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Abstract

A queueing system occurs when “customers” arrive to some facility requiring a cer-
tain type of “service” provided by the “servers”. Both the arrival pattern and the service
requirements are usually taken to be random. If all the servers are busy when customers
arrive, they usually wait in line to get served. Queues possess a number of mathematical
challenges and have been mainly approached from a probability point of view, and statisti-
cal analysis are very scarce. In this paper we present a Baysesian analysis of a Markovian
queue in which customers are immediately served upon arrival, and hence no waiting lines
form. Emergency and self-service facilities provide many examples. Technically such ser-
vices can be modelled as queues with an infinite number of servers. The mathematical
simplicity of these queues allow for closed-form exploration of a number of issues that arise

when statistically analyzing queues, whether or not the queue is in equilibrium.

Key words and phrases: Comparison of experiments; conjugate families; Kummer’s

function; Non-informative priors; Prediction; Steady-state; Transient behavior.

1. Introduction

-

Queues, or waiting lines, are so common in our daily lives that precise definitions
seem superfluous. A queueing system occurs anytime “customers” demand “service” from
some facility; usually both the arrival and service times are assumed to be random. If
all the “servers” are busy when new customers arrive, these will usually wait in line for
the next available server. The term “customers” is very broad and can refer to telephone
calls arriving to a switchboard, machine failures, demands of CPU time, patients arriving
at emergency services in a hospital, etc. (Obviously, the same applies also to the terms

“service” and “servers”.) The behavior of a queueing system is characterized by the arrival
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pattern, the number of servers and the model for service times, the queue discipline (usually
first-in-first-out, or FIFO, but many others are possible), the size of the “waiting room,”

the total size of the population of customers, ... etc.

Queueing theory is a field of impressive activity and growth, both in theoretical re-
search and applications. (Some key references can be found in Armero and Bayarri, 1993 b.)
Nevertheless, most of this vast effort is devoted to the construction of models and the study
of the mathematical properties of such models and comparatively little effort has been de-
voted to the statistical analysis of such systems (a good review is Bhat and Rao, 1987; see
also Lehoczky, 1990). Bayesian analysis is basically absent; in fact, to the best of our knowl-
edge, the only Bayesian references are Muddapur (1972), Reynolds (1973), Armero (1985,
1993), McGrath, Ross and Singpurwalla (1987), McGrath and Singpurwalla (1987), and
Armero and Bayarri (1993a, 1993b). The statistical analysis of queueing systems possess a
number of interesting and challenging questions and Bayesian methods are especially well
suited to deal with them, not only because they can easily incorporate prior information
(which can be substantial in queueing systems that have been running for some length of
time), but also, and most importantly, because they can handle in a natural way frequently
occurring issues such as restrictions in the parameter space (contrast the classical analysis
in Schruben and Kulkarni, 1982, with its Bayesian counterpart in Armero and Bayarri,
1993b) and prediction problems (Armero and Bayarri, 1993a). Also, in complex queueing
systems, densities are not available in closed form and analysis has to rely on simulations,
which are performed for fixed values (estimates) of the unknown parameters; a natural
way to incorporate the inherent uncertainty is to simulate the parameter values from their
posterior distribution (an approximation to this procedure was reported by Butler and
Huzurbazar, 1993). Last, there are systems, such as networks of related queues, for which
the only feasible analysis is a Bayesian or an Empirical Bayesian one (Thiruvaiyaru and

Basawa, 1992).

