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Abstract

This paper contains a collection of results on latin hypercube sampling. The first
result is a Berry-Esseen type bound for the multivariate central limit theorem of the
sample mean [i, based on a latin hypercube sample. The second gives a necessary and
sufficient condition on the convergence rate in the strong law for fi,. Finally motivated
by the concept of empirical likelihood, a way of constructing nonparametric confidence
regions based on latin hypercube samples is proposed for vector means.



ON LATIN HYPERCUBE SAMPLING!
By WEei-LieMm Lon

Purdue University

This paper contains a collection of results on latin hypercube
sampling. The first result is a Berry-Esseen type bound for the
multivariate central limit theorem of the sample mean i, based
on a latin hypercube sample. The second gives a necessary and
sufficient condition on the convergence rate in the strong law for
ftn. Finally motivated by the concept of empirical likelihood, a
way of constructing nonparametric confidence regions based on
latin hypercube samples is proposed for vector means.

1 Introduction

In 1979 McKay, Beckman and Conover proposed latin hypercube sampling
as an attractive alternative to simple random sampling in computer experi-
ments. The main feature of latin hypercube sampling is that, in contrast to
simple random sampling, it simultaneously stratifies on all input dimensions.
More precisely, for positive integers d and n, let

(i) Tk, 1 < k < d, be random permutations of {1,...,n} each uniformly
distributed over all the n! possible permutations,

(i) Usy,.igjr 1 < #1520, < 1, 1 < j < d, be [0,1] uniform random
variables and

(iii) that the U;;, .. ;,,;’s and m’s are all stochastically independent.

A latin hypercube sample of size n (taken from the d-dimensional hyper-
cube [0,1]9) is defined to be {X(m1(i), 2(i),...,ma(i)) : 1 < i < n} where
forall 1 <iy,...,15q <m,

X;(i1s--5ta) = (45— Uq,.igi)/n, V1< 5<0d,
X(itye-eyia) = (Xi(ity-vsia)yeros Xality--ria))-

We remark that no generality is lost in this paper by restricting sampling
to the unit hypercube as long as the sampling distribution of interest is a
product measure (see for example Owen (1992) page 543).
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In many computer experiments, we are interested in estimating p =
E(foX) where f is a measurable function from R? to RP and X is uniformly
distributed on [0,1]%. Let

(1) fin =171 Zn: f o X(m1(k), mo(k),. .., ma(k)).
k=1

Then fi, is an unbiased estimator for p. McKay, Beckman and Conover
showed that in a great number of instances with p = 1, the variance of fi,
is substantially smaller than that of the estimator based on simple random
sampling. Stein (1987) further proved that the asymptotic variance of fin
is less than the asymptotic variance of an analogous estimator based on an
independently and identically distributed sample. Recently Owen (1992)
showed that the multivariate central limit theorem holds for ji, when f is a
bounded function.

This paper contains a number of results, which we think are of inter-
est in their own rights, all with the underlying theme on the construction
of asymptotically valid confidence regions for x using latin hypercube sam-
ples. In particular, Section 2 first shows that the result of Stein (1987),
mentioned in the previous paragraph, generalizes naturally and easily to
the multivariate setting (see Theorem 1). Also a Berry-Esseen type bound
(Theorem 2) is obtained for the multivariate central limit theorem for f,
under the finiteness of third moments. This gives a “rate” to the asymptotic
justification for the use of the contours of constant probability density of a
multivariate normal distribution as confidence regions for p. We remark
that in the special case of d = 2, this reduces to the classical combinatorial
central limit theorem (see for example Hoeffding (1951) and Motoo (1957)).
The convergence rate of the combinatorial central limit theorem was inves-
tigated by von Bahr (1976), Ho and Chen (1978) and a Berry-Esseen type
bound was obtained by Bolthausen (1984) for univariate linear statistics and
Bolthausen and Gotze (1989) for multivariate statistics.

In Section 3, we obtain a necessary and sufficient condition on the rate of
convergence in the strong law of large numbers for f,. The result (Theorem
3) generalizes a well known theorem of Baum and Katz (1965) for inde-
pendent and identically distributed random variables to multivariate latin
hypercube samples. A special case of their result was considered earlier by
Hsu and Robbins (1947) and Erdds (1949). We remark also that the result
of Baum and Katz has also been extended by Lai (1977), Hipp (1979) and
Peligrad (1985) to a number of other stationary sequences under a variety
of mixing conditions.
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Motivated by the empirical likelihood ratio confidence regions introduced
by Owen (1988), (1990) for independent observations, a way of constructing
nonparametric confidence regions based on latin hypercube samples is pro-
posed for vector means in Section 4. Theorem 4 provides conditions for the
asymptotic validity of the procedure as well as its convergence rates.

Finally the Appendix contains a number of somewhat technical lemmas
that are needed in previous sections.

Throughout this paper, ¢ will denote a generic constant which only de-
pends on d and p, ¢* denotes a strictly positive generic constant independent
of n, ||.|| be the usual Euclidean metric on R?, ®, the standard p-variate
normal distribution and given any measurable function A : R? — R, we

write
I, = { Ure |h(y)|%dy)"/? i 0< ¢ < oo,
! ess sup,exe |R(y)] if ¢ = oo.

Also if z € RP, then ' denotes the transpose of z and if A is some event,
then I{A} is its indicator function. ' -
2 Rate of convergence to normality

We shall first show that the result of Stein (1987) mentioned in the Intro-
duction generalizes naturally and easily to many dimensions.

