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Abstract

The role of statistical model seems to be largely neglected in the existing literature on
nonparametric function estimation. As a consequence, a few popular working concepts in non-
parametric estimation, such as the expected mean square error and the “degrees of freedom”,
appear vulnerable under close scrutiny. Through heuristic arguments and simple simulations,
we try to illustrate that the model indexing via the usual smoothing parameter may lead to
conceptual pitfalls if care is not taken. Due to technical constraint, the arguments are mainly
developed in the penalized likelihood setting, but we shall discuss the ramifications in other
settings as well. This note results from an effort to understand the well-publicized negative
correlation between optimal and cross-validation smoothing parameters.

KEY WORDS: Constraint; Cross-validation; Model indexing; Model selection; Penalized

likelihood; Smoothing parameter.

1 Imtroduction

Nonparametric function estimation has been one of the most active research areas in contem-
porary statistics. In spite of the ever growing number of procedures being proposed, and theorems
being proved, however, there remain a few basic concepts to be clarified, and a few mysterious phe-
nomena to be understood. Stemming from an attempt to understand the counter-intuitive negative
correlation between the optimal and cross-validation smoothing parameters, to be reproduced in
Section 3, we present a set of heuristic arguments and numerical simulations, to offer our views on

the concepts, the intuitions, and the explanations of the mystery.
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We shall consider a regression problem for simple exposition, but the arguments readily apply

to other problems. Observing
}/;::f(zi)'l'fiv t=1,---,n (1)

where z; € [0,1] and ¢; ~ N(0,02), one is to estimate f(z). The issues under discussion are the
statistical models behind nonparametric estimates, their proper indexing, and the ramifications in
model selection. Our arguments are based on two heuristics, to follow.

Statistical estimation can be viewed as a compromise between the data and the model, the
assumptions one makes about the scheme in which the data are generated. In classical paramet-
ric estimation, a statistical model often consists of two parts, a random part represented by the
likelihood function, and a systematic part characterized by certain constraint. For example, a para-
metric model f(z) = f(z, ) for the systematic part f(z) in (1) simply represents a rigid constraint.
For a general statistical procedure, it may not always be possible to explicitly describe the effec-
tive model, and the assumptions actively in force may not be the ones explicitly stated. It seems
always possible, however, to perceive conceptually some effective constraint which the data make
compromise with in an estimation procedure. With such effective constraint in mind, we have the

following heuristic.

Heuristic 1 The model behind an estimate is characterized by the constraint the estimate has been

subject to.

For some nonparametric procedure, as we shall see shortly, an explicit description of the effective
constraint is available, which lends insights for us to understand the mystery. For other procedures,
the effective constraint remains an abstract notion impossible to quantify, yet the mere awareness
of such notion may caution one to stay away from otherwise tempting conceptual pitfalls.

The discrepancies between the estimates and the truth are usually measured via loss functions,
on which estimates may be compared. Intuitively, the performance of an estimate relative to other
estimates based on the same data should be largely determined by how close the effective model is
to the state of nature as compared to the effective models behind the other estimates. The state
of nature does not change over replicates in an experiment with a fixed stochastic structure except
for minor random fluctuations, and hence there should be nearly a single optimal model yielding

the (nearly) best-performing estimates for all replicates, provided that the same set of effective



constraints are reproduced by the procedure over replicates. This leads to our second heuristic.

Heuristic 2 The optimal models should largely remain invariant over replicated data from the

same stochastic structure.

For (1), Heuristic 2 means that the optimal strategy among given choices should only depend on
the true f(z) and the stochastic behavior of ¢;, but not on the specific realization of ¢;.

Our arguments are developed under the setting of penalized likelihood estimation. Assume f(z)
to be smooth, in the sense that its second derivative exists and is small. A popular approach to

the estimation of f(z) is via minimizing

n
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where the least squares term discourages lack of fit, the smoothness functional fol fz(a:)da: penalizes
roughness, and the smoothing parameter A controls the tradeoff. The minimizers of (2) with
A € (0,00), known as the cubic smoothing splines, define a continuum of estimates. When A — oo,
one obtains the simple linear regression line, when A — 0, one computes the minimum curvature
interpolator. The practicability of the method hinges on a good choice of A, the selection of a good
model from a continuum of available models.

