INDUCTION AND RECURSION IN n DIMENSIONS
by
Dimitris N. Politis
Purdue University

Technical Report #93-51

Department of Statistics
Purdue University

October 1993



Induction and recursion in nn dimensions

Dimitris N. Politis
Department of Statistics
Purdue University

W. Lafayette, IN 47907

Abstract

A generalization of the induction principle from one to n dimensions is presented, with
special reference to multidimensional recursions.
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1. Introduction

Suppose the sequence X (i), ¢ = 0,1,...is defined recursively by X(0) = 1, and X(¢) =
aX(i— 1), for i« = 1,2,..., where @ is a constant such that |a] < 1. Then, invoking the
induction principle (see, for example, Apostol (1974), or Birkhoff and MacLane (1977)), it is
easy to show that |X(z)| < 1, for any ¢ = 0,1,..., even without calculating the closed-form
expression X (i) = a'.

Now consider the double sequence X(4,7), ¢ = 0,1,..., j = 0,1,..., defined recursively
by X(¢,0) = X(0,¢) = 1, for any i = 0,1,..., and X(¢,5) = aX (i — 1,5) + bX (4,5 — 1), for
i=1,2,.., 7 = 1,2,.. here |a| + |b] < 1. Here too it should be possible to show that
|X(¢,7)| <1, forany ¢ = 0,1,...,5=0,1,..., without calculating a closed-form expression for
X (,7). To this effect, a generalization of the induction principle from one to n dimensions is

required; such a generalization will be presented in the next sections.



2. Definitions

Let N be the set of positive integers, No the set of non-negative integers, and let t =
(t1,%2,...,tn) € NG be a point in the first orthant of the integer lattice in R", where the
dimension n is some positive integer. Let Cj; be the cube consisting of the points t € NZ
whose coordinates satisfy 0 <t < N,fork=1,...,n.

Also let u = (uyq,...,u,) € N§ and define a notion of the ‘past’ of point t in the ‘direction’
n by

Past,(t) = Ul_j{u € Ng 1 u; < tj,ur =1,j < k < n}

={ueNG:u, <t,JU{u€eNg:uy,=tn,tp1 <tp_1}U---
---U{uEN(’)‘:unztn,un_l =tp—1y...,U2 = 12,Up <t1}

Of course, because the labelling and numbering of coordinates is arbitrary, it is straightforward
to define the ‘past’ Past;(t) in the direction j, for any j =1,...,7n.

It is apparent that an ordering ‘<<’ of the elements of C]"\', is induced by defining s << t
if |Cf N Past,(s)] < |C{ N Past,(t)], for s,t € Cf;, where |A| denotes the cardinality of set
A; this is sometimes called a ‘lexicographical’ ordering (cf., for example, Georgii (1988)). The
lexicographical ordering ‘<<’ will be crucial in showing that the induction principle in n di-

mensions soon to be introduced is valid.

3. The induction principle in n dimensions

Let there be associated with each t = (¢1,%2,...,%,) € N a proposition P(t) that is either
true or false. If n = 1, the principle of finite induction (in one of its forms) states:
If P(0) is true, and if, for all k € N, the assumption that P() is true for any i < k, implies
the conclusion that P(k) is itself true, then P(k) is true for any k € No.



We now propose the following generalization of the principle of finite induction in n dimen-

sions:

Theorem 1. If P(t1,ts,...,1,) is true whenever ming=1,2,..n|tx| = 0, and if, for all t € N"
the assumption that P(u) is true for any u € Past,(t), implies the conclusion that P(t) is
true, then P(t) is true for any t € Ng.

Proof. Let § = {t € N : P(t) is true }, and let $* = {t € Nj : P(t) is false }; we
will show that §* is the empty set.

So suppose S* were not empty; then there is an integer N large enough such that ctns*
is not empty as well. Arrange the elements of Cf; using the lexicographical ordering, and let
u be the ‘smallest’ of the elements of C’]"\} N §* according to this ordering; i.e., u << t, for any
t € C N S* such that t # u.

Since P(t1,13,...,1,) is true whenever ming=1,2...» [tx| = 0, it follows that ming=1,2,...,» |ug] >
0, in other words, u € N™"; therefore, the Past,(u) is not empty. Now since u is the ‘small-
est’ of the elements of C#; N §* it follows that Past,(u) C S, i.e., that P(s) is true for any
s € Pastn(u). But by the induction hypothesis P(u) should be true as well, which is a contra-

diction. O

Theorem 1 is one of many possible generalizations of the induction principle in » dimensions.
For a different generalization, consider a different, non-directional notion of ‘past’ of point t,
namely define

Past(t) = {u € Ng : u; <t;,Vj}—{t}.

The following theorem is another generalization of the induction principle; its proof is similar

to the proof of Theorem 1, bearing in mind that Past(t) C Past,(t).

Theorem 2. If P(t1,t2,...,ts) is true whenever ming=12,...,n [tx| = 0, and if, for all t € N™
the assumption that P(u) is true for any u € Past(t), implies the conclusion that P(t) is true,

then P(t) is true for any t € Ng.



Nonetheless, it seems that Theorem 1 is a more useful tool than Theorem 2 since it might
be easier to verify that P(t) is true given that P(u) is true for any u € Past,(t), than to verify
that P(t) is true given that P(u) is true for any u € Past(t) C Past,(t).

4. Multidimensional recursions

Using either of the proposed generalizations of the principle of finite induction in n dimen-
sions, i.e., Theorem 1 or Theorem 2, it follows immediately that the double sequence X (3, 7)
defined in the Introduction is always less or equal to 1 in absolute value. However, another
interesting point has been left unclear so far, i.e., how to actually carry out the recursion to
find the value of X (3, ) for some given pair (3,7). In this simple special two-dimensional case
there are many equivalent ways to carry out the recursion, one of which is to order the points
(i,7) € N2 in the same way the (numerator, denominator) pairs corresponding to rational
numbers are ordered with the purpose of showing that the set of rational numbers is countable;
see, e.g., Birkhoff and MacLane (1977).

We now define a certain general notion of multidimensional recursion and give a way of

calculating its values, i.e., carrying out the recursion. Let
L(t) = {u: 0 < sup[t; — uj| <1} N Pasty(t),
j

i.e., L(t) consists of the immediate neighbors of point t (in the sup-distance sense) that are
in Past,(t). So we can define a multidimensional sequence X(t), t € Ng, by specifying the
values of X(t) for t on the boundary of N, i.e., for t such that ming=y,2,..» [tk| = 0, and by
the recursion X (t) = F(L(t)), t € N*, where F is some given function. In order to compute
the value X(t) for some given t € N, consider the following scheme. Let D(t) = {u € Ng :
¥ luil £ 355 1¢5]}; the points in set D(t) can be ordered using the lexicographical ordering,
and the recursion can proceed in that same order until X (u) is known for all u € D(t), and

hence for point t as well.



For more general recursions, X (t) could be a function of the r-close neighbors of point t,
again in the sup-distance sense, with 7 > 1; see Politis (1994) for an elaboration, as well as
some discussion on the many different notions of ‘past’ in n dimensions. Needless to say, a
most important tool for analyzing recursions is induction. In addition, it seems plausible that
recursions that, as the sequence X (t) defined above, can be carried out in the lexicographical
ordering can be handled using the induction that is relative to the directional past Past(t),

i.e., Theorem 1.
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