Theorem 1 Suppose E||f o X||? < co. Let Typs = Cov(fin) and ;g be
the covariance matriz of fi, when the X ’s are independently and identically
distributed, that is

Sia=n"tE(foX —p)(foX —u).
Then as n — oo, we have

ihs

n_l f”'em(x)f:'em(w)dz + O(n_l),
[0,1)¢

n_l frem(m)f:'em(z)dx
[o.1]¢

d
2) +271S) / (@R . (ze)das,
k=1 0

Yiid
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where for all © = (z1,...,2q4) € [0,1]%,

f-k(zx) = /[0 1]d_l[f(éb‘)—lt]Hdﬂﬂj,

Ik

(3) frem(2)

d
f@)=p = forlzr).
k=1

The proof of the above theorem is deferred to the Appendix and the following
corollary is an immediate consequence of Theorem 1.

Corollary 1 X4 — i, is asymptotically positive semidefinite, i.e.
d 1
Jim n¢'(Saa = Tl 2 3 [ € w@n)fu(endar 20, VEE€RP.
k=1

Suppose that [jg 11¢ frem () flem(z)dz is nonsingular. Then it follows from

Theorem 1 that for sufficiently large n, El_hls/ ? exists and define

4) W = 25 (in - ).

The rest of this section is devoted to establishing a Berry-Esseen type bound
for the rate of convergence of W to the standard p-variate normal distribu-
tion ®,. To do so, we shall make extensive use of the multivariate normal
version of Stein’s method [see Stein (1972), (1986)] as given in G&tze (1991)
and Bolthausen and Gotze (1989). Let

EfOX(’l:l,...,id) = /l,(il,...,'id), Y1 S il,...,ids n,

poip(ix) = (1/nd_1)2iy,(i1,...,id),

j#k =1
and
d

(5) Y(iny. .., ia) = 0 S5 2 0 X(iny -y ia) = 3 pei(ii) + (d = 1)),
k=1

Then we have W = Y-, Y(m1(¢), m2(?), . .., 74(2)). Next let A be a class of
measurable functions from R? — R such that ||g|l < 1 for all g € A. Also
for g € A and 6 > 0, define

g5 (w) = sup{g(w+y):lly <&}, VweR?,
g5 (w) = —inf{g(w+y):[ly <6}, YweR?,

w(9,8) = [ lo30) - g7 (1)1a%,(0).
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We further assume that A is closed under supremum and affine transfor-
mations, i.e. g € A implies gf € A, g;f € A and go T € A whenever
T : RP — RP is affine and that there exists a constant v > 0 such that

sup{w(g,6): g € A} <76, V6>0.

REMARK. A includes the class of all indicator functions of measurable
convex sets in R? if ¥ > 2,/p (see for example Bolthausen and G&tze (1989)).

Theorem 2 Suppose f[o a4 frem (%) flem(T)dx is nonsingular. Then there
exists a positive constant Cyp which depends only on d and p such that for
sufficiently large n,

®) sup{|Eg(W) - [ 9(e)d®,(2)|: g € A} < Cusbi,

where f3 = (1/n%71) Tigiy igen EIY (i1, . i) P
The following is an immediate corollary.

Corollary 2 Suppose E||f o X||?> < oo and Jo12 frem (%) flem(2)dz is non-
singular. Then

sup{|Eg(W) — /Rp 9(z)d®,(z)] : g € A} < e*n~ V2,

In order to prove Theorem 2, we ﬁrst need some preliminary results. For
he Aand 0<t <1, define

[ () = b2y + (1 - 92 w)}ag(ay),

11

5/; Xs
Then —xo(w|h) = h(w) — ®,(h) and x:(w|h) is a smooth approximation
of xo(w|h) for small t. (Here ®,(h) = Eh(Z) where Z is a random vector

having distribution ®,.) The following two lemmas are due to Gotze (1991)
and we refer the reader to his paper for the proofs.

(7) xt(w|h)

(8) be(w)

Lemma 1 For0<e <1 and w= (w1,...,w,) € R?, we have

(9) Z 2¢52(w) sz ")bsz (w) —Xe? (wlh)a
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and there exists a positive constant c,, depending only on p, such that

[ 5o
sup -_—
1<igksp JRP Owidw;0w

(10) < cpe”tsup{] /RP h(tw + y)@(dw)| : 0 < ¢t < 1,y € RP},

e (w)Q(dw)|

for all finite signed measures Q on RP satisfying Q(R?) =0

Lemma 2 Let Q be a probability distribution on R? and € > 0. Then

supl [ o(w)dQ(uw) - d,(w)] < Gsup | [ xa(wln)Q)] + 577

where a? is the 7/8-quantile of the chi-square distribution with p degrees of
freedom.

ProoF oF THEOREM 2. Let ng and £¢ be arbitrary but fixed positive
constants. We observe that the theorem is true if n < ng or A3 > €o. Hence
without loss of generality, we shall assume that n > ng and B3 < g for
positive comstants ng > d? and ¢y to be suitably chosen later. Next we
consider the following combinatorial construction inspired by that given in
Bolthausen (1984). Let (L, J;jk : 1 < i,k < d,2 < j < d) be a random
element in {1,...,n}¥ such that

() (LyJ;51 : 1 €4 £d,2 £ j £ d)is uniformly distributed on
{1,...,n}%%1,

(i) given (I, J;;k 1 <i<d2<j<d1<k<k<d), weset
Jiikot1 = Jjjrpforall2 < j < dif Iy 41 = I forsome 1 < k < ko; otherwise
J; jko+1 is independently uniformly distributed on {1,...,n}/{J;

k < ko}.