In this paper we address some of these issues in a very simple, yet frequently occurring,
queueing system, namely one in which infinite servers are assumed and hence congestion
does not occur. Of course, in real life there can not be infinite servers; technically, a system
in which a customer receives immediate service, without delays, is usually modelled as a

queueing system with infinite servers. Common examples are provided by emergency



services (such as ambulances, police, firemen ... etc.) and by any self-service facility.
Other examples are provided by cars traversing a bridge, say, in a non-congestion hour
(the “service” time is the time needed to complete the traverse), or by “customers” turning
on their TV sets in a certain time period, etc. Perhaps, the most frequent use of queues
with infinite servers is to approximate the behavior of queues with a finite, but very large,
number of servers in which congestion rarely occurs; this is in fact the case of the ambulance
 service example mentioned above, or the very important example in which the “customers”
are the lines in use in a large communication network. Some queueing systems with a finite

number of servers are studied in the references given above.

The paper has 7 sections, this introduction being Section 1. In Section 2 we introduce
- the queueing system we shall be dealing with the rest of the paper, namely the M /M /oo
queue. Section 3 is devoted to discussion and comparison of several possible experiments
that can be performed to obtain information about the parameters governing the queue.
Section 4 introduces a new family of distributions (We call them Kummer distributions)
that will be needed in the rest of the paper. In Section 5 we derive posterior distributions of
several quantities of interest, under both non-informative and conjugate priors (conjugacy
is possible through a wide range of different experiments, with non proportional likeli-
hoods). Section 6 is devoted to the very important issue of prediction under steady-state.

Transient behavior is briefly discussed in Section 7.

2. The M/M/co Queue

It has become standard to describe simple queueing systems in terms of Kendall’s
notation (Kendall, 1953), which consists of a series of symbols separated by slashes,
A/ S/C/R/Q, where A characterizes the interarrival-time distribution, S the service distri-
bution, C is the number of channels of service, R the restriction on the system capacity,
and Q is the queue discipline. The last two are omitted when R = co (no restrictions)
~and Q=FIFO (first-in-first-out). Also, exponential distributions are denoted by M. In this
paper we deal with the M /M /oo queue, that is, both the inter-arrival time and the service
time are assumed to have an exponential distribution, and the number of servers is co.
(Bayesian analysis of other types of Markovian queues is presented in the references men-

tioned in Section 1.) In a M/M/co queue, customers arrive to the service according to a
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Poisson process with mean A (so that inter-arrival times are exponential with mean 1/),
and service times are independent of the arrivals and follow an exponential distribution

with mean 1/p. The parameter A is usually called the arrival rate, and p the service rate.

Although the inferential aim can sometimes be to estimate the parameters charac-
terizing the system (A and p in our case), it is most common in a queueing system that
interest focuses on predicting observable quantities that describe the utilization, efficiency
and congestion of the system. The so-called measures of performance include quantities
such as the number of customers in the system, the time that a customer spends in the
system, length of busy periods (or idle periods). .. etc. (Often, the expected value of these
quantities are themselves called measures of performance). Also, it is often the case that
queuing systems have been working for a long period of time (under similar conditions) or
they are supposed to, and interest then lies in the prediction of these quantities in a queue
in equilibrium (or steady-state). Unlike M/M/c queues, a M /M /oo will always reach its
steady-state for every value of y and A. We mainly will be interested in the prediction,
under steady-state, of the number of customers in the system, N, and of the time, W,
that a customer spends in the system (the waiting time). Other measures of performance
directly concerned with the servers, such as the length of busy or idle periods, obviously
do not apply to the M/M /oo queue. The same is true of measures concerned with the
queue itself, such as the time a customer has to queue before being served, or the length of
the waiting line. The results that follow can be found in most standard texts in queueing

theory, such as Gross and Harris (1985).

In a M/M /oo queue in equilibrium, the distribution of the (steady-state) number of

customers in the system, N, is Poisson with parameter ﬁ, so that

A/ p)™ e e

, ., n=0,1,2,... (2.1)
.

p(N = 7|y, A) =

In this queue, N is also the number of busy servers (another possible measure of
performance). The quantity A/u, that is, the mean number of arrivals per unit time when
the time unit is taken to be the mean service time, is called, in a general queueing system,
the offered load; it is a dimensionless quantity whose unit is the erlang. We shall denote

A/ by 0. Notice, from (2.1), that, in the M/M /oo queue, the offered load 6 is also the
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expected value of N, so that it can be interpreted as the mean number of servers that the

customer population “wants” to be able to hold simultaneously (Cooper, 1990).

