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ABSTRACT

Robust Bayesian analysis is the study of the sensitivity of Bayesian answers to uncer-
tain inputs. This paper seeks to provide an overview of the subject, one that is accessible
to statisticians outside the field. Recent developments in the area are also reviewed, though
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1. INTRODUCTION

1.1 Motivation

Robust Bayesian analysis is the study of the sensitivity of Bayesian answers to uncer-
tain inputs. These uncertain inputs are typically the model, prior distribution, or utility
function, or some combination thereof. Informal or adhoc sensitivity studies have long been
a part of applied Bayesian analysis (cf. Box, 1980), but recent years have seen an explosion

of interest and literature on the subject. There are several reasons for this interest:

Foundational Motivation: There is a common perception that foundational arguments lead
to subjective Bayesian analysis as the only coherent method of behavior. Non-Bayesians
often recognize this, but feel that the subjective Bayesian approach is too difficult to
implement, and hence they ignore the foundational arguments. Both sides are partly
right. Subjective Bayesian analysis is, indeed, the only coherent mode of behavior, but
only if it is assumed that one can make arbitrarily fine discriminations in judgment about
unknowns and utilities. In reality, it is very difficult to discriminate between, say, 0.10 and
0.15 as the subjective probability, P(E), to assign to an event E, much less to discriminate
between 0.10 and 0.100001. Yet standard Bayesian axiomatics assumes that the latter can
(and will) be done. Non-Bayesians intuitively reject the possibility of this, and hence reject
subjective Bayesian theory.

It is less well known that realistic foundational systems exist, based on axiomatics of
behavior which acknowledge that arbitrarily fine discrimination is impossible. For instance,
such systems allow the possibility that P(E) can only be assigned the range of values from
0.08 to 0.13; reasons for such limitations range from possible psychological limitations to
constraints on time for elicitation. The conclusion of these foundational systems is that
a type of robust Bayesian analysis is the coherent mode of behavior. Roughly, coherent
behavior corresponds to having classes of models, priors, and utilities, which yield a range
of possible Bayesian answers (corresponding to the answers obtained through combination
of all model-prior-utility triples from the classes). If this range of answers is too large, the
question of interest may not, of course, be settled, but that is only realistic: if the inputs are
too uncertain, one cannot expect certain outputs. Indeed, if one were to perform ordinary
subjective Bayesian analysis without checking for robustness, one could be seriously misled

as to the accuracy of the conclusion.



Extensive developments of such foundational systems can be found in Walley (1991),
Rios Insua (1990, 1992) and Rios Insua and Martin (1994); see also Rios and Girén (1980)
and Kouznetsov (1991). L. J. Good (cf., Good, 1983a) was the first to extensively discuss
these issues. Other earlier references can be found in Berger (1984, 1985) and in Walley
(1991); this latter work is particularly to be recommended for its deep and scholarly study
of the foundations of imprecision and robustness. Recent developments in some of the
interesting theoretical aspects of the foundations can be found in Wasserman and Kadane

(1990, 1992b) and Wasserman and Seidenfeld (1994).

Practical Bayesian Motivation: Above, we alluded to the difficulty of subjective elicitation.
It is so difficult that, in practice, it is rarely done. Instead, noninformative priors or other
approximations (e.g., BIC in model selection) are typically used. The chief difficulties
in elicitation are (i) knowing the degree of accuracy in elicitation that is necessary; (ii)
knowing what to elicit. Robust Bayesian analysis can provide the tools to answer both
questions.

As an example of (i), one might be able to quickly determine that 0.05 < P(E) < 0.15,
but then wonder if more accurate specification is needed. Robust Bayesian methods can
operate with such partial specifications, allowing computation of the corresponding range
of Bayesian answers. If this range of answers is small enough to provide an answer to the
question of interest, then further elicitation is unnecessary. If, however, the range is too
large to provide a clear answer, then one must attempt finer elicitation (or obtain more

data or otherwise strengthen the information base).

Knowing what to elicit is even more crucial, especially in higher dimensional problems
where it is completely infeasible to elicit everything that is possibly relevant. Suppose, for
instance, that one believes in a 10-dimensional normal model, but that the mean vector
and covariance matrix are unknown. Then there are 65 unknown parameters, and accurate
elicitation of a 65-dimensional distribution is impossible (unless one is willing to introduce
structure that effectively greatly reduces the number of parameters). But many of these
parameters may be accurately determined by the data, or the question of interest may not
depend on accurately knowing many of the parameters. In fact, there may only be a few
crucial quantities that need to be elicited. Robust Bayesian techniques can help to identify

these quantities.



Acceptance of Bayesian Analysis: Rightly or wrongly, the majority of the statistical world
resists use of Bayesian methods. The most often vocalized reason is fear of using a sub-
jective prior, because of a number of perceived dangers. While we do not view this fear
as being particularly reasonable (assumptions made in other parts of the analysis are usu-
ally much more influential and questionable), we recognize its existence. Robust Bayesian
methods, which can operate with a wide class of prior distributions (reflecting either the
elicitor’s uncertainty in the chosen prior or a range of prior opinions of different individu-

als), seems to be an effective way to eliminate this fear.

Non-Bayesian Motivation: Many classical procedures work well in practice, but some stan-
dard procedures are simply illogical. Robust Bayesian analysis can be used to determine

which procedures are clearly bad. Consider, for instance, the following example:

Example 1. A series of clinical trials is performed, with trial ¢ testing drug D; versus a
placebo. Each clinical trial is to be analyzed separately, but all can be modelled as standard
normal tests of Hy:6; = 0 versus H;:0; # 0, where 0; is the mean effect of D; minus the
mean effect of the placebo. Suppose we know, from past experience, that about 1/2 of the
drugs that are tested will end up being ineffective; i.e., will have 6; = 0. (This assumption
is not essential; it merely provides a mental reference for the ensuing understanding.)

We will focus on the meaning of P-values that arise in this sequence of tests. Table
1 presents the first twelve such P-values. Consider, first, those tests for which the P-
value is approximately 0.05; D, and Ds are examples. A crucial question is: among the
drugs for which the P-value of the test is approximately 0.05, what fraction are actually
ineffective (i.e., correspond to true Hy)? Likewise, consider those D; for which the P-value
is approximately 0.01 (Ds and Djo are examples) and ask: what fraction are actually
ineffective? |

Table 1. P-values resulting from the first twelve clinical trials,
testing Ho: D; has no effect vs. Hy: D; has an effect.

DRUG D, D, D; D, Ds Ds

P-Value 0.41 0.04 0.32 0.94 0.01 0.28

DRUG D+ Dy Dy D Dy Dy,
P-Value 0.11 0.05 0.65 0.009 0.09 0.66

The answers to these questions are, of course, indeterminate. They depend on the
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actual sequence of {6;} that arises. However, using robust Bayesian techniques one can find
lower bounds on the answers that are valid for any sequence {6;}. These can be computed
as in Berger and Sellke (1987, Section 4.3), and are 0.24 for the first question and 0.07 for
the second.

This is quite startling, since most statistical users would believe that, when the P-
value is 0.05, Hy is very likely to be wrong and, when the P-value is 0.01, Hy is almost
certain to be wrong. The actual truth is very different. And since 0.24 and 0.07 are lower
bounds that are actually difficult to attain, the fractions of true Hy encountered in practice
would typically be much larger (on the order of 50% and 15%, respectively). Thus we have
a situation where the standard classical method, or at least its standard interpretation, is
highly misleading. O

There is also a more subtle potential use of robust Bayesian analysis within frequentist
statistics, arising from the fact that “optimal” frequentist procedures are virtually always
Bayes (or generalized Bayes) procedures. Note that this, by itself, is not a compelling
reason for a frequentist to adopt the Bayesian viewpoint, because the prior distribution that
is used to develop the frequentist procedure can be considered merely to be a mathematical
artifact, with no inherent meaning. (Using a prior to develop the procedure but ignoring
its Bayesian implications may appear to be rather myopic, but it is not illogical to do so
from the frequentist perspective.)

When the statistical problem becomes even moderately difficult, however, in the sense
that the frequentist accuracy or performance measure is not constant over the unknown
parameters, it can become very difficult for the frequentist to recommend a particular
procedure. A very appealing possibility is to then use the Bayesian perspective to choose
the prior, and to consider the resulting Bayes procedure from the frequentist perspective.
If the Bayesian procedure is a robust Bayesian procedure, there are numerous indications
that it will have excellent frequentist properties. See Berger (1984, 1985), DasGupta
and Studden (1988a, 1989), Berger and Robert (1990), Robert (1992), Mukhopadhyay
and DasGupta (1993) and DasGupta and Mukhopadhyay (1994), for such arguments in
general; here we content ourselves with an interesting example, from Berger, Brown, and

Wolpert (1993).

Example 2. Suppose X, Xa,... areii.d. N(6,1) and that it is desired to test Hy: 0 = —1
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versus Hy:60 = 1. If the hypotheses have equal prior probability, the Bayesian inference,

after stopping experimentation at sample size N, will be to (i) compute the posterior

N
probability of Hy, which can be seen to be (defining Ty = ), z;/N)
=1

P(Hy|z1,...,2n) =1/[1 + exp{2NZn}]
=1- P(Hi|z1,...,ZN);
(i) choose the hypothesis with larger posterior probability (assuming the utility structure
is symmetric); and (iii) report the posterior probability of the rejected hypothesis as the
error probability.

