup [~ f(yyuov)dy
= /Ooof(y)rgggU(w)dy
1
= %U(C)
# 5“(0)

(ii)Suppose that = H (o) > 0 for all ¢ > 0. Then

sup H(s) = lim H(o)

>0 T—+00

= lim /ooof(y)U(Uy)dy

g —*+00

= 0.
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This implies that H(o) = 0 for all o, which is impossible.
Hence %H (o) changes sign exactly once. O

Proof of Theorem 3 :

Since the P-value = P(x2 > ||z||?) is Uniformly distributed on [0,1], if we
show that mo(z) is decreasing in ||z||?, our result will follow as before. Note
that for |z| > 1,

o e—z?/z(zq)(Izl)-—l) -1
o) = 1+ T neEE)

It is easy to verify by taking derivatives that
/220 (|2) - 1)
1—®(|z]))

" is increasing in z > 0. Next, we will show that H(6) = max,»o H(o) is
decreasing in z for z > 1. But

max H(o) = max/ooo f(y)u(oy)dy

>0 >0

= [ Fv) maxu(e)dy
Then since maxgso u(z) is decreasing in z for z > 1 by virtue of Lemma 7,
the proof is complete. 0

Proof of Theorem 4:
Since P(x2 > p) < 1/2 and R(z) is increasing in 2|12, R(z) > 2mo if
||z||2 > p for any given mo. Hence

To

PREZ) < 2m0) = PlppasTam

< 27To)

L
= 3
Hence the median of the distribution of B(Z) is 2w, for any given mg. Sim-

ilarly, it can be shown that the first quartile is 47o. Finally, let g3, denote
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the third quartile of the distribution. Since P(x2 < p) is decreasing in p,

P(RZ) S prasyy) = PUAI<D)
= P(x:<p)
3
< i

for any given p. So gsp > mo/P(x% > p). Thus

P(R(Z) < 4s) =
= PRZ)> w0 =
= POUZI) 2 a0 = ©

where
P(||2) = {1 + —— Lo ——0(ell2)1?/p) " exp(ll21*/2)} P(x} = lI=l1*)}

Since ¥(||z]|?) is increasing in ||z||?, (5) implies g3, = %(, /X ) where X 3
4
is the third quartile of Chisquare distribution with p degrees of freedom. O

Proof of Proposition 5:
A detailed proof is available in Oh(1993); it is indeed involved. The main

steps are the following :

Let f(y) denote the density function of the distribution of Y = mo(Z). Itis
obvious that f is constant on [£, 1] by the fact that the P-value= 2(1—-®(}Z]))
has a uniform distribution on [0,1], where £ = 2(1 — ®(1)). That is, f(y) =
for y > . Furthermore,

f(y) = —zqs(n-l(y));,(—nf—@ for 0 <y <&,

where

n(w) = {1+ Vewe ™ /*(20(w) — 1)/(1 = &(w))} .
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Since n(w) is a decreasing function of w for w > 1 by Lemma 2, 17 (y) is
also a decreasing function of y > 0. Then the shape of f(y) for 0 <y <{is
the same as the reversed shape of 4(y) for 1 < y < oo, where

1
v(y) = —2¢(y)n,(y)-

Thus, it is sufficient to show that y(y) is a unimodal function for y > 1.
Setting k = 5§\/27r,

() = 2 (1—9(y) + kyé(y)(22(y) — 1))°
k(1—y?)(1 - ®(y))(22(y) — 1) + yo(y)

stepl Let a(y) =1—®(y) and let b(y) = 2®(y) — 1. Then the sign of v'(y),
sgn(7'(y)) = sgn{A(y) + ké(y)(1 — y*)B(y)},

where

Ay) = —yé(y)? + 2ky 6 (y)® + ya(y)*b(y) ke (y)a(y)b(y)®

and )
a
B(y) = y4(y)bly) - ya(y)bly)” - ==
step2  There is a M such that 0 < M < oo and if y > M, then A <0
and B > 0. So sgn(y'(y)) < 0if y > M. In this step, it is used that (see
Feller(1973))

_ o)
)
and
1 1 3
a(y) < ¢(y)(§ T + E) :

step3 For 0 < y < M, it is shown that v(y) has a unique maxima at v,
where § is approximately equal to 1.65279. This implies that f is unimodal
and the mode is h(§), which is about 0.135634. Moreover,
) < (1 — 0(y))(1 + kyg(y) S2o)
20(y) — 1) + 2y*(1 - 2(y))

27



which goes to 0 as y goes to 0o. So, limy_o f(z) = 0.