Since in a M /M /oo queue a customer is served without ever queueing, the time that
she/he spends in the system W obviously equals the time it takes to serve that customer,
so that the waiting time distribution is given by the exponential service distribution, that
is

p(wlp, A) = p(wlp) = pe ¥, w>0. (2.2)
It is worth noting that (2.2) also holds for a M/G /oo queue, where G stands for a general

" distribution for the service time.

As for transient behavior, it turns out that, unlike what happens with most queueing
systems, transient probabilities can be derived in a closed form for a M/M/oco queue.
Indeed, the distribution of the number of customers in the system at time t, N(t), is
Poisson with mean A(1 — e™#t)/u, so that

p(N(t) = nlp, ) = % [(1— e‘“t)z—]" exp{—(1 — e““t)—;\z}, n=20,1,2... (2.3)

It is noteworthy that (2.3) holds also for M/G/co systems, even for a time-dependent
arrival rate and time-dependent service time distribution (Newell, 1982). Also, it is imme-
diate to check that (2.1) can be obtained from (2.3) by letting ¢ go to co. (The probabilities

(2.3) are derived under the usual assumption that the system is empty at time ¢ = 0.)

-3. Experiments and Likelihoods

A queue can be observed in a wide variety of ways and many different quantities can
be recorded. The classical experiments all seem to observe the system during some interval
of time (0, T] and they can get rather cumbersome to perform. Benes (1957) takes T to
be fixed in advance, and classifies the customers as belonging to four different categories
dependent on whether they are or are not in the system when observation begins, and
- whether or not they have left the system when observation ends; the observed quantities
are the number of customers belonging to each category and the arrival and departure
times during the period of observation. Considering a M/M/oco queue as a particular

case of a birth-and-death process (the state of the process is the number of customers in
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the system, a “birth” occurring each time a customer arrives, and a “death” each time a
customer leaves the system after being served), Wolf (1965), and Basawa and Prakasa Rao
(1980), propose two other experiments, both of them also observing the system in a certain
period (0,T] of time. For Wolf (1965), T is fixed and the quantities to be observed are
the number of “births”, the number of “deaths”, and the total time the system spends in
state 1,7 = 0,1, 2,.... The experiment proposed by Basawa and Prakasa Rao observes the
same quantities, but now T is random and the system is observed until a fixed number of
transitions (arrivals and departures) have occurred. (That is, the total number of “births”

and “deaths” is fixed here.)

Even though the experiments above are very different from each other from a frequen-
tist perspective, due to the lack of memory of the exponential distribution, all of them
result in the same likelihood function for the given data. Hence, according to the likeli-
hood principle (see, for instance, Berger and Wolpert, 1988) they do provide exactly the
same information about A and . We will use a much simpler experiment to perform that
also results in the same likelihood function. Specifically, we assume that n, inter-arrival
times and n, service completions are observed; the observation of the arrival and service
processes do not need to be simultaneous. Also, n, and ns can be fixed or random (as long
as their distributions do not depend on A nor p). Let X; denote the service time of the
i—th customer, ¢ =1,2,...,n,, and Y; the time elapsed between the arrivals of customers
jand j—1, j=1, 2,...,n, (as a notational device, assume that customer 0 is the first
one entering the queue during the observation period). Then, according to the hypothesis
of a M/M/oo queue, Y = (Y3,...,Y,,) is a random sample from an exponential distri-
bution with parameter A, and X = (X3,...,X,,) is an independent random sample from
an exponential distribution with parameter p. Hence, the likelihood function of A and p

based on observations x,y is given by:

£1(X, p) oc A gTHMa s gTHbs (3.1)
where t, = > y; and t; = > x; are the observed values of the sufficient statistics. The
above experiment will be our basic experiment and we refer to it as &;.