In Section 2, we shall discuss the proper indexing of models behind the minimizers of (2) via an
explicit characterization of the effective constraint; it turns out that the smoothing parameter A has
little statistical meaning across-replicate, and hence any across-replicate concepts directly indexed
by A are likely to mislead. In section 3, we discuss the ramifications of model indexing in model
selection, and demonstrate that the mysterious negative correlation is actually an illusion due to
improper model indexing. Under settings other than penalized likelihood, the effective constraint
behind an estimate is usually very difficult to describe if at all possible, but one may still assess the
across-replicate interpretability of an index via simulation, possibly with the help of Heuristic 2;

an example is presented in Section 4.



2 Model Indexing
Consider the constrained least squares problem of minimizing

* 30 - fla st. [ Py < o)

for the estimation of f(z) in (1). The solution of such a problem usually falls on the sphere
fol f2(z)dz = p, and by the Lagrange method, it can be calculated as the minimizer of (2) with
an appropriate Lagrange multiplier A. Thus, up to the choice of A and p, we see that a penalized
likelihood problem with a penalty proportional to fol f2 (z)dz is equivalent to a constrained maxi-
mum likelihood problem subject to a soft constraint of form fol f2 (z)dz < p. See, e.g., Schoenberg
(1964).

The models behind (2) are to be characterized by fol f2(z)da: < p, with a natural index p.
Given the least squares functional (1/n) 5%, (Y; — f(z;))?, which is dependent on the data Y;, the
mapping from p to A is one-to-one, but an important fact is that the mapping changes with the
least squares functional. That is, for a fixed constraint fol f2(z)dz < p, the Lagrange multiplier
) varies with the data Y;; conversely, a fixed A in (2) implies different binding constraints on the
estimates for different data. This simple observation, that p and A are not equivalent as model
indices, is a key to the understanding of further discussion.

Now consider a simple simulation. On z; = (1—.5)/50,% = 1, - - -, 50, we generated 100 replicates
of data from (1) with f(z) = 1+ 3sin(2rz — 7) and 02 = 1. For X on a fine grid of log;onA =
(—=5)(.05)(—1), we calculated the minimizers of (2) for each of the replicates, and determined
retrospectively the effective constraint an estimate f (z) had been subject to by calculating p =
fol fz(:c)da: The best-performing estimate on the grid was identified for each of the replicates,
with the performance of f(z) as an estimate of f(z) being measured by the mean square error
at the sampling points (1/50) 322, (f(z;) — f(2:))?. The grid was broad enough to bracket the
best-performing estimates for all the 100 replicates.

The left frame of Figure 1 depicts the mapping between the A index and the p index in our
simulation, where the solid curve plots the mapping for the first replicate and the dashed lines
sketch an envelop surrounding the bundle of 100 such curves. The window marked by the dotted
lines is amplified in the center frame of Figure 1, where the indices of the best-performing estimates

are superimposed as circles and the p of the true function fol f(:l:)da: = 103846 is marked by the
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Figure 1: The p index and the A index of models in simulation.

vertical dotted line. It is reassuring to see that the optimal models scatter around the dotted
line. To comprehend the magnitudes of the scatters of the optimal indices, we examine the relative
performance of some typical optimal index at the middle of the cloud: We pick log;,p = 3.846 as a
typical optimal p and log;, nA = —3 as a typical optimal A, and assess their efficacy by calculating
for each replicate the ratio of the mean square error of the best-performing estimate over that of the
estimate with the typical optimal index. The right frame of Figure 1 summarizes these ratios in box
plots, which indicate that the scatter of the optimal A indices is order-of-magnitudely greater than
the scatter of the optimal p indices. By Heuristic 1, the p index for models behind the estimates
has a clear statistical meaning as it characterizes the constraints the estimates have been subject
to; Heuristic 2 extends further support to the p index through the above simulation. In contrast,
the )\ index is not statistically interpretable across-replicate in this setting, although it sometimes
helps replicate-specific calculations as we shall note shortly.