There would seem to be no problem here for a frequentist: simply choose the most
powerful Neyman-Pearson test with, say, equal error probabilities. But the situation is
not so clear. First, this could have been a sequential experiment (e.g., the SPRT) with N
being the stopping time, and stopping rules can have a dramatic effect on classical testing.
Second, even if N is fixed, the most powerful test has strange properties. For instance, if
N = 4, the frequentist error probabilities corresponding to the test “reject if T4 > 0 and
accept otherwise” would be 0.025, and this would be the reported error for either Z4 = 0
or T4 = 1.5; this is very strange because T, = 0 would seem to indicate no evidence for
Hy versus Hy (since 0 is equidistant between § = —1 and 6 = +1), while z, = 1.5 would
indicate overwhelming evidence for H; (it being 5 standard errors from Hp).

When standard frequentist procedures behave unnaturally, frequentists turn to condi-
tional frequentist procedures (cf., Kiefer, 1977). But in this problem there are a plethora of
possible conditional frequentist tests, and it is unclear how one should be chosen. Also, the
interpretation of conditional tests and conditional error probabilities can be very difficult
for practitioners.

Now look back at the simple Bayes test described at the beginning of the exam-
ple. It is easy to use; it does not depend on the stopping rule in a sequential setting;
it avoids the intuitive objections to the Neyman-Pearson test (when z = 0, one reports
P(Hy|z1,--.,24) = 0.5 and, when T = 1.5, one reports P(Ho|z1,...,24) £ 6 X 107%); and
it has a simple interpretation. This test would be delightful for a frequentist, if only it
could be given a frequentist interpretation. But it can! Indeed, in Berger, Brown, and
Wolpert (1993), it is shown that this is a valid conditional frequentist test, with conditional

error probabilities being given by the posterior probabilities.
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Because this situation involved only the testing of simple hypotheses, the choice of
the prior was not particularly relevant, and hence Bayesian robustness was not a factor.
In testing of composite hypotheses, however, it appears to be necessary to utilize robust
Bayesian procedures if one seeks to have sensible tests with a conditional frequentist in-

terpretation. This work is currently under development. O

1.2 Preview

First, this is not exactly a review paper. More formal and thorough reviews can be
found in Berger (1984, 1990, and, to a lesser extent, 1985) and in Wasserman (1992b). We
will make a somewhat uneven effort to indicate the literature that has arisen since these
review papers, but there will be only moderate discussion of this literature.

The primary goals of the paper are, instead, to provide a fairly accessible discussion
of Bayesian robustness for statisticians not in the field, and to summarize our views on
some of the important issues and considerations in Bayesian robustness.

Section 2 considers the idea of choosing models and priors that are inherently robust.
The idea is that it is perhaps easier to build robustness into the analysis at the beginning,
than to attempt to verify robustness at the end.

Section 3 briefly discusses diagnostics, influence, and sensitivity. Our review of this
material is admittedly too brief; it is deserving of much more coverage.

Section 4 spends a perhaps inordinate amount of space on the issue of global robust-
ness: finding the range of Bayesian answers as the Bayesian inputs vary. This area has
experienced by far the most active development in recent years.

Uses of computing in Bayesian robustness are discussed in Section 5; perhaps of par-
ticular interest is the possibility of using Bayesian robustness to enhance interactive elici-
tation. Section 6 summarizes some thoughts about the future.

There is one major aspect of Bayesian robustness that is essentially ignored in the pa-
per, namely robustness with respect to the utility or loss function. This mirrors a similar
avoidance of the issue in the literature. There are, perhaps, three reasons for this avoid-
ance. First, formal statistical decision analysis is not often done in practice (at least by
statisticians), because of the extreme difficulty in eliciting utilities. (But perhaps Bayesian
robustness is, for this reason, even more compelling in decision problems.) Second, mod-

elling uncertainty in utility functions is often more awkward, and more case-specific, than
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modelling uncertainty in distributions. Finally, robust Bayesian analysis involving utility
functions can be technically more difficult than other types of Bayesian robustness. A few
references to robustness involving the utility are Kadane and Chuang (1978), Moskowitz
(1992), Rios Insua (1990, 1992), Rios Insua and French (1991), Drummey (1991), Basu
and DasGupta (1992), and Rios Insua and Martin (1994).

We will also ignore several other important robustness issues for reasons of space.
One such is the issue of model selection and Bayesian prediction in the face of model
uncertainty. For discussion and references see Draper (1992), Kass and Raftery (1992),
Berger and Pericchi (1993), and Pericchi and Pérez (1994).

We also will not discuss the huge literature on gamma minimax estimation, which is
the frequentist version of robust Bayesian analysis. Extensive discussion of this approach,
and its relationship to the posterior robust Bayesian approach discussed here, can be found
in Berger (1984, 1985), which also contain numerous references. Recent references include
Ickstadt (1992), Vidakovic (1992), and Eichenauer-Herrmann and Ickstadt (1993).

Finally, there have been numerous Bayesian robustness investigations in particular
problems or situations. A partial list of recent works is Kass and Greenhouse (1989),
Lavine and Wasserman (1992), Berger and Chen (1993), Goldstein and Wooff (1994), and
O’Hagan (1994).

1.3 Notation

The entire data set will be denoted by X, which will be assumed to arise from a density
f(z|8f) (w.r.t. a fixed dominating measure), with 65 denoting unknown parameters of f.
A prior density for §; will be denoted by m(6y); we will assume that this is a density w.r.t.
Lebesgue measure, for notational convenience.

Key Bayesian quantities are

mialr, ) = [ Falor)n(e;)des

which is the marginal or predictive density of X, and

w(6sle, f) = f(<|05)m(85)/m(z|r, f)

which, assuming the denominator is nonzero, is the posterior density of 8;. We explicitly

retain f in the notation to allow for discussion of robustness w.r.t. f. For analyses in which. -
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f is fixed, we will simply drop f from the notation. Finally, we define 9 (7, f) (suppressing
z) to be the posterior (or other) quantity of interest. Typically,

s = [t =

For instance, h(ff) = @y yields the posterior mean and h(f5) = 1c(éy) (the indicator
function on the set C) yields the posterior probability of C. Other types of ¥(m, f) are,

however, possible: for instance, posterior quantiles or m(z|x, f) itself.

2. DEVELOPMENT OF INHERENTLY ROBUST PROCEDURES

2.1 Introduction

Choices of the functional form of the statistical model or prior distribution are fre-

quently quite arbitrary.

Example 3. Suppose Xi,...,X, are felt to be i.i.d. observations from the measurement
error model X; = u + ¢;, where the measurement errors, ¢;, have a symmetric, unimodal
distribution with unknown variance ¢2. Very little is known about o2, but the unknown

1 is felt, apriori, to be 0 = 1/2.19; we will interpret this to mean that 0 and +/2.19 are the

prior mean and prior standard error, respectively.

The “standard” analysis here would be to choose f(zi|u,o) to be N(u,0?), and to
choose 7(u,0) = + - m1(p), where mi(p) is N(0,2.19). (The unknown o is here given

o

the usual noninformative prior. Sometimes 7 (¢|o) = N(0,(2.19)0?) is used in place of
m1(p).) O

While various arguments can be given for such standard choices, the fact remains that
they are often quite arbitrary. Furthermore, standard choices such as these often result in
models from the exponential family and conjugate priors, both of which are known to be
nonrobust in various ways: models in the exponential family are very sensitive to outliers
in the data, and conjugate priors can have a pronounced effect on the answers even if the
data is in conflict with the specified prior information. (This last is not always bad, but
most users prefer to “trust the data” in such situations.) Further discussion and other

references can be found in Berger (1984, 1985).
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2.2 Use of Flat-tailed Distributions

Considerable evidence has accumulated that use of distributions with flat tails tends
to be much more robust than use of standard choices, such as those discussed in Section
2.1. See Dawid (1973), Box and Tiao (1973), Berger (1984, 1985), O’Hagan (1988, 1990),
Angers and Berger (1991), Fan and Berger (1992), Geweke (1992), and Lucas (1992).

Example 3 (continued). Suppose, instead, that f(z;|u, o) is chosen to be a t-distribution
with, say, 4 degrees of freedom. One might actually want to introduce the degrees of
freedom, a, as an unknown parameter (see Chib, Osiewalski, and Steel, 1991, for a recent
study), but that is more a model elaboration than a model robustification. Also, 71 (p)
could be chosen to be Cauchy(0, 1) (which matches the quartiles of a N(0, 2.19)).

This analysis would be robust in two respects. First, if there are outliers in the data,
they will automatically be filtered out of the analysis. Second, if the prior information
about p turns out to be very inaccurate (due, say, to the all-too-common problem that
elicitors typically choose prior variances that are much smaller than their real uncertain-
ties), then it is automatically discounted in the analysis. Neither of these robust behaviors
occurs with the standard analysis. O

The price to be paid for utilization of inherently robust procedures is computational;
closed form calculation is no longer possible. Today, however, computational schemes exist
for performing robust Bayes computations routinely. For instance, any situation involving
normal models and normal priors that is to be analyzed with Gibbs sampling can, instead,
be done with t-distributions (cf, Verdinelli and Wasserman, 1991; Geweke, 1992; and Datta
and Lahiri, 1992).

Example 3 (continued). Saying that X; ~ T4(u,0?) is equivalent to saying that, given
Tiy Xi ~ N(p,0%/7;), where 7; ~ Gamma (2,3). Likewise, saying that p ~ C(0,1)
is equivalent to saying that, given 7o, p ~ N(0,1/7), where 70 ~ Gamma (3,3). By
introducing the 7; as random unknowns, it is possible to write the conditional posterior
distributions of each unknown, given the others, as simple normal, gamma, or inverse
gamma distributions, allowing for straightforward Gibbs sampling. O

While the above example indicates that, in principle, robustification is always possible

for normal models, the computational cost may still be severe. For instance, the original

two unknowns, (u, o), above are replaced by the unknowns (¢, 0,70, 71,...,72). When n

10



is large, the Gibbs sampling simulation can be very expensive.