Let 1r(1) .,7!‘((11) be independent random permutations (each uniformly
dlstnbuted on the permutations of {1,...,n}) which are also independent
of {I;,J;jr:1<4,k<d,2<j<d} Definefor2<4i,j<dand1<k<d,

Lig = [®7 (T,
Jijkg = T gl)(Lj,k),
Jinkg = (L)

Let 1 <i4p,...,%4,71,--.,74 < nand 8(%3,-..,%4,j1,. - ., jd) be a permutation
of {1,...,n} leaving the numbers outside {¢1,...,%4,71,...,J4} unchanged
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such that foreach 1 < k < d, i — jr if iy #4; forall 1 < j < k. Also
let 7(7, ) represent the permutation of {1,...,n} which transposes 7 and j
leaving other numbers fixed. Now define for 2 < j < d,

71-:(,.2) = 7r§1) o ﬂ(Ij,Il, R FRCTY /NS PO P ST RN 17 1 T 7Lj,d)’
71-1(.3) = 7r§-2) o (I, I;).
Finally define
n . .
w =3 v, 50G), ..., 79(@), v1<i<3.
=1

We observe from Lemma 4 (see Appendix) that by choosing ¢¢ sufficiently
small, we can without loss of generality assume that with probability 1,

(11) 1Y (e eniall €1, VI<idg,...,ig <.

We shall now use an induction argument to prove the theorem by assuming
that (6) holds for all values of n less than the current value now being
considered. Then writing W = (W1,...,W,)’, we have for ¢ > 0,

E[Y Wipo s (W)]
i=1 K

By w2y
= i —_— 52
=1 awi

8
dw;

= E{i nY;(I, ™$(L), .. ., 7)) — e (WD)}

=1

¥4
o
= EY nYi(h, 221, Jd,d,l){%"pez (w@)y

=1

p 1 82
2 w® — w@h. w® w® —w®
+j=1( )J/(; Bwiawj ¢s2( + t( ))dt}

By construction, {I1,J22,1,...,J4,4,1} and {Wgz), . wt(iz)} are independent.

Consequently we have

4 0
EY aYi(L, 22,1, Jd,d,l)'é—l;-ﬂ/)ﬁ (w®) =,

i=1
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and hence

P a P 82
(12) E[; Wia—wi%z(W) - ; ngsz(W)] = R; + Ry,
where

p
Ri = EY {nYi(li,Jo21,-- -, Jaa)(WE® - W)y,
i’j=1
2

0
—6"j}8w,-awj
0; ; being the Kronecker delta, and

"/)sz(W(l))a

4
R, = E Z nYi(h, 02,21, - Jd,d,l)(W(‘g) - W(2))j

i,j=1

x /(,1 O (W 4t — D)) — (WD)}t

8w,-8wj

We observe from Lemma 5 (see Appendix) that by choosing &g sufficiently
small, we have

(13) sup{|R; + Ra| : h € A} < cB3(1 + €7 CupBs).
Now it follows from Lemma 2, (9), (12) and (13) that

(14)  sup|Eg(W)—~ / 9(2)d8,(2)| < cBs(1 + 1 Ca pf) + ct.
geEA RP

Choosing ¢ = 2¢f3 and Cyp > 2¢(2¢ + 1) in (14) proves Theorem 2. O

3 Convergence rates in the strong law

Let {f o X(m1(k),...,mq(k)) : 1 < k < n} and fi, be as in (1). In this
section, we shall study the rate of convergence in the strong law of large
numbers for fi,.

Theorem 3 Let o > 1/2, ag > 1 and assume that E(fo X)=0if a < 1.
Then a necessary and sufficient condition for

(e}
(15) Y n*72P( sup |lji;]l > en®) <00 Ve >0,
1<5<n

n=1

is E||f o X||7 < oo.
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The following corollary, which follows directly from the above theorem
and the Borel-Cantelli lemma, is needed in the next section.

Corollary 3 Suppose E||f o X||? < oo. Then ||y — pf| = 0 almost surely
as n — 00.

Proor oF THEOREM 3. Without loss of generality, we assume through-
out this proof that E(f o X) = 0 if the expectation exists.

SurriciENCY. We first suppose that E||f o X||? < oo. For € > 0, we
define as in Erdos (1949) and Katz (1963),

a; = P(|foX|>e2®) Vix0,
@) = {f(z) if || f(z)|| < enfe

0 otherwise,

and ft = f+— E(f*0X), where § satisfies (aq+1)/(2aq) <8<1,00q>1,
and 20a > 1. For 2! < n < 2¢t1, we write

A, = {sup [l745] > en®},

1<j<n
AL = {|If o X(m1(k), ..., ma(k))|| > €262 for at least one k < n},
AD = {||f o X(m1(ky), ..., ma(k1))|| > en®™

If o X(71(k2),. .., ma(ks))|| > en®® for at least two k1, ks < n},
J .

AP = { sup |13 f* o X(m(k),..., ma(k))l| 2 272},

1<<n fo

We observe that
A, € AD U AD Y AB),

Hence to prove (15), it suffices to show that
el I3
Y n*2p(AP)) < 0, V1<j<3.
n=1
Since E||f o X||? < oo is equivalent to 352, 2!*a; < 0o, we note that

) 2|+1

Z noa- 2P(A(1)) < Z Z noI— 22z+1 g < 00.