If the queue is in equilibrium, observing the initial system size — customarily denoted

by v — can be relatively easy and can provide additional information about the queue.
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Accordingly, we consider experiment £ that observes x and y as in &7, and also observes
v. The probability of v customers in the system can be derived from (2.1), and &> results
in the following likelihood function:

A v
lo( X, 1) oc NPag™HMa s g=hbs <;> e MH, (3.2)

(This is certainly the same likelihood obtained in the experiment considered by Benes
(1957), which simply adds the observation of v to the experiment he considered when the
queue is not necessarily in equilibrium and that was described at the beginning of this

section.)

It sometimes happens that experimenters do not have access to the service facility,
- or that service times are difficult or very expensive to observe. It so happens that, in an
M /M /oo queue in equilibrium, we still can make inferences and predictions based on the
observed initial system size, v, and the n, inter-arrival times, x, even if the service facility

is inaccessible. We refer to this experiment as £3, which results in the likelihood

A v
£3(\, p) o< AMagmMe (;) e Me, (3.3)

Likewise, it might be possible to observe v and the service times (which is the case when
the service facility is easy to observe, since v is also the initial number of busy servers) but
very difficult, time consuming, expensive, or even impossible, to keep a detailed record of
the arrivals. Hence, we consider still another experiment, £4, which consists in observing

v and y, resulting in the likelihood
ns ,—ut A\ -A/
Ly(A, p) o pltse M p e M. (3.4)

These four experiments do produce the basic four types of likelihood functions that
we most usually encounter when observing a M/M/co queue. Sometimes experimental
conditions will determine the experiment to perform, but it may also happen that we can

“choose among two or more of them. A complete approach to the problem of choosing the
experiment to perform should include not only the costs of the different experiments, but
also the aim (estimation, prediction, ... etc.) of experimentation. (It is indeed well known

that experiments that are best, according to most criteria, for one of the parameters may
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not be so for a different parameter.) We will only attempt here a simple, yet illuminating,
exploratory comparison among the experiments, in terms of the asymptotic variance of

both parameters.

It is a standard result in Bayesian statistics that (under suitable regularity conditions),
for large n, the approximate posterior distribution of a parameter vector ¢ is normal with
mean vector ¢ and variance-covariance matrix given by I, (@), where ¢ is the maximum
likelihood estimate of ¢ and I;*(®) is the inverse of Fisher information matrix evaluated at
the MLE ¢. The asymptotic posterior variances of A and p, that we will denote by Var*(\)
and Var*(u), can then be directly obtained from I *(j, )), as well as the asymptotic
covariance, Cov*(A, 1), of A and p. A lengthy but otherwise straightforward computation
provides the inverses of the Fisher information matrices for the four experiments, and the
resulting Var*(u), Var*(\) and Cov*(A, p) are described below. We assume n, =ns = n

throughout. (For convenience, and later use, we provide the expressions for the Fisher

information matrices in the Appendix.)

Ezperiment £1. (Observe inter-arrivals and service times.)
* A * *
Varj(A) = ) Vari(p) = —, Covi(A,p) =0. (3.5)

As we could expect, this is a “middle” experiment in terms of the information provided
(as measured in terms of asymptotic variances) when compared with the other three. It is

also the only one for which A and p are independent.

FEzperiment £,. (Observe inter-arrivals and service times, and initial size.)

D4+ A2 6
Vart(h) = AT 2 2HY
ng+2\ N n+20
. ni+ A p n+0 .
Var = — — = - Var
W= TR s W
A2 il
Covi(hp) = —E2 — = B2, (3.6)

n(ni +22) n+20 n

This is, as common sense suggests, the most informative experiment of the four considered.