Introducing such robustifications in hierarchical Bayes scenarios is often much more
cost effective. For instance, replacing the standard hierarchical Bayes model, X; ~ N (6;,
0?) and 6; ~ N(p,A), for i = 1,...,p, by the model X; ~ T4(6;,0?) and 6; ~ C(u, A),
and introducing 7; to convert the latter model to a normal and inverse gamma model,
would only increase the number of parameters from p+ 3 to 3p+3. A factor of 3 in Gibbs
sampling is not severe.

Note that analytic methods for doing computations in certain of these hierarchical
models exist. See Spiegelhalter (1985), Fan and Berger (1990, 1992), Angers and Berger
(1991), Angers (1992), and Angers, MacGibbon, and Wang (1992).

A somewhat more modest type of robust prior has long existed in multivariate prob-
lems. Suppose X = (Xi,...,X,)! ~ N(8,Y), where 8 = (6y,...,6,)" is unknown and
Yis given. The conjugate prior for 8 is a M (u, A) prior, for which the posterior mean
is 6™(x) = ¢ — L (X+ A)~!(z — p). A variety of arguments suggest that it is more ro-
bust to use “shrinkage” versions of §; among the many approaches to developing such
are minimax theory, ridge regression, empirical Bayes analysis, and BLUP theory. But
the best robust alternatives to §™ are, arguably, the robust Bayes alternatives, in which
the N (u, ) prior is replaced by a T, (u,Y) prior (for, say, @ = 4) or something similar.
Extensive discussion of one such alternative, that is particularly easy to work with, can be
found in Berger (1985, Section 4.7.10), which also has many references. See, also, Zellner
(1976) and Berger and Robert (1990).

The reasons this latter type of robustness is more limited than the earlier type are:
(i) model robustness is not involved; (ii) one achieves robustness to prior misspecification
only in the overall sense that if the prior and data clash, the entire prior is discounted.
The earlier discussed use of independent t-distributions would allow discounting of only

part of the prior.

2.3 Use of Noninformative and Partially Informative Priors

That noninformative priors often yield automatically robust answers was recognized
as early as Laplace (1812). Indeed, his development of the Central Limit Theorem was
essentially a demonstration that, for large sample sizes, the posterior distribution of an

unknown model parameter 6 is essentially the same asymptotic normal distribution for any
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nonzero prior density. (See Ghosh, Ghosal, and Samanta, 1994, for recent developments
and references.) For this and various intuitive reasons, Laplace felt that simply using

w(8) = 1, as the prior, would give quite robust answers.

Another sense in which use of 7(6) = 1 is robust was formalized by L. J. Savage as the
theory of precise measurement. See Edwards, Lindman, and Savage (1963), Moreno and

Pericchi (1993b), Mukhopadhyay and DasGupta (1993), and Pericchi and Pérez (1994).

Modern noninformative prior theory takes this one step further. Noninformative priors
are specifically constructed so as to have minimal influence, in some sense, on the answer.
The sense in which this engenders robustness is rather weak: it seems to ensure that the
Bayesian analysis, for small or moderate samples, is not affected by unintended properties
of the prior. For instance, in Example 3 we saw that standard conjugate choices of the tail
of the prior (or likelihood) could have a dramatic unintended effect on the posterior. In
multivariate situations, the potential for such unintended effects is particularly large, since
few features of the prior will actually be subjectively elicited and there is a substantial

possibility that mistakes can “accumulate” across the dimensions.

The two most extensively developed noninformative prior theories of this type are the
reference prior theory (cf., Bernardo, 1979; Berger and Bernardo, 1992; and Bernardo and
Smith, 1994), and the mazimum entropy approach (cf., Jaynes, 1983, and Fougere, 1990).

Other approaches are discussed in the excellent review paper Kass and Wasserman (1993).

Partially informative priors are also of considerable interest from the robustness per-
spective. These priors are of two types. The first type is for use in problems where there are,
say, “parameters of interest” and “nuisance parameters.” The parameters of interest are
basically given subjectively elicited prior distributions, perhaps with associated robustness
investigations being performed, while the nuisance parameters are given noninformative
priors. The idea here is that elicitation of priors for nuisance parameters is likely to be
difficult and a less valuable use of available elicitation time, and that attempting formal
robustness studies with respect to the nuisance parameters is likely to be ineffective. For
examples and further discussion of this general notion, see Liseo (1993) and Berger and

Mortera (1994).

The second type of commonly used partially informative prior is a constrained max-

imum entropy prior. The idea here is that one specifies certain features of the prior (or
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model) and then chooses that prior (or model) which maximizes entropy subject to the
specified constraints. The hope is that the resulting prior (or model) will have the speci-
fied features, but be robust (in the noninformative prior sense) with respect to unspecified
features. For further discussion see Jaynes (1983) and Fougere (1990). Somewhat different
approaches are considered in Casella and Wells (1991) and Bernardo and Smith (1994).

2.4 Nonparametric and Infinite Parametric Bayes Procedures

Bayesian nonparametrics can be considered to be an approach to automatic robust-
ness with respect to model choice. A large nonparametric class of models is entertained
and given a prior distribution so that, hopefully, the data will cause the analysis to auto-
matically adapt to the true model.

The majority of the work on Bayesian nonparametrics has involved use of the Dirich-
let process prior on the space of all probability distributions. Recent references include
Brunner and Lo (1989), Lo and Weng (1989), Gasparini (1990), Ferguson, Phadia, and
Tiwari (1992), Tamura (1992), and Doss (1994).

Dirichlet process priors have a number of potentially unappealing features, such as the
fact that they give probability one to the set of discrete probability measures. Hence there
has been considerable effort expended to develop priors that are supported on continuous
densities, such as Gaussian process priors. An example of such a prior, for the space of

continuous densities, f(t), on [0,T], is to let

T
£(t) = exp{X()}/ / exp{X (1)} dt,

where X (t) is the sample path of a Gaussian process. This and other such priors are studied
in Leonard (1978), Lenk (1988), Angers and Delampady (1992), and Zidek and Weerahandi
(1992). Computations with such priors are more difficult than with Dirichlet process priors,
but the recent new Bayesian computational tools should enhance the utilization of these
alternative nonparametric priors.

In regards to Gaussian process priors, the Bayesian interpretation of smoothing splines
should also be mentioned. Smoothing splines can be developed as Bayesian function esti-
mates for certain Gaussian process priors on derivates of functions. This interpretation has
been important in deriving accuracy estimates for smoothing splines (utilizing the associ-

ated posterior covariance function). See Kohn and Ansley (1988), Wahba (1990) and Gu
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and Wahba (1993). There is considerable promise in further exploiting this relationship for
higher dimensional smoothing splines, especially if structural assumptions on the function
are made (e.g., f(z1,...,2p) = zp: fi(z:)). Finally, other very promising nonparametric
Bayes approaches are being devezIZIl)ed, such as Lavine (1992b) and West (1992).

While Bayesian nonparametrics strives to produce inherently robust procedures, there
have been a number of recent developments which suggest that caution must be exercised.
For instance, a “minimal” robustness condition, that one would hope would be satisfied
by any Bayes procedure, is consistency: as the sample size grows to infinity, the Bayes
estimates of quantities of interest should converge to the true values. It has been discovered,
however, that this need not be the case in Bayesian nonparametrics; see Diaconis and

Freedman (1986), Ghosh (1993), and Berliner and MacEachern (1993). The following

infinite parametric example is a very simple illustration of the phenomenon.

Example 4. J.K Ghosh (personal communication, 1992) has studied an interesting
variant of the Neyman-Scott problem. Suppose we observe (all independently) X;; ~

2

N(ui,0?),s = 1,...,pand j = 1,2. It is desired to estimate 0®. A simple consistent

estimator, as p — oo, is 6% = .i(x“ —zi2)%/(2p).

Now suppose a Bayesian v::ei‘e to proceed by choosing independent proper priors for all
parameters {02, u1, p2,...,4p}. Then, for “almost all” sequences {p1, p2,- ..}, the Bayes
estimator of o seems to be inconsistent. (“Almost all” here is in a topological sense,
not probabilistic; the Bayes estimator is consistent for almost all sequences {p1,p2,...}
in probability under the prior, but the set of such sequences becomes vanishingly small.
Conditions on the priors and sequences are needed for the proof of inconsistency, but the
result is probably true generally.) O

Determining the extent to which such possible inconsistencies are a practical concern
for Bayesians will be an important task for the future. At the very least, these concerns

should significantly influence the types of priors chosen for these problems (cf., Ghosh,
1994, in regards to the above example).

3. DIAGNOSTICS, INFLUENCE, AND SENSITIVITY

3.1 Diagnostics

An important aspect of robustness is developing methods of detecting when a robust-
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ness problem exists and suggesting where the difficulty might lie. Examples include the
detection of outliers and the detection of a lack of model fit.

Virtually all Bayesian diagnostic techniques are based on some type of utilization
of m(z|m, f). Interestingly, some suggested utilizations are non-Bayesian in character.
For instance, Box (1980) suggests determining the adequacy of an assumed model, fo,
by choosing a noninformative prior, mg, and then conducting a classical significance test
with the null distribution being m(z|mo, fo). The formal Bayesian approach would be to,
instead, embed fy in a larger class of models F, choose a prior distribution on F, and
infer the adequacy of f; relative to other distributions in F (through, say, Bayes factors
or predictive measures). While we prefer the formal Bayesian approach if feasible, the
purpose of diagnostics is often to provide an initial indication that something is wrong,
and so suggest that the more formal Bayesian approach be undertaken. Evidence obtained
from such initial pseudo-Bayesian diagnostics should not be trusted too far, however, and
should be confirmed by the formal Bayesian approach before being considered conclusive.
For further discussion of this issue, with examples, see Berger (1985, section 4.7.2.).