=0 p=29°¢
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Next we observe that

S nTP(AD) < 3 n P 0 X(ma(D), .. ma(D)] 2 en} 0
n=1 n=1
{IIf o X(m3(2),. .., 7a(2))]| 2 en})
< 3 en®PY(|f o X| 2 en”)
n=1
(16) < f:c*naq-”aq(E||foX||4)2<oo.
n=1

Here the second inequality of (16) follows from an argument similar to that
given in the proof of Theorem 1 and the third inequality uses Markov’s
inequality.

To show Y 72, n"q‘zP(Ag) ) < 00, we first consider the case 0 < ¢ < 1.
Then for ¢ < ¢+ 6 < 1, we have

3 nea2p()

n=1
) J
< Y w B sup |3 o X(my(k), ..., ma(R))]|*T}
n=1 1<j<n k=1

(>}
< >y n0-Dbe-1g| £ o X||9 < o0.

n=1

Next suppose that ¢ > 1. Let ¢* = [q], the smallest integer greater than or
equal to g, and m be a positive integer satisfying

(17) mg*(2a - 1) > ag - 1.
Since E(f o X) = 0, we observe that for ¢ > 1,

' “E||f o X|[I{||f o X|| > en’®}

'~ {E||f o X||P}{P(||f o X|| > en’™)}1 e
c*nl—ﬂaq—(l—e)a

n!"|Ef* o X||

IN AN A

which tends to 0 as n — co. Hence from Markov’s inequality and Lemma 6
(see Appendix), we obtain

Z naq—2P(A7(13))

n=1
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< z n*t2P( sup | S F o X (k) oo malB)] 2 ')
Sisn g=m
< c* Zn"‘q —2-2moq” E{ sup | Zf‘*' o X(m(k),.. Wd(k))]lzmq‘}
n=1 <jsn k=1
2mg*—2
< c* E naq—2—2maq"‘(log2 n)qu"{ Z n2mq"‘/(2mq"—i)
n=1 1=2mg*—gq*+1
(2mg*—g*)A(2mg*-2) . .
(18) + Z anq‘/(qu"‘—z’)(E”}f+ o X”2mq"‘~—z)2mq"/(2mq"—z)}_

=0
Now we observe from (17) that

0 . '(2mq"—q")/\(2mq"—2) . . .

(19) E naq—2—2maq (10g2 ,n)2mq Z n2mq /(2mq*—i)
n=1 1=0
X(BI|fF o X|[pme"iyms*/ama’ =)

oo
< ¢ E n_l_"‘(1_9)(2”“’*'")(log2 n)2mq* < 00,

n=1
and
o) 2mg* -2
> * L > .
(20) 2 naq—2—2maq (10g2 n)2mq Z anq /(2mg*—1) < oo.
n=1 1=2mq*—g*+1

(15) now follows from (18), (19) and (20).

NECESSITY. Suppose now that (15) holds. We observe as in Lai (1977)

and Peligrad (1985) that for all € > 0,

Zn"“’ 2P( max [|f o X(mi(j), ..., ma(d))l| 2 2en%)

n=1

(21) < Z n**P(max [lji;] 2 en®) < oo,

and hence

n®I~LP( 2ax [|f e X(m1(5), .., ma(G))l] 2 en®)

(22) < ¢ Ek“q 2P( max ||f o X(m(9), ..., (i)l 2 e(k/2)*) — 0,

k=n
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as n — 0o. Next we shall prove that
(23) nP(||fo X||>en®*)—>0 asn— oo.

If ag > 2, (23) follows from (22). Now suppose 1 < agq < 2. Define
n* = |n®~%7]. We note from the definition of latin hypercube sampling that
for 1 <k <n*,

P({llf o X(mu(k), ..., ma(K))| 2 en®} N
{max ||f o X(m1(5), ..., ma(i))| = en®})

1<j<k

k-1
= 2y ®) o 0 i}
HLGZD Jo e TS EEN 2 en* M max £ > n®}

d
x ]I H(l-—én(zga),xl(b)))d:z:(l)---da:(k)
1<a<b<ki=1
(4 (IS 0 X|| 2 en*)P( gmax, If o X(ma(s), -, ()| > en).

Since

P( max ||f o X(71(3),...,7a(3))|| > en*) =0 asn — oo,
1<5<n”

we observe from (24) that

P(Ig}g, If o X(71(5), ..., ma(4))]] 2 en®)

nll

= Y A{P(If o X|| 2 en®) = P{IIf o X (my(k), ..., ma(k))|| > en®} N

k=1
{max [If o X(m(3), ..., ma(f))]| 2 en®})}

(25)> *n*P(||f o X|| > en®).

Now (23) follows from (22), (25) and the definition of n*. Finally as in (25),
we observe from (23) that

P(max [|f o X(m(35),..., 7a(9))] 2 en®)

3 P(If o X 2 en®)[1 — c(k — DP(|f o X|| 2 en®)]
k=1 )
(26) > c*nP(||fo X|| > en®).

v
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Consequently from (21) and (26), we obtain

n*ILP([|f o X| 2 en®)
1

n=

< ¢ Y T RP(max [1f o X(ma(d), -y mali)) 2 €n) < oo,

n=1

which implies that E||f o X||? < oo. This proves Theorem 3. O

4 Nonparametric confidence regions

Owen (1988), (1990) in a series of papers introduced a method of construct-
ing asymptotically valid nonparametric confidence regions for vector-valued
statistical functionals using independent and identically distributed obser-
vations. In this section we shall show that this method can be readily
adaptable to latin hypercube sampling as well.