Denote by fy the minimizer of (2) with fixed A, and by f, the solution of (3) with fixed p. A
tempting loss function for the study of penalized likelihood estimates is the expected mean square

error of f) indexed by A,

n

R = B2 Y (fr() - (@), (@

i=1
where the expectation is with respect to ¢;. This seemingly natural loss function is unfortunately
defective: Because a fixed X implies different models for different realizations of ¢;, the expectation is
effectively mixing apples with oranges. Concept based on the exact quantification of (4) such as the

minimizer of R()) as the across-replicate “optimal” A is hence misleading. One may nevertheless



legitimately define an expected mean square error for f, indexed by p, and discuss the across-
replicate optimal p, although the analysis of constrained problem is less tractable. Despite the
conceptual defect R()\) suffers, however, the right-hand-side of (4) can be useful in determining the
rates, but not the exact quantifications, of the asymptotic behavior of the minimizers of (2): One
may calculate a rate of E(1/n) 3%, (fa(z:) — f(2:))? = O(K) with K an expression in n and A, and
then convert the rate to (1/n) 3, (fr(z:) — f(2i))? = O,(K) which concerns a replicate-specific
loss function.

Define Y; = fr(z;). Fixing A, the minimizer of (2) forms a so-called linear smoother in the sense
that ¥ = A(MNYY, where Y and Y are vectors of Y; and Y;, respectively, and A()) is a so-called
smoothing matrix or hat matrix indexed by A; see, e.g., Buja, Hastie and Tibshirani (1989) and
Wahba (1990). An ever popular concept in data smoothing is the so-called “degrees-of-freedom”,
defined as the trace of A()) or that of a related matrix. Given z;, A <> A()) is one-to-one, so the
“degrees-of-freedom” index of models is unfortunately a repackaging of the A index. In parametric
regression, the trace of the hat matrix happens to match the dimension of the model space which
provides an intuitive characterization of the binding effect of the model, but the concept of degrees-
of-freedom rests only with the dimension, but not with the trace. For example, there is no hat

matrix in parametric density estimation, yet there still is degrees-of-freedom.

3 Model selection

For practical estimation, one has to choose a particular p or A to calculate an estimate, and
it is rarely the case that a good choice of p or A can be determined a priori. The practice of
using a linear smoother with predetermined “degrees-of-freedom”, or using the minimizer of (2)
with a fixed A, is no strategy by any standard, for the choice of p would then be up to the specific
realization of ¢; in (1). Unless a proper value of p = J3 f*(z)dz can be assumed, which is not too
far from a parametric assumption, effective data-driven model selection procedures are necessary
for the method to be of any practical use.

For data-specific calculations, the p index and the A index are equivalent. Because the penalized
problem is much easier to deal with, the A index is most convenient for operational purposes. The

objective of model selection is thus to locate a data-specific optimal A, say the minimizer of

ROY) = ;lii(f/\lY(‘”) - F(=))%,

=1



where the dependence of f) on the data is made explicit, and it is necessary to keep any A selection
procedure data-specific. As a side remark, we note that naive resampling procedures should not
be used in A-indexed model selection without proper justification, for the optimal A for a resample
may not necessarily be any good for the observed data.

An effective model selection procedure for regression is Craven and Wahba’s (1979) generalized
cross-validation, which selects the minimizer of

_ YT(1-A())?Y /n
" [trace(I — A(N))/n)?

VOY)

for use in (2), where the matrix A()) is as defined in Section 2. The score V(A|Y) is data-specific,
whose minimizer A, can be shown to approximately minimize the data-specific loss function R(A]Y),
in the sense that 1 — min)\R(A]Y)/R(A«Y’) = 0,(1), of course under conditions; see Li (1986). Note
that the data in V(A|Y) and R(A|Y) have to be the same to make this work. One may perceive
V(AlY) as a computable proxy of the data-specific loss function R(A|Y), based on which the
procedure seeks to approximately locate the data-specific optimal A.

We now continue the simulation of Section 2 by evaluating the performance of generalized
cross-validation on the 100 replicates. Plotted in the left frame of Figure 2 are the loss of the
cross-validated estimates R(A.|Y") versus the loss of the best-performing estimates miny R(A|Y) for
each of the replicates. A point on the dotted line indicates a perfect performance of the procedure.
Statistical estimation has to be employed in V' (A|Y") for information carried by the unknown truth
f(z) in R(A|Y), which is subject to error, so the procedure is not guaranteed to work on every
data set, and indeed it worked rather poorly on a few of the replicates. The general performance
however appears satisfactory.