We do not have space to review the huge literature on Bayesian diagnostics. A few
recent references are Smith (1983), Pettit (1988, 1992), Guttman and Pefia (1988), Poirier
(1988), Kass, Tierney and Kadane (1989), West and Harrison (1989), Carlin and Polson
(1991), Verdinelli and Wasserman (1991), Geisser (1992), Kass and Slate (1992), Pefia and
Tiao (1992), Weiss (1992, 1993), Pefia and Guttman (1993), and Meng (1994). Note that
global robust Bayesian methods (see Section 4) have begun to themselves be applied to
diagnostics; see Bayarri and Berger (1993b, 1994) for an application to outlier detection.

3.2 Influence and Sensitivity

Whereas diagnostics is oriented towards detecting that a problem exists with an anal-
ysis, influence and sensitivity seeks to determine which features of the model, prior, or
utility, or which data, have a large effect on the answer. There are many parametric anal-
yses of this type, including Guttman and Pefia (1988, 1993), Kass, Tierney, and Kadane
(1989), McCulloch (1989), Meczarski and Zieliniski (1991), Geisser (1992), Lavine (1992d),
and Basu and Jammalamadaka (1993).

A recent interesting approach to investigating sensitivity to the prior, in a nonpara-

metric fashion, is to consider functional derivatives of the Bayes operator ¥(x, f) with
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respect to 7. (One could, similarly, take derivatives w.r.t. f, but this is usually more
involved.) These derivatives, evaluated at a base prior mp and in “direction” g, indicate
how sensitive ¢(m, f) is to local changes in m. Besides indicating local sensitivity, these
derivatives can be used to construct quite accurate global robustness bounds. The rapidly
growing literature on functional derivatives in Bayesian robustness includes Diaconis and
Freedman (1986), Cuevas and Sanz (1988), Srinivasan and Truszczynska (1990, 1993),
Ruggeri and Wasserman (1991, 1993), Boratyiiska and Zielinska (1991), Fortini and Rug-
geri (1992, 1994), Sivaganesan (1993c), Basu, Jammalamadaka and Liu (1993a, 1993b),
Gustafson and Wasserman (1993), Delampady and Dey (1994), and Salinetti (1994).

4. GLOBAL ROBUSTNESS

4.1 Introduction

In Bayesian robustness it is frequently assumed that f € F and that 7(65) € 'y, where
F and T are classes of densities. (Frequently, I'y will be enlarged to include distributions
that do not have densities with respect to Lebesgue measure; we will abuse notation when
this is needed.) If (m, f) is the posterior functional of interest (e.g., the posterior mean),
global robustness is concerned with computation of

¥ = inf inf 9(m, f), ¥ = sup sup (m,f). (4.1)

feF =€l fEF neTy

One then reports (ﬁ,—’(/;) as the range of possible answers. If this range is small enough
for the conclusion to be clear, the conclusion is declared to be robust. If not, further

elicitation, data collection, or analysis is necessary.

4.2 Parametric Classes
Historically, global robustness has been investigated using parametric classes of like-

lihoods and priors.

Example 5. In the situation of Example 3, instead of considering the A(y,0?) density

for the i.i.d. X3,...,Xn, one could consider the class
F = {Ta(,u,Kaaz) densities for the X;, a > 1}, (4.2)

where /K, = (0.674)/¢q, with ga being the third quartile of the 7,(0, 1) distribution. The

reason for introducing K, is that the Ta(u,Kaaz) distribution will then have the same

16



quartiles as the AM(u,0?) distribution, so that 4 and ¢? will have comparable meanings
across all distributions. If the restriction a > 2 were employed, one could instead choose
K, so that all distributions have the same mean and variance, but we generally prefer
scaling by quartiles.

Suppose p and o? are thought to be independent apriori, with g having unimodal
density with quartiles —1,0, 1 and nothing being known about 2. Then the prior, 7(u, 0?),
might be assigned the class

T = {m(p,0?) = m(w)m2(c?): m is T,(0,¢,2%),v > 1, and m3(0?) = (6*)*,—2< a < 0.}

The 7,,(0, ¢; %) distributions are a fairly wide class of unimodal distributions with quartiles
—1,0,1, and might appropriately represent the specified information about g. Since noth-
ing is specified about o2, it would be typical to use a range of noninformative priors as the
relevant class (but see Pericchi and Walley, 1991; and Walley, 1991, for other suggestions).
Note that, because of the scaling of the f € F to preserve the meaning of 4 and o2, it is
not necessary to write (py, a?c) and define I'y depending on f.

For any functional ¢ (=, f) of interest, one can now compute (1, 1) by minimizing and
maximizing ¥(7, f) with respect to (a, v, a). O

There are two main reasons that parametric robustness is attractive. The first is
that computations are relatively straightforward. For instance, in Example 5, the maxi-
mizations are only three-dimensional. Of course, computation of the ¥(m, f) will involve
two-dimensional integration (over p and 02), so the computation is not trivial (see, also,
Section 5.1).

The second attractive feature of parametric classes is that they can allow for convenient
communication of robust Bayesian conclusions. An example is given in Section 4.10.2 of
Berger (1985).

The main disadvantage of parametric classes is that they may fail to capture realistic
possible deviations from the base model or prior. Thus, in Example 5, we have robustified
against normality, in the sense of allowing flatter tails for the distributions, but no allowance
for, say, possible skewness has been made. Ideally, one will construct F and/or the I's to
reflect all deviations that are deemed to be possible, but it is unfortunately all-too-common

to fail to anticipate the actual deviations that arise.
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Recent references utilizing parametric classes of priors include Leamer (1982), Polasek
(1985), Good and Crook (1987), Polasek and Potzelberger (1988, 1994), DasGupta and
Studden (1988a, 1988b, 1989, 1991), Drummey (1991), Pétzelberger and Polasek (1991),
Coolen (1993), and Dette and Studden (1994).

4.3 Nonparametric Classes of Priors

The majority of recent papers on Bayesian robustness deal with a fixed likelihood
and nonparametric classes of priors. This is an important problem, for several reasons.
First, there are many situations in which priors are less well known than the model.
Second, the major objection of non-Bayesians to Bayesian analysis is uncertainty in the
prior, so eliminating this concern can make Bayesian methods considerably more appealing.
Third, serious inadequacies in certain classical methods can be revealed by Bayesian prior
robustness (see Sections 1.2 and 4.3.3). Finally, conclusions must frequently be reached by
a group of people with differing prior opinions, and robust Bayesian analysis, with I' equal
to the class of prior opinions, can then have a variety of uses.

That said, the main reason researchers have concentrated on global prior robustness
is probably its mathematical elegance. There is nothing wrong with this, of course, as long
as we remember that global prior robustness is only one piece of the robustness puzzle.

In the remainder of this subsection, f will be considered fixed, so we write just 6 for
the unknown parameters, I" for the class of priors being considered, and ¥(n) (instead of

¥(m, f)) as the criterion functional.

4.3.1 Factors Involved in Choosing a Class

Several discussions and reviews concerning choice of good classes of priors already
exist, including Berger (1990), Sivaganesan (1990), Lavine (1991), Pericchi and Walley
(1991), Walley (1991), Moreno and Pericchi (1992a), and Wasserman (1992b). The follow-
ing issues should be kept in mind in choosing a class:

(i) The class should be as easy to elicit and interpret as possible. Recall that a prime
reason for considering Bayesian robustness is the difficulty of eliciting a prior; making
the class, I', difficult to elicit would thus be self-defeating.

(ii) The class should be as easy to handle computationally as is possible. The usual com-
putational technique is to identify “extreme points” of I (relative to ¥(7)) and perform

maximizations over these extreme points. Typically, the extreme points will be in a

18



(iii)

(iv)

low-dimensional subset, I'*, of T, so the maximizations are over a low-dimensional set.
The dimension of I'* will depend on several factors, but primarily on the dimension
of @ and the number of elicited features of the prior. Hence, rather paradoxically,
the more features one elicits, the harder the robust Bayesian computation is likely to
become. Part of the computability issue is also having a class, I', which is compatible
with model and/or utility robustness.

The size of T' should be appropriate, in the sense of being a reasonable reflection of
prior uncertainty. If T is too small, one might fear being erroneously led to a conclusion
of robustness. If T is too large, in the sense of containing many prior distributions that
are clearly unreasonable, then one might conclude that robustness is lacking when, in
fact, a reasonable I' would imply robustness. For detecting this latter problem, it is
useful to determine the 7 € T' at which ¢ or 1 is attained, and judge if such a = is
reasonable. If not, one should try to refine I' to eliminate such 7.

I’ should be extendable to higher dimensions and adaptable in terms of allowing
incorporation of constraints (e.g., shape constraints, independence, etc.). The point
here is that eventual methodological implementations will need to be based on at
most a few “standard” classes (for elicitational, computational, and interpretational
reasons), and so these classes need to be flexible enough to handle a very wide range
of problems.

The following simple example illustrates several of the above ideas.

Example 6. Suppose prior beliefs about a real parameter 6 are symmetric about 0, with

the third quartile, g3, being between 1 and 2. Consider

I'; = {N(0,7?) priors, 2.19 < 7% < 8.76}, T, = {all symmetric priors with 1 < ¢3 < 2}.

Both classes are easy to elicit (i.e., easy to specify from the given information; the range of

72 in T, yields g3 between 1 and 2). Also, both are easy to handle computationally; indeed,

maximization over I's will often only involve maximization over the “extreme points”

T} = {distributions giving probability 1 each to +¢s: 1< g3 < 2}.

Although Ty can be appropriate for some situations, it will often be considered “too

small” because of its specified prior shape and because it has only sharp-tailed distributions.
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In contrast, I'; will typically be a “too big” reflection of the prior information, in the sense

that it contains prior distributions which, upon reflection, are probably unreasonable.
Very sensible classes can be formed by taking “too large” classes, such as I'z, and

adding shape constraints. For instance, if it is also believed that the prior density is

unimodal, then one obtains
I's = {unimodal, symmetric densities with 1 < ¢3 < 2}.