Let {fo X (my(k),...,ma(k)):1 < k<n}beasin(1),p = E(foX)and
S={w=(w1,...,wn) : > feq Wk < 1, wx > 0 Vk}. Definefor 0 < r < 1,

(27) O, = {Zn: wif o X(mi(k),...,my(k)):w€E S, ﬁ nwg > r},
k=1 k=1

(28) Ra(w) = sup [] nwk,
k=1

where the supremum is over w € § satisfying

n

3 wilf o X(my(k), ., ma(k)) — 4] = 0.

k=1

REMARK. A very nice discussion of the motivation (in terms of empir-
ical likelihood ratio) for the above construction is given by Owen (1990)
in the context of independent observations. In the case of latin hypercube
sampling, due to the inherent dependence among the observations, the mo-
tivation is less clear. The main motivation here is that this formulation
is mathematically tractable. Also intuitively, we can think of latin hyper-
cube samples as a subset of the set of all possible samples of that size by
leaving out the non-representative ones, that is, those that are not “evenly
distributed” over [0, 1]¢. Since empirical likelihood ratio confidence regions
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work remarkably well for simple random samples, it is plausible that they
also perform well for a smaller more representative subset (for instance, latin
hypercube samples). However this is just a heuristic, the final justification
rests with the results of the theorem below which give an asymptotic validity
as well as convergence rates to the procedure.

Theorem 4 Let {f o X(71(k),...,7g(k)) : 1 < k < n} be as in (1) with
p=E(foX). Alsolet O, be asin (27) for some 0 < r < 1, and frem(z)
be as in (3) such that [jg 114 frem(%)fiem(2)dz is nonsingular. Then O, is
a convez set.

(a) If E||f o X||* < o0, we have

P(Z'MY*(M + N)"*MY*Z < —2logr)
P(x%p) < —2logr),

(29) lim P(u € On,r)

v

where Z denotes the random vector having distribution ®,,

M = | f'l‘em(z)fr,em(z)dz’
[0,1]¢
d 1

N = kz:l / i) (o) e,

with f_r(zr) as in (3) and x2p) denotes the random variable having the
chi-square distribution with p (jegrees of freedom..
(b) If E||f o X||® < o0, we have

|P( € On,) - P(Z'SIS55{27 < ~210g )|
(30) < n Y2 Yo<e<1/2,

where Lips and X;;q are as in (2).

REMARK. (29) provides a way of calibrating r to ensure that ©,, is
an asymptotically valid confidence region for y having the desired degree of
confidence.

Proor oF THEOREM 4. The convexity of ©, , follows from Jensen’s
inequality and the observation that ([Jf.; nwy)Y/™ is concave (strictly con-
cave if n > 2) in w € § (see for example Marshall and Olkin (1979) page
79).
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(a) Since p € ©,,, is equivalent to R,(u) > 7, to prove (29) it suffices to
show

lim P(Rn(p) > 1) = P(Z'M'*(M + N)"'M'/*Z < —2log 7).

Define = = {{ € R? : ||| = 1}. From Lemma 2 of Owen (1990), we have
infeez P((f o X — p)'€ > 0) > 0. Hence it follows from Corollary 3 and the
Glivenko-Cantelli theorem that

sup [P((fo X~/ > 0)=n™ 3 H{FoX(ra(K) .., ma(B) -4l > O}l = 0
= k=1

almost surely as n — oo and thus
n
£ileli__'n_l Z I{[f o X(71(k),...,ma(k)) — p]'€ > 0} > c*
- k=1

almost surely for sufficiently large n. This implies that x is an interior point
of the convex hull of {f o X (m1(k),...,74(k)) : 1 < k < n} and R,(u) > ¢*
almost surely for large n. Using Lagrange multipliers, the solution of (28)
is found to be

(31) nwy, = (14 %),

where ‘);k = 0'(f o X(mi(k),...,mg(k)) —p) forall 1 < k < nand p € R?
satisfies

Zn:(f o X(my(k), ..., ma(k)) - p)/(1+ ) = 0.

k=1
For simplicity we write

S =n"t zn:[ fo X(mi(k), - ... ma(R)) = plIf o X (m1(k), .., wa(k)) — ]’
k=1

Then it follows from Corollary 3 that §~! exists almost surely for large n
and we define

¢ = n=8Yjtn—p)
(32) = 27 87N {f o X(mu(k),...,ma(k)) — p}vE/ (1 + i)
k=1
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Next we note from (31) that

—2log Ra(p) = 2 log(1+7x)
k=1

= Y {27k — 78 + [2log(1 + k) — 27k + 771}

k=1
= nfin = p)'S7 (fin — 1) = n{'SC
(33) + ) _[2log(1 + 7k) — 27k + 7E].
k=1

Now we observe as in Owen (1990) pages 101-102 that n{’S¢{ — 0 and
Y i=1[2log(1 + v&) — 27k + 7£] — 0 in probability as n — oo. Since E||f o
X||* < oo, it follows from Corollaries 2 and 3 that n!/?(ji, — u) converges in
distribution to M'/2Z and S converges almost surely to M + N as n — oo.
Thus we conclude from (33) that

lim P(Ro(n) > r) = P(Z'M"*(M + N)"'M'/*Z < —2logr).