In the course of the above simulation, we have collected sufficient information to reproduce
in the center frame of Figure 2 the well-publicized negative correlation between the optimal and
cross-validation smoothing parameters, where the A index of the cross-validated estimates is plotted
against that of the best-performing estimates. Scott and Terrell (1987) and Hall and Johnstone
(1992) made the observation concerning a few versions of cross-validation under various problem
settings, and charged cross-validation for performing counter-intuitively. Were the A index inter-
pretable across-replicate, as was usually perceived, the negative correlation would indeed signal
an alarm against the use of cross-validation in practice. In the light of our previous discussion,

however, the points in the center frame of Figure 2 are not comparable with each other, and hence
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Figure 2: Performance of generalized cross-validation in simulation.

the whistle can be a false alarm. Plotting the more relevant p index of the cross-validated esti-
mates versus that of the best-performing estimates in the right frame of Figure 2, we see that the
negative correlation no longer exists. There is nearly a single optimal model which generalized
cross-validation tries to adopt, but due to errors in the “estimation” of R(A]Y) by V(A|Y), the
actually adopted models are scattered nearby except for a few wild failures. Cross-validation may
not be the final word for model selection, but whatever a better procedure is going to be, as long
as it is A-indexed, it should be after a data-specific loss function. Also, a procedure can not be
expected to work all the time, as the decisions have to be based on stochastic data.

In settings other than Gaussian regression such as density estimation, a strategy for data-specific
A selection in penalized likelihood estimation can be found in Gu (1992, 1993). In simulations similar
to that reported above, the procedure demonstrates the same qualitative performance as that of

generalized cross-validation as depicted in the three frames of Figure 2, including the negative

correlation of the A indices.

4 Further ramifications

For nonparametric methods other than penalized likelihood, there doesn’t seem to exist the
luxury of explicit model characterization as in (3). Nevertheless, given a continuum, or almost a
continuum, of possible estimates, the nature of the “natural” model index may imply some dos and
don’ts in the theory and practice of the methods, where “natural” often means only. It is advisable

to carefully examine a working index before loading too much on it.



As an example, let us look at the kernel method for density estimation, for which simulations
similar to what we report here are readily available in the literature. Observing X;, ¢ =1,---,n,

from a probability density f(z), one is to estimate f(z) by a function of the form

fule) = = Y K(ET, )

=1

where K (z) is some known smooth function satisfying f K (z)dz = 1, and the so-called bandwidth
h acts as the smoothing parameter. The bandwidth h appears to be the only index one can work
with in this setting, and an explicit description of the effective constraint seems nowhere in sight.

A natural question to ask is whether the h index is interpretable across-replicate. In lack of a
p-like index, Heuristic 1 offers little help in this regard. Besides the negative correlation, however,
there is more to learn from plots resembling the center frame of Figure 2. An eminent feature
demonstrated in the plot is that the scatter of the optimal indices across-replicate is comparable
to that of the empirical indices across-replicate. In view of Heuristic 2, either the scatter is within
reasonable natural fluctuation, but then the empirical procedure would be performing too well, or
the indices of different replicates don’t compare with each other. By examining plots similar to
the right frame of Figure 1, or by assessing the performance of the estimates over the scatter for a
particular replicate, one should be able to confirm that the former is not the case. Applying this
argument to the simulations reported by Scott and Terrell (1987) and Hall and Johnstone (1992),
we conclude that the h index of (5) bears little statistical meaning across-replicate.

The lack of a p-like index doesn’t necessarily affect the theory and practice of the method, but
the limited interpretability of the h index certainly has its ramifications. The cautions for the A
index of (2) all seem to apply to the h index of (5). Because the optimal bandwidth is data-specific,
an effective model selection procedure has to be data-specific. This disqualifies naive resampling
methods for h selection. Similar to (4), an expected mean square error of fz indexed by h may
not make much practical sense, and an across-replicate “optimal” h is of little practical meaning:
Assuming such an “optimal” bandwidth is known, what good does it do when the optimal h for
the observed data is known to be somewhere else?

The message should be simple and clear, albeit subtle. Using whatever model index, there
seems little to lose if one strives to locate a data-specific optimal index. When one needs to
borrow information external to the observed data, however, it is important to make sure that the

working index is meaningful across-replicate; a carefully interpreted simple simulation often helps



in this regard. By all means, one should avoid across-replicate operation on any index which is not

interpretable across-replicate.
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