Such classes are often very sensible, in that they are large enough to include all reasonable

priors compatible with prior information, but small enough that unreasonable priors are

| excluded. O

4.3.2 Common Classes
We briefly review the common classes of priors that are used. For extensive discussion,

comparisons, and examples, see the references listed under each class.

Classes of Given Shape or Smoothness: An example of a class based on shape is
I' = {all symmetric, unimodal priors}. Such classes have interesting uses in hypothesis
testing (see Section 4.3.3). Usually, however, shape is used as an additional constraint in
one of the other classes (cf, Example 6), so as to eliminate unreasonable priors from the
class. Note that general shape features are often relatively easy to elicit, even in higher
dimensions.

Smoothness constraints typically limit the rate of change of the prior density. (Note
that requiring only continuity adds nothing, because arbitrary distributions can typically
be approximated, arbitrarily well, by continuous densities.) Although one could define a
class of priors based only on smoothness, it is typically used, instead, as a supplemental

constraint for other classes (cf., Bose, 1990, 1994).

Moment Class: This is defined as the set of all priors with a specified collection of
moments. Analysis using probabilistic moment theory is typically straightforward. See
Sivaganesan and Berger (1989, 1993), Goutis (1991), Betrd, Meczarski and Ruggeri (1994),
and Sivaganesan (1992).

Moments are quite difficult to elicit. For this reason, moment conditions are also
typically used merely as additional constraints in other classes, in the hope that misspeci-

fication of moments will then have a reduced effect.
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Contamination Class: This is defined by
I={r=(1-¢)m+eq, ¢€Q}, (43)

where 7 is a base prior (for instance, the prior elicited in a standard Bayesian analysis),
is the perceived possible error in 7, and Q is the allowed class of contaminations. In terms
of the four criteria of Section 4.3.1, this class is easy to elicit; computation is relatively
easy for many reasonable choices of @Q; and the class can easily incorporate additional
constraints and be used in higher dimensions. The class can be “too big” if @ is “too big”
and ¢ is appreciable. In one dimension this is rarely a problem, but it can be a severe
problem in higher dimensions. References include Berger and Berliner (1986), Sivaganesan
(1988, 1989, 1993a), Sivaganesan and Berger (1989), Moreno and Pericchi (1990, 1991),
Dey and Birmiwal (1991), Gelfand and Dey (1991), Boratynska (1991), Lavine (1991b),
Moreno and Cano (1991), and Bose (1994).

Density Ratio (or Density Band) Class: This is defined by
' = {generalized =: L(#) < n(6) < U(6)}. (4.4)

(A “generalized” prior is one which does not integrate to 1; typically the posterior will,
nevertheless, be proper.) Often this class is the simplest to handle computationally, and
is reasonable in higher dimensions. Its main disadvantage is that it is very hard to elicit;
choosing L and U appropriately can be quite difficult.

A useful modification of this class is the Density Bounded Class, which is as in (4.4),
but with the additional constraint that 7 must be proper. The class then becomes much
easier to elicit and interpret, but can be more challenging computationally.

References working with these classes include DeRobertis (1978), DeRobertis and
Hartigan (1981), Hartigan (1983), Lavine (1991a, 1991b, 1992c), Ruggeri and Wasser-
man (1991), Wasserman (1991, 1992a, 1992b, 1992c), Moreno and Pericchi (1992b), and
Sivaganesan (1994).

Quantile Class: This is defined by

I'={m o; < Pr(6€©;)<Bi, i=1,...,m},
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where the ©; are specified subsets of ©. (Usually {©;; i = 1,...,m} is a partition of
©.) This class is probably the most natural of all from the viewpoint of elicitation, and
is computationally manageable. It tends to be “too big” in higher dimensions, however,
unless additional shape constraints are added. References to this class include Cano,
Hernandez, and Moreno (1985), Berger and O’Hagan (1988), O’Hagan and Berger (1988),
Moreno and Cano (1989), Moreno and Pericchi (1990), Ruggeri (1990, 1991, 1992), and
Sivaganesan (1991).

Mixture Classes: These are of the form
'={n(0) = /7r(0|a)dG(a), G € G}. (4.5)

Most other classes are actually themselves mixture classes.

Example 7. Suppose 8 € RP, and the prior distribution is known to depend only on
|@|. The class, I's, of all such priors is typically too big, in the sense of containing many
unreasonable distributions. Often, however, unimodality is also believed to hold, leading
to 'ys, the class of unimodal spherically symmetric priors. Interestingly, this class can be

written as
Tus = {n(8) = / Low(I8))V1dG(a), G any cdf on[0,00)}, (46
1}

where Vo is the volume of the ball in RP of radius . This is a much smaller class than
I's, and would be reasonable for most purposes, but it may be possible to refine the class

even further. In particular, if prior beliefs are felt to be “bell-shaped,” a class such as
I'ns = {n(0) = / (27ra)"1’/2e—lalz/(za)dG(a), G any c.d.f. on [0, c0)}
0

could be employed. This is easily seen to be a subset of ['yys that contains only bell-shaped
distributions (though admittedly not all bell-shaped distributions). Recall that we earlier

encountered such priors in Section 2.2, as being “inherently robust” for certain G. O

Example 8. An archeological artifact is 6 years old,  unknown. It could have been

produced by any one of 3 civilizations that occupied the given site. For civilization ¢, a
N(ui, Ai) distribution (to be denoted ;) is thought to describe the likelihood of artifact

production at any given time. (All y; and A; are assumed to be specified.)
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Several experts are asked to classify the object, based on its style. They do not agree

completely, but conclude that all their opinions are contained in

g = {g = (gl,gz,g3): 0.1 S q1 S 0.2, 0.6 S g2 S 0.7},

where g; = Pr(the artifact is from civilization 7), and g; + g2 + g3 = 1. Then 7(6), the

overall prior distribution for , is in

I'= {W(e) = ng-(e): g€ G},

which is of the form (4.5) with @ = ¢ and G being discrete. 4
Mixture classes will play a very prominent role in Bayesian robustness because of
several key properties:
(i) Mixture classes are often computationally simple. In Example 7, for instance, maximiza-
tion over I'ys or I'ys will typically reduce to maximization over 7(8]a) = 1¢0,4)(|0])Va"
or m(0|a) = (2ma)~P/? exp{—|0|?/(2a)}, respectively, both of which are simple one-dimen-
sional maximizations (over ).
(ii) Mixture classes can flexibly represent prior information about structure or shape, as
in Example 7, or information arising from several sources, as in Example 8.
(iii) Mixture classes are often not “too big,” in the sense of containing unreasonable dis-
tributions. This is particularly crucial for multivariate 8, where the range of Bayesian
answers as 7 varies over I' will typically be huge, unless I' is somehow constrained so as
not to contain unreasonable distributions. Operating with mixture classes seems to be the
only effective way of avoiding the problem (other than using parametric classes, of course).
As a final comment about mixture classes, note that they can also arise as refine-
ments in the elicitation process. In Example 8, for instance, suppose X ~ N(6,0?) is
observed (say, X is a radiocarbon dating of the artifact). One might first consider just
I' = {m,m2, 73}, and compute the Bayesian answer (e.g., posterior mean of #) for each
prior in T. If the range of answers is small enough, there would be no need to look further.
If, however, there are substantial differences between the answers, then one might go to the
next “level” of elicitation, obtaining g. In this example, uncertainty thus ends up residing
in the higher level elicitation (see also Good, 1983b; and Pericchi and Nazaret, 1988). Note

that there could easily be virtually complete robustness with respect to g € G, even if there
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is no robustness with respect to the m; in I'. For other examples of mixture classes, see
Bose (1990, 1993), Cano (1993), Moreno and Pericchi (1993a), and Liseo, Petrella, and
Salinetti (1993). West (1992) discusses their uses in modelling,.

Marginal and Independence Classes: When 6 = (6y,...,0,) is multi-dimensional,
elicitation of w(@) is particularly difficult. One could hope that elicitation of, say, the

marginal densities, m;(6;), could be effective, in the sense that robustness over
I' = {n(0) having the specified marginals} (4.7)

would often obtain. Alas, this is not the case, as was dramatically shown by Lavine,
Wasserman, and Wolpert (1991); the class in (4.7) is so large that the range of resulting
Bayesian answers is typically enormous. See, also, Moreno and Cano (1992) for related
results.

Of course, if the 8; were, apriori, judged to be independent, then one would simply
have the single prior #(0) = ‘12[ 7;(8;). It is sometimes possible to make the judgment of
independence, and it is then Izlziural to consider its effect on other classes. This is studied
for contamination classes and density ratio classes in Berger and Moreno (1994), where it
is shown that the assumption of independence of coordinates does have a dramatic effect
on robustness; the range of Bayesian answers can decrease dramatically. Independence

is admittedly a strong assumption, but one typically must make strong assumptions in

multi-dimensional problems to obtain a moderate range of Bayesian answers.

Other Classes: An interesting alternative to the Density Ratio class for one-dimensional
6 is the Disiribution Band class of all priors whose c.d.f. lies between two nondecreasing
functions. This is studied in Basu (1992a, 1992b) and Basu and DasGupta (1992).

Neighborhood classes can be defined by choosing a “distance measure,” d(m,72), be-
tween priors (it need not be a true distance function), and defining I' = {7: d(w, 7o) < €},
where 7 is again a “base” prior. Related classes can be developed using “concentration
functions”; see Regazzini (1992) and Fortini and Ruggeri (1990, 1992, 1993, 1994).

Belief Function classes use belief functions (a type of generalization of probability) to
generate the class of priors. See Wasserman (1990) for an example.