Proof of Proposition 6 :
Again, a detailed proof is available in Oh(1993). The main steps are the

following :

Let fr(y) denote the density of the null distribution of R(Z). Then
1
=9 -1 _

It is easy to see that fr(y) = mo/y? for mo < y < mo/(2(1 — @(1))). Now,
let g(y) = 2¢(y)—é—,1(7), y > 1. Since R is increasing, the shape of fr(y) for

y > mo/(2(1 — ®(1))) is the same as that of g(y) for y > 1. It will be shown
that g(y) is a decreasing function. Substituting the formula for £'(y) to g(y),

we get

o) = 1801 = B+ ey
¢(y)(1 + cgyz/y) T (I)(y))eyz/z(yQ — 1)/342,

where ¢ = =72, Then

move
y3 /20,2 _ y2/2 y?
san(d@) = sonfe(l — @) =D gy 2et s 4 29
v /20,2
Ted(y)(1 - @(y))i—%—”
¥ (2 _ y2/2
+P9(y)(1 - @(y))e—%ﬁ,—l—) ol - 20 )
= sgn{l}, say.
Since (1 — ®(y)) < ¢(y)/y for y > 0, we have
I < —ebu gy — bl — oy
d(v)" 3 v) = ed(y) 5 — o)
—(1- @(y))ﬁy% T C¢(y)2§?
< 0,
(]

Q.E.D.
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Table 1: Summary of the distribution of R(Z) for given p

[p l 70 || g1 = §7ro I median = 27 | q3 | mean | standard dev. |
1]0.1 0.1333 0.2 0.392296 | 0.331084 0.331402
0.2 |} 0.266667 0.4 0.786274 | 0.680976 0.721988
0.3 0.4 0.6 1.18195 1.0543 1.19204
0.4 | 0.53333 0.8 1.57932 | 1.45775 1.77316
0.5 || 0.666667 1.0 1.97841 | 1.90153 2.51812
0.6 0.8 1.2 2.37923 | 2.40247 3.52347
0.7 || 0.93333 14 2.78179 | 2.99156 4.99142
0.8 || 1.06667 1.6 3.1861 3.73694 7.44869
0.9 1.2 1.8 3.59216 | 4.85038 13.0156
210.1 0.1333 0.2 0.379029 | 0.305551 0.273561
0.2 || 0.266667 0.4 0.762499 | 0.629941 0.597835
0.3 0.4 0.6 1.150491 | 0.977718 0.990307
0.4} 0.53333 0.8 1.543083 | 1.35545 1.478234
0.5 || 0.666667 1.0 1.940357 | 1.77319 2.10704
0.6 0.8 1.2 2.342399 | 2.24747 2.959827
0.7 || 0.93333 14 2.749295 | 2.80882 4.210419
0.8 || 1.06667 1.6 3.161133 | 3.52438 6.310970
0.9 1.2 1.8 3.578004 | 4.60313 11.077554
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[continued]

I P | o ” g1 = %wo | median = 2mg | 9 | mean | standard dev.J
301 0.1333 0.2 0.371244 | 0.288444 0.253819
0.2 || 0.266667 0.4 0.748467 | 0.596536 0.553712
0.3 0.4 0.6 1.13181 | 0.92889 0.915955
0.4 | 0.53333 0.8 1.52144 | 1.29214 1.365933
0.5 || 0.666667 1.0 1.91749 | 1.69639 1.945945
0.6 0.8 1.2 2.32013 | 2.15822 2.733347
0.7 | 0.93333 1.4 2.72953 | 2.70807 3.889904
0.8 |} 1.06667 1.6 3.14585 | 3.41278 5.835943
0.9 1.2 1.8 3.56928 | 4.48007 10.257338
5101 0.1333 0.2 0.362418 | 0.268387 0.238783
0.2 || 0.266667 0.4 0.732482 | 0.556884 0.518792
0.3 0.4 0.6 1.110438 | 0.870238 0.854971
0.4 | 0.53333 0.8 1.496541 | 1.21527 1.270573
0.5 || 0.666667 1.0 1.891056 | 1.60232 1.804941
0.6 0.8 1.2 2.294261 | 2.04834 2.529210
0.7 || 0.93333 1.4 2.706448 | 2.5843 3.592978
0.8 | 1.06667 1.6 3.127920 | 3.27781 5.384883
0.9 1.2 1.8 3.558993 | 4.33736 9.462099