This proves (a).
(b) Clearly the arguments in part (a) apply equally well here. Condi-
tioning on the occurrence or non-occurrence of the event

{n¢'S¢ < Cn—l/Z} n {| Z 2log(1 + k) — 27k + ’Yﬁl < cne—l/Z}’
k=1

it follows from (33) and Lemma 7 (see Appendix) that

|P(Ba(s) 2 7) ~ P(Z'E T35 Z < ~2logr)|

| P{n(fn — /1') (nZid)” 1(/-"71, p) < —2logr}
~P(Z'S /S50 7 < ~2logr)

+P{n(ftn — 1)'S7 (i — 1) < —2logr}

(34) ~P{n(fin — p) (n8i:0) " (jin — p) < —2logr}| + c*ns2/2,

IA

Since {z € RP : w’Z},{fZ;}iE},{:z < —2logr} is a convex set in RP, we
conclude from Corollary 2 that the right hand side of (34) is bounded by
c*n®~1/2, This proves (30). ‘ |



ON LATIN HYPERCUBE SAMPLING 17

5 Acknowledgments

I would like to thank Professor Friedrich Go6tze for sending me preprints of
his recent work.

6 Appendix

Lemma 3 Suppose h : [0,1]" — R is a measurable function such that
|hllq < oo for some 1 < g < 0o and

(G e/
pa(zih) =1 / / h(y)dy,
jifn Jr
whenever x € [[i_1[j:/n,(ji + 1)/n) for some 0 < j1,...,5r <n—1. Then
Ik = pn(:;R)]lg = 0 as n — oo. '

ProoOF. We refer the reader to Royden (1988) page 129 for a proof when
r = 1. The proof of the lemma for r > 1 is similar and is omitted. |
REMARK. If b : [0,1]" — R?, then we write

pa(2;h) = (pn(z; h1), - - -, pu(; hp))l, vz € [0,1]".

Proor oF THEOREM 1. We observe that

nXips = nt Xn: E[f o X(i,m3(3),...,m4(3)) — p]

=1
X[f o X(4,m3(3), ..., 7a(4)) — ]
+a71 3" E[f 0 X (i, mai), . .., ma(3)) — 4]

£
(35) X[f o X (4, 72(4), - -->7a(4)) — 1]’
Define for 0 < 8,1 < 1,

_ ) 1 if |ns| = |nt],
(36) bn(s,t) = { 0 otherwise,

where || denotes the greatest integer less than or equal to t. We further
observe that

[n(n - 1)]_1 Z E[f °© X(% 71‘2(2), teey Wd(z)) - :u’]
i#j
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X[foX(j’ﬂ-Z(j)"-"ﬂ-d(j)) - :u‘]l
d

= nwi(n-1) [ UG = IS - ) TIT - bnlors e)ldedy

k=1

d
—n(n - 1)"¢ kf:‘l /0 1 /0 1 Fer(r) fLa(9)6n(ek, y)dzrdys + R,  say.

Thus it follows from Lemma 3 (with ¢ = 2) that

lim o1 Z E[f o X(i,ma(0),...,74(2)) — ]

n—00 —
]

X[fOX(j,ﬂ'Z(j)a'--’ﬂ'd(j))'—y‘],

n 4 ifn ifn .
= lim -n _s(z dz/ ! d
oo EI; (.;1)/nf k(zk)dzk (i—l)/nf k(Yr)dyn
n d
= lim —n7" Y 0% pn((6 — 1)/ foi)pl((i — 1)/n; f-)
=1 k=1

d
(37) *Z/o f-r(ze) fLi(zr)dzr,
k=1

and it can similarly be shown that |R| < cn™2E||f o X||2. Also we observe
from (3) that

E(foX —pu)(foX —p)

d 1
@) = [ S @@+ 3 [ Soaon) o)
The theorem now follows from (35), (37) and (38). O

Lemma 4 With the notations of Theorem 2, to prove (6) it suffices without
loss of generality to assume that ||Y (i1,...,%)|| <1 forall1 < 45,...,ig <
n.

Proor. The following proof is heavily motivated by the truncation-type
argument of Bolthausen (1984) page 382. Define

o v Y(i,.endq) H Y G, d0)|| < 1/(44),
(39) Y(i,...nia) = { 0 otherwise,
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ji=EW and W = 2%, Y(m1(i),...,74(s)). We observe by Markov’s in-
equality that

POV AW) S P IYGra() o ma)] > 1/ (4} 2 1)

< o7 YT P(Y (.. d0)ll > 1/(44))

1<41 yoeeyig<n
(40) < (4d)°Bs,
and
lall < w'7% Y EY(y,.. . i) I{Y (1, ..., da)ll > 1/(4d)}

1<41,000ta<0

(41) < (4d)%fs.

Writing % = Cov(W), we further observe that for 1 < 4,5 < p, Cov(W); ; =
5,"]' and

8ij ~ B — il
= E{Z Yi(a,m(a),...,m4(a))Y;(a,m2(a),. .., m4(a))

a=1

xI{|[¥(a,m(a), ..., ma(a))l| > 1/(4d)}

- Z Yi(a,mo(a),...,ma(a))I{||Y (a,7m2(a),...,mq(a))|| > 1/(4d)}
a#b

XYi(b, 72(b), - . ., Ta(B)I{||Y (b, 72(D), . . ., ma(b))l| > 1/(4d)}

+2)_Yi(a,mo(a), .. ., ma(a)){[IY (a, 72(a), ..., ma(a))|| > 1/(4d)}
a#b

xYi(b,3(b), . . ., 7a(b))}
(42)= Al - Az + 2A3, say.