Classes based on Choquet Capacities are defined and studied in Wasserman and
Kadane (1990, 1992a) and Wasserman (1992b). Two-alternating capacities have particu-

larly attractive theoretical and computational properties.
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Pericchi and Walley (1991) and Walley (1991) (see also Sansé and Pericchi, 1992)
propose Near Ignorance classes of priors to provide a robust Bayesian alternative to nonin-
formative priors. Their approach provides an interesting contrast to typical constructions
of T, which seek to construct I' so as to contain all the “nice,” believable priors. Instead,
Pericchi and Walley argue that one can construct a “nice” class from a collection of “not
nice” or not compatible priors, and that there can be positive advantages in doing so.
In part, this notion arises from the axiomatic development in Walley (1991), which effec-
tively shows that rationality corresponds to operating with some I'; but does not require
or imply that the priors in I' correspond to actual subjective beliefs. Although counterin-
tuitive to standard Bayesian thinking, this approach should not be casually dismissed. Its

counterintuitive nature, however, poses real difficulties for elicitation of I'.

Conclusions: No single class of priors is likely to dominate robust Bayesian analysis.
Our personal favorites are contamination, quantile, and mixture classes, with shape and
structural restrictions as appropriate. We prefer the contamination and quantile classes
because they are easiest to elicit and interpret. They can be considerably more difficult
than, say, the density ratio class in terms of computation, but computations will eventually
just be hidden within software. The important issue will be how user-friendly is the
software in terms of choice of I', so the most easily elicitable classes are to be preferred.
The argument for mixture classes is somewhat different, although they too are often
natural from an elicitation viewpoint. The argument is simply the necessity, in multi-
dimensional problems, of doing something fairly drastic to reduce the size of " in order to
avoid excessively large ranges of Bayesian answers. It is important to be clear here: in very
low dimensional problems one can often verify Bayesian robustness, even when the prior
inputs are very weak. In high-dimensional problems this is typically impossible, and one
must accept the need to make rather strong and “dangerous” assumptions if an answer
is to be obtained. The point, of course, is to only make those strong assumptions which

seem plausible. The next section contains an example illustrating some of these notions.

4.3.3 Application to Hypothesis Testing and Ockham’s Razor
Some of the most interesting applications of robust Bayesian analysis have been to
hypothesis testing, and related model selection ideas. We review these here, in part as an

illustration of points made in the preceding section.
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Suppose X = (X1,...,Xp) ~ Np(8,0%I), 0° known, and that model M; specifies
0 = 0,, while model M, has @ unrestricted. Under Ma, consider the following two classes

of priors for 6:

I' 4 = {all prior distributions},

T, = {all prior densities of the form 7(8) = (|0 — pl), h nonincreasing}.

Here p is fixed, corresponding to a prior “most likely” value of 8 under M> or, perhaps,
to the “center of symmetry” of 7 under M. Often, p will equal 8o, but other values are

possible.
The Bayes factor of M; to Mz, corresponding to a prior density (@) under M, is

B(r) = f(100)/ [ f(zlo)n(8)do.

Define B 4 and B, as the lower bounds on B(w) as 7 ranges over I'4 and T',,, respectively.

For the case p = 8, which arises naturally in testing Ho: 8 = o versus Hy: 0 #6,
with prior opinions under H; being symmetric about 8o, Table 2 gives values of B4 and
By, ; instead of presenting the values as a function of &, we state them as a function of the

P-value associated with . (See Delampady, 1989, for computation of By, .)

Table 2. Lower Bounds, B, and By , corresponding to various P-values
for testing Ho: 0 = 8, versus H1:0 # 6,.

dimension p
P-value 1 2 3 4 5 10 15 20 40

B, .146 .050 .020 .009 .004 10~* 10=° 107" 107*?

0.05
B, A09 .348 .326 .314 .307 .293 .288 .284  .279
B, .036 .010 .003 .001 .0005 10~° 10~7 107%* 107**
0.01
By, 123 .098 .090 .085 .082 .078 .075 .074 .073
B, .004 .001 .0003 .0001 10~° 107" 107° 107'° 107'°
0.001

By, .018 .014 .012 .011 .010 .009 .009 .009 .009

This table reveals the, by now familiar, discrepancy between P-values and Bayes
factors. In one dimension for instance, when the P-value is 0.05 the lower bound on the
Bayes factor over all symmetric (about @) unimodal priors is 0.409, and the lower bound
over all priors is 0.146. This proves that a P-value of 0.05, in this situation, is at best

quite weak evidence against Hyp.
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A secondary point is the demonstration that classes of priors which are “too big”
fail to give useful bounds in high dimensions. Thus B, becomes uselessly small as the
dimension increases. In contrast, By is very stable as the dimension increases. And note
that, as in (4.6), I'g, can be written as a one-dimensional mixture class; this is an example
of why we view mixture classes as promising in high dimensions.

For p =1 and general p, a very accurate approximation to B, is

B, = 2¢(do)[d1 + 1/2log(d; + 1.2)], (4.8)

where dy = |z — 6p]/o, d1 = |z — p|/o, and ¢ is the standard normal density. This is
argued, in Berger and Jefferys (1992) and Jefferys and Berger (1992), to be a “Bayesian
Ockham’s razor” for comparing models M; and M. For instance, those papers discussed
the situation of comparing, in about the year 1920, M;: Einstein’s general relativity versus
M,: Newcomb’s gravity theory, based on data from unexplained perturbations in the orbit
of Mercury. The situation fits our framework with 8y = 42.9 (the perturbation predicted
by My); © = 0 (Newcomb’s theory made no prediction about the size or sign of the
perturbation, so centering prior opinion at zero is natural); and z = 41.6 (the observed
perturbation, with a standard error of ¢ = 2). Computation yields B, = B, = 15.04;
since this is a lower bound over I', =Ty, we can conclude that the evidence favors M; by
at least 15 to 1. This relates to Ockham’s razor because M; was the “simple” model, in
the sense of having no free parameter (it specified 8, = 42.9), while M, allowed 6 to float
freely. “Ockham’s razor” argues that one should prefer a simple model that adequately
explains the data to a complex model that does so, which is precisely what B, established
quantitatively.

As a final point, it must be remembered that the B above are lower bounds on the
Bayes factor, and can be much lower than actual reasonable Bayes factors (cf, Bayarri and
Berger, 1994). If the lower bound, itself, answers the question of interest, then all is well. If
not, substantial refinement of I" is needed. Note that, in contrast to estimation problems,
there are not (in general) “robust” noninformative priors for testing or model selection
problems. See Kass and Raftery (1992) and Berger and Pericchi (1993) for discussion and
default methods of proceeding.

Robust Bayesian analysis of testing problems can be found in Edwards, Lindman, and

Savage (1963), Berger and Sellke (1987), Berger and Delampady (1987), Casella and Berger
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(1987), Delampady (1989a, b), Moreno and Cano (1989), DasGupta and Delamapady
(1990), Delampady and Berger (1990), Berger and Mortera (1991, 1994), Berger (1992),
and Berger and Jefferys (1992).

4.4 Nonparametric Classes of Likelihoods

Dealing with likelihoods via the global robustness approach varies from trivial to nearly
impossible. One approach is to take the observed likelihood function, £5(6) = fo(x|6), for a
hypothesized model fy and given data, and embed it in a larger class of likelihoods, such as
Fe = {€(0) = (1 —€)lo(8) +eq(), g € Q}. Since £(f) and 7(6) operate interchangeably in
Bayesian computations, this approach to likelihood robustness is equivalent to the global
prior robustness approach (with the contamination class).

The difficulty with this approach is that such classes of likelihoods do not reflect typical
types of uncertainty in f. For instance, if X, Xs,...,X, are 1i.d. g(z;|f), uncertainty
would typically reside in g, reflected by, say,

F! ={9=(1-¢)go(il6) +eq(zilf), ¢ € Q} or
F3 = {densities g: g1(zi|0) < g(zi|0) < g2(xi|6)}.
(Even these may not be completely natural, but they suffice for making the point.) The

resulting classes of likelihoods are

Fj= {& £(6) = ﬁg(wiIG), g€ ff} , 1=12, (4.9)

and these are very complex and difficult to work with. For instance, the relevant subclasses
of extreme points are typically at least n-dimensional, which can become prohibitively
expensive computationally for large n.

A second difficulty with classes of likelihoods, as in (4.9), is that they can be too large,
unless the F j('] are very small. One approach that does seem to give useful answers is that
of Lavine (1991a, 1991b, and 1994).

For special or restricted problems, robustness analysis can be much easier. Robustness
among certain generalized elliptical distributions is studied in Osiewalski and Steel (1993a,
b, c), and Fernandez, Osiewalski, and Steel (1993). The following example is from another

special situation, studied in Bayarri and Berger (1993a).

Example 9 (Weighted Distributions): Assume that the random variable X € R! is dis-

tributed over some population of interest according to f(z|6), 6 € (r,s), a (possibly
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infinite) interval in R, but that, when X = z, the probability of recording z (or the
probability that = is selected to enter the sample) is w(z). Then the true density of an
actual observation is

fulale) = L

where v,,(8) = Eg[w(X)]. Selection models occur often in practice (Rao, 1985; Bayarri
and DeGroot, 1992).

(4.10)

Often the specification of w(-) is highly subjective. It is thus of considerable interest
to study the robustness of the analysis to choice of w. The problem becomes particularly
important in the multi-observational setting, because the effect of the weight function can
then be extremely dramatic. Suppose X;, Xz, ..., X, are i.i.d. from the density (4.10), so
that the likelihood function for 6 is

Lou(8) x £6)[vu(8)] ", (4.11)

where £(6) x H f(z;|6) would be the likelihood function for the unweighted base density.
If w(0) is the prlor density for 8, the posterior density is then

£(6)[vw(9)] "7 (8)
JO)[vw(6)] " n(6)d(6)’

assuming 7 is such that the denominator is finite. Expression (4.12) suggests that, at least

7(flz,w) =

(4.12)

for large n, the weight function w can have a much more significant effect on 7(6|z,w)
than might the prior 7. Hence we will treat m(f) as given here; for instance, it might be
chosen to be a noninformative prior for the base model f(z;|6).