33




[continued]

D | o ” g1 = %wo | median = 27g | q3 ] mean ‘ standard dev. |

7 10.1 0.1333 0.2 0.35734 | 0.260892 0.228896
0.2 {| 0.266667 0.4 0.723251 | 0.541694 0.497002
0.3 0.4 0.6 1.098044 | 0.847128 0.818605
0.4 || 0.53333 0.8 1.482047 | 1.18398 1.216052
0.5 || 0.666667 1.0 1.875604 | 1.56254 1.726690
0.6 0.8 1.2 2.279075 | 1.99973 2.418872
0.7 || 0.93333 1.4 2.692841 | 2.52645 3.435688
0.8 || 1.06667 1.6 3.117300 | 3.2103 5.148891
0.9 1.2 1.8 3.552872 | 4.25996 9.047361

101 0.1 0.1333 0.2 0.3526 | 0.256339 0.218418
0.2 i| 0.266667 0.4 0.714609 | 0.532352 0.474445
0.3 0.4 0.6 1.08641 | 0.832712 0.781832
0.4 0.53333 0.8 1.4684 1.16414 1.16207
0.5 || 0.666667 1.0 1.86101 | 1.53684 1.6511
0.6 0.8 1.2 2.26469 | 1.96756 2.31464
0.7 i 0.93333 1.4 2.67991 | 2.48699 3.29021
0.8 || 1.06667 1.6 3.10718 3.1622 4.93494
0.9 1.2 1.8 3.54702 | 4.20057 8.67767
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Table 2: P(R(Z) > 1) for given 7o and p

| 70| p=1 p=3 | p=5 p=7 | p=10 |
0.1 [0.0499319 | 0.0247353 | 0.017106 | 0.0133107 | 0.0101689
0.2 | 0.184968 | 0.160925 | 0.150345 | 0.14399 0.137851
0.3 | 0.299715 | 0.291994 | 0.287059 | 0.283858 | 0.280638
0.4 0.4 0.4 0.399789 | 0.399297 | 0.398606
0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.6 0.6 0.6
0.7 0.7 0.7 0.7 0.7 0.7
0.8 0.8 0.8 0.8 0.8 0.8
0.9 0.9 0.9 0.9 0.9 0.9
Table 3: P(1/1.1 < R(Z) < 1.1) for given mg and p
fﬂ'ol p=1 | p=3 p=29 f p=1 ! p=10
0.1 | 0.023203 0.0174094 | 0.0144012 | 0.0125348 | 0.0107241
0.2 | 0.0476125 | 0.0519383 | 0.0530215 | 0.0535289 | 0.05399338
0.3 | 0.0591603 | 0.0669701 | 0.0695881 | 0.0710193 | 0.0723246
0.4 ] 0.0763636 | 0.0.0770048 | 0.0786186 | 0.0799068 | 0.0813215
0.5 | 0.0954545 | 0.0954545 | 0.0954545 | 0.0954545 | 0.0954545
0.6 | 0.114545 0.114545 0.114545 | 0.114545 0.114545
0.7 0.133636 0.133636 0.133636 | 0.133636 0.133636
0.8 | 0.152727 0.152727 0.152727 | 0.152727 0.152727
0.9 0.171818 0.171818 0.171818 | 0.171818 0.171818
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Table 4: P(1/1.2 < R(Z) < 1.2) for given m¢ and p

[m | p=1 | p=3 | p=5 | p=1 | p=10 |
0.1 [ 0.0445157 | 0.0337059 | 0.0281191 | 0.0246629 | 0.0213152
0.2 | 0.0909508 | 0.0992301 | 0.0101305 | 0.102276 | 0.103049
0.3} 0.114288 | 0.127732 | 0.132721 0.135448 | 0.137935
0.4 | 0.146667 0.14942 0.152226 | 0.154163 | 0.156166
0.5 0.18333 0.18333 0.18333 0.183438 | 0.183735
0.6 0.22 0.22 0.22 0.22 0.22
0.7 0.256667 0.256667 | 0.256667 | 0.256667 | 0.256667
0.8 0.29333 0.29333 0.29333 0.29333 0.29333
0.9 0.25 0.25 0.25 0.25 0.25
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