We note that

A < o N E|Y(, . i) |PT{Y Gay -y da)l] > 1/(44)}

1<41 400t <N

(43) S 4dﬁ3a

and in a similar way,

n

(44) |Ag] < (22" (4d)Bel? < ()" (4d) eofa.

n—1
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Also we have from (5),

d
|As] < ln(n = DI3 7 37 EYi(is, ..., ia)

k=1 4k ik
XI{|[Y (21, .., éa)|| > (1/(4d)}e(d1s - - - Ja)
= |[n(n-1"* Y EY(i1,...,dd)

1<i1,00nig<n

d-2
KI{Y (it -, ia)l| > (1/(4d)} 3 3o (=182 15 (G- - -, G

y=0

where given i1, ...,14, Z(” ) denotes the sum over 1y« - -4 jqa With exactly d—v
of the j’s satisfying ji, = tx,,...,5k,_, = Uk, , for some 1 < k3 < «+- <
ki-, < d. Consequently it follows from Hélder’s and Markov’s inequalities
that

(45) |As| < en™!Bs.

Since fs < ¢, it follows from (41), (42), (43), (44) and (45) that £ tends to
the identity matrix as ¢g — 0. Thus by choosing ¢o > 0 sufficiently small,
Y1 exists. Next define as in (5),

EY(i1,...,35) = ji(i1,...,5), V1<iy,...,iq<m,

i) = Ut S i i),

J#k i5=1

and
i i i d
Y*(is,...p02) = VY (i, ia) = 3 k(i) + (d — 1)),
k=1

Now it follows from (39) that for sufficiently small g9 > 0,

(46) [¥*(i1,.. il €1, V1<iy,...,ia<m

and 3

(47) (1/n+Yy ST EY*(y,. .., 0| < cBs.
1<181 yergig<n

Let Z denote the random vector having probability distribution ®,. Then

sup |E[g(W) — g(Z)]]
geA
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= sup |Blg(W) - g(2)W = WIP(W = W)

+E[g(W) - 9(2)|W # WIP(W # W)
sup |Elg(W) — 9(2)]| + AP(W # W)

IA

< sup \Elg(W) ~ 9(2)]| + | E[9(Z) - 9(2))| + 4P(W # W),

where Z denotes the p-variate normal random vector having the same mean
and covariance matrix as W. Using (40), the Taylor expansion for the
density of Z and the fact that A is closed under affine transformations, we
have

(48)sup |E[g(W) — g(2)]| < sup |E[g(E~*W - EW)) - g(2)]| + cfs.
geEA gEA

Thus it follows from (46), (47) and (48) that to prove Theorem 2 it suffices
to prove (6) under the assumption that ||Y(¢1,...,%¢)|| < 1 for all 1 <
150y tg < M. O

Lemma 5 With the notations and assumptions of Theorem 2, we have Ry =
0 and by choosing e sufficiently small, we have :

sup{|Rz| : h € A} < ¢f3(1+ e_IC’d,p,Bg).

PrROOF. From the combinatorial construction of #(), 7(®) and 7®), we
observe that

p

Ry = Y {EnYli, o Jag)W
i,=1
—EnY(I1, 221, -y J1a1) EW® — §; }E & thea (WD)
i\11,J2,2,1» »Ya,d, 3 J 3’10,‘6’!0_7‘ €
/4 ) 3) 32

(49) = Y {EnYi(I1, 221, Jag1)W;” = 6i5}E 5 b2 (W),
ij=1 Wiow;

We further observe that for all 1 < 4,7 < p,

(50) EnYi(L,Ja24,-- -,Jd,d,l)W}s) = EW;W; = ;.

It now follows from (49) and (50) that RB; = 0.
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For simplicity of notation, we write

M = {ILLjx:2<5<d, 1<k < d},
92 = {Ji,j,kizﬁiﬁd,lﬁj,kﬁd},

and Qp = --- = Q4. Let C denote the sigma-field generated by Q; U Q.
Then

p 1 r1
By < 3 /0 /0 ElnYi(Ii, Jaza, - - Jag ) (W — w®),

tyd k=1

33
a’w;a’w]'a'wk (’R,bez(
+s(W@ —wW) 4 stq(W® — W) — 42 (Z,,))|C]|dsdt

P 1 p1
iyjk=1"0 70
x(W(2) — W(l) + t(W(3) _ W(2)))k
o .
Xy Ve (Zat)IClldsdi

= R34+ R4, say,

x (WD - WO 4 4w — wd)), E] w®

where given C, Zs,t has the p-variate normal distribution with the same mean
and covariance matrix X, ;¢ as

w4 (W — W) 4+ st(W® — w)

= W00, ., 1P6) + (1 - Q) Rae]
i@y

= 3 Viscli, o), ..., 7(0)), sy,
1€

where |Q;| denotes the number of distinct elements in Q;. We note from
(11) that the existence of 2;},0, uniformly over 0 < s,t < 1 and C, is ensured
by choosing €p sufficiently small. Define for all i & Q;, 1 < k < d,

EViic(iny..,ia)[C] = psiclin,..., i),
Hs,tC,—k (k) (=123 3 parelin,...ria),

ik ;80
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and

d
Vercliny o yia) = Egi,éz[%,t,c(ih cenrid) = 3 Hsge, k(i) + (d — Dpscl.
k=1

Next we observe that

d
(51) (n =123 D E(lVaselin - i)PIC) < efs,

k=114 &0
and
E|nYi(I1,J221,- -+ Jd,d,l)(W}s) - W}Z))I
(52) x((WP = W+ W - W) = cpa.