In Bayarri and Berger (1993), this problem is studied for the class of weight functions
W = {nondecreasing w: wi(z) < w(z) < wa(z)}, (4.13)

where w; and wy are specified nondecreasing functions representing the extremes of beliefs

concerning w. Posterior functionals

(w) = / £(O)m(6]z, w)do (4.14)

are studied for a variety of shapes of the target £(6). When £() is monotonic (e.g., £(6) =6
or £(8) = 1(c,00)(8)), the extreme points in W at which ¥ = supy(w) and 3 = inf h(w)
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are attained were shown to have one of the following two forms:

wi(z) fr<z<a
w(m)_{wz(:c) fa<z<s’
we(z) ifr <z < ha(c)
w(z)=(¢ ¢ if ha(c) < z < hy(c), (4.16)
wi(z) fhlc)<z<s

(4.15)

where h;(c) = inf{z: wi(z) < ¢} and ho(c) = sup{z: wa(z) > c}. The condition needed
for this result is primarily that f(z|6) have monotone likelihood ratio.

As a specific example, suppose f(z;|0) = §exp{—6z;} for : = 1,...,n, where z; > 0
and § > 0. Any z; that is less than a value T} is, however, not observed. Any z; that
is greater than T is observed. For T} < z; < Ty, the probability of its being observed is
not known, but the probability is known to be nondecreasing. This specifies the class of
weight functions in (4.13), with w1(z) = 1(1, 00)(2) and wa(z) = L(1y,00)(Z)-

Suppose £(6) = 6 is of interest, so that (¢, %) is the range of the posterior mean as
w ranges over W. Then one can explicitly minimize and maximize (4.14) over w of the
form (4.15) and (4.16), obtaining ¢ = 1/(Z — T1) and ¢ = 1/(Z — T;). Whether or not
robustness is achieved is thus easy to determine. Note that it depends on the size of T as

well as the closeness of T} and T5. O

4.5 Limitations of Global Robustness
Global robustness ignores a very important quantity, namely m(z|=, f), which can be
considered to be the “likelihood” of = and/or f. A full Bayesian analysis automatically

takes this into account.

Example 10. Suppose X; ~ N (6;,1), ¢ =1,...,p. The class of prior distributions under

consideration for 8 = (64,...,6,) is
I' = {n(8): the §; are i.i.d. M(g,1), —8 < p < 12}.

Suppose we are interested in the posterior mean for 6;. This is given by §; = (z; + p)/2.
Thus the range of posterior means, as 7 varies over I', is (%:1:1 — 4,1z, +6).

Calculation shows that, here,
P
m(2|T) = (7577 €XP {—i[P(T —p)?+ Z(xi - f)z]} :
i=1
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Thus values of p close to T are far more “likely” than values far from . For instance, if
p = 8 and T = 3, this likelihood is a normal likelihood with mean 3 and variance 1/4, so
that only the u between 2 and 4 have appreciable likelihood. Note that, if a full Bayesian
analysis were done with, say, u being given the noninformative prior #(p) = 1, then the

posterior mean for ¢, would be

65 = [ 4or + mn(uim)an

1
— 1 _P(= 2
= [ Y(zy + p)————ex 7 — u)?}d
/ 3(z1+ p) ) p{—4(Z — p)"}du
= 3(z1 +7%),
which has effectively “weighted” the (z; 4+ p)/2 by the likelihood of p. |

The message here is that a global robustness analysis might erroneously indicate a lack
of robustness, erroneous in the sense that, were m(z|r, f) taken into account, robustness
might obtain. There are two possibilities for formally investigating if this is so. The first is
to go to a “higher level” Bayesian robustness investigation, as in Cano (1993) and Moreno

and Pericchi (1993a).

Example 10 (continued). It is determined that (}z1 —4, 371 +6) is too large an interval
to reach a conclusion. Prior information about y, the presumed common mean of the 6;,
is thus considered. A “best guess” for p is 2, but there is considerable uncertainty in
this guess. It is decided that the standard error of this guess is at least 2, but that finer
elicitation would be difficult. This information can reasonably be modeled by the class of
priors (for p) _

I™* = {N(2,7%) densities, 72 > 4}.

2

For given 72, an easy computation yields that the posterior mean for 6, is

0" = 3(21 +7) + Gy (2 - 2).

The range of possible posterior means as m(u) varies over I'* (i.e., for 72 > 4) is thus (if,
say, 2—% < 0)

For the case p = 8 and 7 = 3, this range is
(3(z1+3) — 35, 3(z1 +3)), (4.17)
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which would typically be considered to be a highly robust conclusion. O
The second possibility for utilizing m(z|r) (similar ideas apply if dealing with m(z|r,

f)) is to replace I' by
I ={r el m(z|r) 2 K}; (4.18)

here K could be chosen by likelihood or noninformative prior Bayesian methods. (See

Sivaganesan and Berger, 1993, for development of this approach.)

Example 10 (continued). For the case p = 8 and T = 3, we observed that m(z|r) is
essentially a N (3, i) likelihood for u. Likelihood or Bayesian noninformative prior methods
would suggest that (2, 4) is a “95% confidence or credible set” for u, so we might replace
I by

M={rel: 2<u<4}

(which can easily be seen to be of the form (4.18)). The range of the posterior mean for
0, as m ranges over ['*, is (21 + 1, %xl + 2), which might well be small enough to claim
that the conclusion is reasonably robust. O

This second method of incorporating m(z|r) (or m(z|w, f)) is appealing because it
seems to avoid the need to put “priors on priors”, etc. It also is related to empirical Bayes
techniques; indeed, empirical Bayes analysis can be thought of as simply replacing I' by
the prior 7* € T for which m(z|r) is maximized (clearly the degenerate limit of (4.18)).
Unfortunately, this second method can give the wrong answer (as can empirical Bayes
analysis). A rather startling example of this is given in Bayarri and Berger (1994). Hence

we cannot definitively recommend this second method.

4.6 Optimal Robust Procedures
Global Bayesian robustness lends itself naturally to defining notions of optimality.

Here is an example, from Sivaganesan, Berliner, and Berger (1993).

Example 11. We observe X ~ Cauchy(6,1). Elicitation yields —0.3,0.0,0.3 as the prior
quartiles for 8. The usual “inherently robust” prior density for § would be the Cauchy(0,
0.3) density; call this mo. Even though one expects considerable inherent robustness in
this situation, it is decided to formally consider global robustness with respect to the

contamination class of priors I, in (4.3), with ¢ = 0.01.
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Suppose now that a credible set, C, for 6, is desired and that it is (conservatively)

decided to require that the posterior probability of C' satisfy
Pr(§ € Clz,m) > 0.90 forall w €l (4.19)

Under this condition, one can be assured that C is a 90% credible set.

A natural notion of optimality, here, is to define C* as optimal if C* has minimal
size (e.g., Lebesgue measure) among all C satisfying (4.19). In Sivaganesan, Berliner, and
Berger (1993), it is shown how to find such optimal C* for quite general problems of this
type. For the specific case considered here, and when z = 6 is observed, the optimal C*
is C* = (—1.22,2.70) U (3.56,8.43); note that this is the union of two intervals, one where
the likelihood is large and one where the prior is large. ([l

Many other notions of optimality w.r.t. T in global robustness are discussed in Berger
(1985), Wasserman (1989), Li and Saxena (1990), DasGupta (1991), Meczarski (1991),
Basu (1992c), De la Horra and Fernandez (1993, 1994), and Sivaganesan (1993b).

Optimal global robustness is potentially useful. For instance, if C* in Example 11 is
deemed to be a small enough set for practical purposes then, in light of (4.19), one can be
quite satisfied. It can even be possible to design the experiment so as to achieve this with
high predictive probability (cf, Mukhopadhyay and DasGupta, 1993; and DasGupta and
Mukhopadhyay, 1994).

' There is a serious danger with some optimality notions, however: the optimal proce-
dure can be terrible from a “real” Bayesian perspective. This is because, as discussed in
Section 4.5, it can be important to take m(z|r, f) into account. (See, also, Berger, 1985;
DasGupta and Studden, 1988; Sivaganesan and Berger, 1993; Zen and DasGupta, 1993;
and Bayarri and Berger, 1994.)

Example 10 (continued). The initial global robustness analysis yielded (}z;—4, 321+6)
as the range of posterior means for #;. Many notions of optimality would suggest that the
midpoint of this interval, %xl +1, is optimal. However, this corresponds to the value p = 2,
which has very low likelihood, m(z|u); indeed, we saw that u = 2 is at the edge of the “95%
noninformative prior credible set” for u. Furthermore, %:1:1 + 1 is well outside the interval

of possibilities in (4.17) that was obtained by a “higher level” robustness analysis. O
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5. COMPUTING

5.1 Computational Issues
In discussing creation of classes of likelihoods or priors, it was observed that compu-
tational considerations are crucial. Here we briefly review several generally useful compu-

tational techniques.

Linearization: It is easy to see that, under mild conditions, 1 (see (4.1)) is the solution to

0=sup sup / [1(85) — B1(x105)7(65)d8. (5.1)

fEF we

The point here is that maximization over ¥(m, f) is a non-linear operation, but it can
be converted, via (5.1), to a linear maximization together with a root-finding operation.
This can be a useful simplification. (However, if one can theoretically determine the
relevant functional extreme points of the class, (5.1) is unnecessary.) Development and
discussion of this algorithm can be found in DeRobertis and Hartigan (1981), Lavine
(1991b), Lavine, Wasserman, and Wolpert (1993), Wasserman (1992b), and Wasserman
and Kadane (1992a). The latter two papers discuss computation of ), via (5.1), in the
important case when it is necessary to utilize Monte-Carlo techniques for computation of

the integral.