Now it follows from (10), (51), the induction hypothesis and the fact that
A is closed under affine transformations that

sup{R3: h € A} < ce_lCd,pﬂg.
Finally from (7), (8) and (52), we get R4 < ¢f3. This proves the lemma. O

Lemma 6 With the notations and assumptions of Theorem 3, we have

E{ suwp | > FroX(m(k),...,ma(k)|P™}

<ign gy
llog; 7

(53) < e*n{ Y A([n/25))Pme,

k=0

where ¢** is a generic constant that depends only on d, p and 2mq* and that
Jor 1< j <,

2mg*-2 , . . s . . .
/\(J) — Z jz/[qu (2mg —z)](E”f+ 0X“2mq —z)l/(zmq —1).

1=0

Proor. We shall first show that

J
(54E|| S o X(my(k), ..., ma(k))P™ < e™*jAZM(5), V1< <.
k=1
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We observe that for 1 < j < n,
J ~ *
E| E fto X (m1(k),..., 7rd(k))]|2mq
k=1

= BY Y (P oX)mk),e..malky)

i=11<ky by <5
(55) X(F* o X)i(mi(ka), ..., ma(k2)) )™

On simplification, it can be seen that the right hand side of (55) can be
expressed as a finite sum of terms each of the form

I &
(56) ™ Z E H H (fto X )iz 0, (m1(kt)s - - > Talkt)),

1<k <<h<j  t=las=1

for some ! such that ¢; > 1,1 < 4;4, < pforalll <t <!land2mg* = Z£=1 qs.
Now if ¢; > 2 for all 1 <t <[, we observe that the absolute value of (56) is
bounded by

I o

i [ T A, )

(0,1} 32y a;=1

d
x I TIa- 6n(m§:), zf)))dz(l) ...dzW|

1<r<s<l k=1

l
< C**jIHE“f-I- OX“qt < c**j/\qu*(j),
t=1

where 6,1(:1:5:), :cf)) is as in (36). Next we suppose that there exists a ¢; = 1
for some 1 < t < I. Without loss of generality, assume that ¢ = --- =g =1
and g; > 2 whenever ¢t > b > 1. Then the absolute value of (56) is bounded
by

b l qe
i [, I EL O IT 1L 7, )

t=b+1 at=1

(57) < T L1060 s3ast®....as0,

1<r<s<l k=1
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Since E(f* o X) = 0, by expanding the third product in (57), we observe
that (57) can be rewritten as a finite sum of terms each of which is bounded
by

l*
c**jl* H E”f+ o X”q;‘ S C**j)\2mqn(j),
t=1

for some *,q; where ¢ > 2 for all 1 < ¢ < !* and Zé;l gf = 2mgq*. This
proves (54). Finally (53) follows from Theorem 3.3 of Méricz, Serfling and
Stout (1982) and (54). O

Lemma 7 With the notations and assumptions of Theorem 4(b),
P(n¢'S¢ > cn'llz) < 12,

P{] Y [210g(1 + k) — 27k + 2]l > en®"M2} < a2,
k=1

and

|P{n{fn — 1£)'S™ (ftn — 1) < —216g r}
- =P{n(jin — ) (nDiig) " (fin — p) < ~2logr}| < "0,

Proor. We first observe from the definition of latin hypercube sampling
and also as in Owen (1990) page 103 that

(58) Ep||¥ < e¢n7d, V1<j<3,

2 * —1/2.
P(llél&xn lvel > 1/4) < c*n

By conditioning on the occurrence or non-occurrence of {maxi<k<n |74 >
1/4}, it follows from the definition of ¢ in (32) that

P(n{'S¢ > en~1/?)
P({n™t 31| o X(m1(K),- .., ma(k)) — pllvE}* > c*n%/2)
k=1

+2P(11_<f1,35xn 76| > 1/4)

IN

IA

P(n~ Y gl 3" |1 f o X (my(k), .. . ma(k)) — pl® > c*n=3/%)
k=1

N
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Since E||f o X||® < o0, it follows from Corollary 3 that n=1 "%, ||f o
X(my(k),...,ma(k)) — pl® converges almost surely to E||f o X — ul|® > 0.
Thus it follows from (58) and Markov’s inequality that P(n(’S¢ > en~1/2) <
c*n~1/2,

We observe from Theorem 3 and a lemma from Baum and Katz (1965)
page 113 that for 0 < e* < ¢,

(59) P( max |(S - nZia)is| > en "2 < a2,
1<i,j<p
(60) P(n||itn — pf* > en®=") < Y2,

Also using Markov’s inequality, we have

P(max ||f o X(mi(k),..., ma(k)) — pll > /%) < 02,

and hence from Theorem 3 we obtain
(61) P({ max [If o X(ma(k), ..., ma(k)) = pll}bn — ] > €) < e*n"V2

Now by conditioning on the occurrence or non-occurrence of the event
{maxi<i<n |7k| > 1/4}, we have

P{Y [2log(1 +7&) — 27k + 7] > en="V/%}
k=1

n
P(E ”')'k”3 > c*ns—1/2) + c*n—1/2
k=1
P(||77”3 > c*ne—3/2)+ c*n—1/2
P(“,ﬁ'n _””3 S c*ns—3/2) + c*n—1/2 < c*n—1/2'

IA

IA A

Here the second last inequality uses (2.12) of Owen (1990) page 101, (59)
and (61).

Finally by expanding $~! as a Taylor series up to linear terms, it follows
from (59) and (60) that

| P{n(fin — ,U)IS_l(ﬂn -~ p) < —2logr}
= P{n(jin — ) (nBii) " (fin — p) < —2logr}| < c*n="1/2,

This proves the lemma. |
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