Reweighting: When computing Bayesian integrals via Monte-Carlo techniques, there are
opportunities for relatively easy robustness investigations. To take the simplest case, sup-

pose we approximate () by
() = / h(8)x(68|2)d8
Z (6D f (2|6 )wx(8))

o =1 , (5.2)
3 £(al60)on(09)

where w(0(9) = 7(8())/g(6(), and 81, ... ,8(0) is an i.i.d. sample from the “importance
function” g. (See Berger, 1985, for background.) Then switching from one prior to another
simply requires recomputing the “weights” w,,(H(i)), a relatively simple operation. Indeed,
a scheme such as this is virtually necessary for efficient maximization of ¥(6), since (5.2)

provides a well-defined function to maximize over m. (The alternative, of, say, trying
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to maximize over 7 with (7) being computed anew by numerical integration at each
step, is very unstable.) For formal discussion as to when this scheme for maximization is
convergent, see Salinetti (1994).

Reweighting schemes are, unfortunately, not useful if too wide a range of 7 is being
considered. This is because the approximation in (5.2) need not be accurate if the weights
can be extremely large. If, however, g can be chosen so that w,(6) < K (moderate) for all
7 under consideration, then (5.2) can be extremely effective.

Reweighting schemes are also possible for more complicated Markov Chain simulation

procedures. See Stephens and Smith (1992) for discussion.

5.2 Interactive Robustness

In the Introduction, the possibility of using Bayesian robustness to guide the elic-
itation process was mentioned. Developing computer-interactive methods of doing this
is particularly appealing. Ultimately, one could hope to have a robust Bayesian com-
puter package that processed any given partial information, provided the implied range
of Bayesian answers (see Moskowitz, 1992, for a description of such a system for discrete
problems) and suggested what additional elicitations would be most desirable, if needed

to increase robustness. Here is a simple example we are in the process of developing,.

Example 12. Suppose that elicited information, at stage m of the interactive elicitation
process for a real-valued parameter 8, will be a set of quantiles g1 < ¢2 < ... < gm, With
elicited p; = Pr(0 € (i, ¢i+1]),t = 1,...,m. (Allowing for uncertainty in the p; would be
an easy modification.) Also, suppose that the prior distribution for 6 is felt to be unimodal.

Then, at stage m, one has effectively specified the class of priors
I'(g,p) = {all unimodal distributions with the given quantiles}. (5.3)

Suppose (7) is the posterior functional of interest (the likelihood is being considered

fixed), and that the degree of robustness is reasonably measured by
Ym— ¢, = sup P(r) — inf ().
TI'EI‘m 1I‘€Fm

The problem of computing %,, and ¥ is discussed in Berger and O’Hagan (1988), and
O’Hagan and Berger (1988).
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Suppose ¥,, — ¥, is deemed to be too large, and that additional refinement of the
prior is needed. Since we are eliciting in terms of quantiles, this means that a new quantile,
¢*, must be chosen, with the associated p* (for the new interval created) being elicited.
Which ¢* should be chosen? It is quite natural to make the choice so that the ensuing
P, 41— ¥, +1 is likely to be smallest; this would make ¢* maximally efficient in terms of
Bayesian robustness.

A reasonable scheme for implementing this idea is to consider each possible candidate
location, b, for ¢*. If ¢i < b < gi}1, one could assume that the “least informative”

elicitation will be done, resulting in

(b—g
p(b) = Pr(6 € (g:,b]) = m * Pi-

(This just assumes that the prior probability p;, assigned to (¢i,gi+1), is distributed uni-
formly over the interval.) Special adjustments have to be made for b < ¢; or b > qm.
Assuming b and p(b) specify the new quantile, one would have the new class I'm+1({q U
b}, {pUp(b)}) asin (5.3), and could compute the corresponding range (P mg1(d) ~ 9,11 (0):
Minimizing over b would yield the quantile that, if elicited, would be most likely to result
in a substantial gain in robustness. (Of course, once ¢* = b is chosen, the actual p* would
be elicited; p(b) would not be used.) , O

Schemes for interactive elicitation could also be developed based on notions of “most
sensitive direction in prior space,” as discussed in Section 3.2. The difficulty with such
an approach is that the optimal direction in which to focus elicitation efforts may not
correspond to quantities that are easy to elicit. Hence we prefer to consider the types

of allowed elicitations (e.g., quantiles) as being specified in advance, at which point it is

probably easier to consider P — % directly, rather than look at local sensitivity.

6. FUTURE DIRECTIONS

Many of the theoretical and methodological directions in which Bayesian robustness
is developing were discussed in the paper. Rather than attempting to summarize that
discussion, it is useful to focus here on the types of statistical problems in which Bayesian
robustness can be most usefully applied.

Statistical problems fall into several different categories. The most difficult are prob-

lems in which it is a challenge to perform any Bayesian analysis whatsoever. For such
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problems it will inherently be the case that formal Bayesian robustness cannot be investi-

gated; at best, the informal “try a few models and priors” will be done.

The next category consists of those problems in which subjective Bayesian analysis is
feasible, but objective (noninformative) Bayesian methods are also available (and perhaps
classical methods that are very similar to the objective Bayesian methods). For such prob-
lems, subjective Bayesian analysis is typically performed only when the subjective informa-
tion is quite influential, relative to the information in the data. Until subjective Bayesian
methods become more widely used in these problems, the scope for utilization of formal
Bayesian robustness methods will be limited. Of course, as mentioned in the Introduction,
the capability to routinely augment a subjective analysis with robustness determinations
might increase the willingness to use subjective methods. Probably the most immediate
contribution of Bayesian robustness for this class of problems is the possibility of using
relatively sophisticated automatically robust methods, such as those discussed in Section

2, as an alternative to the standard methodology.

The third category of statistical problems consists of problems for which objective
Bayesian methods do not exist (i.e., the answers typically depend significantly on prior
opinions) or are to be avoided (see below). One example that we have discussed is precise
hypothesis testing, where the prior on the parameter space of the alternative hypothesis

always has a significant effect. Other examples are mentioned below.

For problems in this category, it can be argued that robust Bayesian analysis is re-
quired; since the answer depends strongly on prior opinions, it is important to show that
any conclusions are valid over the range of sensible prior opinions. Problems in this cat-
egory also typically lack sensible classical answers, so that many non-Bayesian are more
willing to consider Bayesian approaches to these problems. It is thus this third category
of problems that promises to provide the most immediate applications of robust Bayesian

theory. A brief, partial listing of these problems follows.

Similarly to precise hypothesis testing, in Model Selection from among models of
differing complexity, the prior distributions always have a significant effect. The challenge
here, for the robust Bayesian approach, is to choose classes of priors that are appropriately
“tied together” for the differing models (see Berger and Pericchi, 1993, for discussion of

what this means). Simply having unrelated classes of priors is likely to result in uselessly

37



wide ranges of answers (see Berger and Mortera, 1994, for an illustration in a simple

setting).

Eztrapolation beyond the range of the data inherently involves subjective opinion, and
is very non-robust. Hence it is a natural problem in which to consider Bayesian robustness.

See Berger and Chen (1993) for an example.

A common aspect of Meta-Analysis is the need to relate the various studies or ex-
periments that are to be combined; the protocol, populations studied, and experimental
conditions will often vary from study to study, requiring adjustments if the studies are to
be combined. In Bayesian analysis, these adjustment factors, which are typically highly
subjective, are built in through the prior distributions (cf, DuMouchel and Harris, 1983;
Morris and Normand, 1992; and Wolpert and Warren Hicks, 1992). Since the adjust-
ments are typically highly uncertain, robust Bayesian analysis is natural. (See Berger and

Mortera, 1991, for study of one such situation.)

We have already illustrated robust Bayesian analysis for Selection Models or Weighted
Distributions. Because the selection or weighting mechanism can have an enormous effect
and is often uncertain, there is clear motivation for studying Bayesian robustness in these

problems.

Clinical Trials provide a natural domain for various types of Bayesian robustness
investigations. The reason is that attention is increasingly being paid to conducting clinical
trials in a fashion that is as ethical as possible towards the patients in the trial. There are
two aspects of this that are particularly relevant to Bayesian robustness. First, the trials
may assign patients to treatments in a partially non-random way that involves medical
opinion. Second, prior opinion may be used to allow the trial to stop earlier, not only
because of the effect of the additional information, but also because Bayesian sequential
trials will naturally stop earlier (since repeated looks at the data are not penalized). In both
cases, there are typically a variety of prior opinions that must be taken into account, and
so some type of Bayesian robustness investigation is needed. For discussion and examples,
see Berry, Wolf, and Sack (1992), Carlin and Louis (1993), Carlin, Chaloner, Louis, and
Rhame (1993), Sedransk (1993), and Kadane (1994).

Group Decision Making is a related domain in which there naturally exist a variety of

prior opinions. Group decision making often begins by seeing if there is a possible action
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that is simultaneously optimal for all members of the group. This would involve a type of
robust Bayesian computation. Only if there is not an optimal answer, in this sense, would
more involved group decision making techniques be utilized. (Note, however, that it is not
necessarily correct to behave in this way; indeed, it is easy to construct examples where
every member of the group initially thinks that a certain action is optimal but that, after
sharing information, a different action is seen to be optimal. Ideally, therefore, complete
information sharing should be done before applying the robust Bayesian methods.) See

Genest and Zidek (1986) and Van Eeden and Zidek (1994) for discussion and references.
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