Both variances are smaller than the corresponding ones in £; by a factor that, depending
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on the load, ranges between 1 and 2. Thus, observing the initial system size does not add
much information (according to this criterion) when the load 6 is small (6 — 0), but the
asymptotic variance can be reduced by up to a half if we do observe v in very busy systems

(8 — 00). Also, A and u are no longer independent.

Ezperiment £3. (Observe inter-arrival times and initial size.)

Varz(A) = = Vari(\) . (3.7)

3%

Again we find that (3.7) completely agrees with intuition. From (3.7) we see that we
lose nothing in estimating A as compared to &1, since they are equivalent in this regard.
Also, from the expression for Fisher information given in the Appendix, it can be seen
that we do not have a consistent estimator of p in this experiment (which should be
expected), so asymptotic normality does not apply to the joint distribution, or to the
marginal distribution of p. It should be noted, however, that A is asymptotically normal

(Ghosh, 1993).

Ezperiment £4. (Observe service times and initial size.)

~ 3 312
Vari(\) = "“;A % - (g- + 1) Vari(\) . (3.8)

This experiment exhibits a completely symmetrical behavior to that of experiment &3, A

now being the parameter that we can not consistently estimate, and analogous comments

apply.



4. The Kummer distribution

Before presenting the statistical analysis of the M/M /oo queue, we introduce a new

family of continuous distributions that appear frequently in the derivations to come.

Definition 4.1 - A random variable X has a Kummer distribution with parameters o, £,

v, 6 (>0, 8> 0,6 > 0) if it has a continuous distribution whose p.d.f. is

5 Cma—le—ﬂx
KU((B!Q,,B,"}’, ) = —(i_+(5—1')'7, z>0 (41)

and Ku(z|a, 8,7, 68) = 0 otherwise, where the proportionality constant C' is such that

Ula, a+1—7, [/8), (4.2)

and U(a, b, z) is one of Kummer’s functions (a confluent hypergeometric function), with

integral representation, for a > 0,z > 0, given by
o<
I'(a)U(a,b,2) = / e7?t o7l (14t)b7et gt (4.3)
0

(See, for instance, Abramowitz and Stegun, 1964.) O

Kummer’s function U is a standard mathematical function and appears in many well
known mathematical packages. Sometimes, U(a,b, z) is also denoted by ¥(a;b; z), or by
z27%Fy (a, a+1—10b; ;—1/2z). We highlight two special cases that will be needed for

future reference:
Ula,a+1,z) = 1/2% (4.4)

This follows ﬁc.lirectly from (4.3) and the definition of the gamma function. Also,' even

though the function U is not defined for z = 0, we abuse notation and write
>0
I'(a)U(a, b, 0) = / 1 (14 )Pl gy, (4.5)
0
But the integral on the RHS of (4.5) does converge for b < 1, and it is given by

T'(a)T'(1 - b)/T(a+1—0b). Hence we can define

(1 - b)

U(a,b,0) = Tlatr1=b)’

for b < 1, (4.6)
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and extend the definition of U(a, b, z) to also allow U(a, b, 0), as given in (4.6), when b < 1.

We have called the distribution in Definition 4.1 the Kummer distribution because it
is derived from Kummer’s function in much the same way as the Gamma distribution is
derived from the Gamma function and the beta distribution from the Beta function. It
generalizes both the Gamma and the F distributions. Indeed, from (4.1), (4.2), (4.4), and

 (4.6), the following equivalences can be established:
X ~ Ku(a, 8,0,6) = X ~ Ga(a, B)

X ~ F(2e, 27— 2a). (4.7)

—a@)d
for vy > o XNKu(a,O,%(S)_)¥

Clearly, F(v1,v2) = Ku(%,0,%3+2 1), but the relation in (4.7) will be more directly
applicable for our purposes. Finally, from (4.1) it can be seen that Ku(z|a,,,0) for
a > 0, B > 0 can be properly defined as long as the constant C' is calculated directly,
without resorting to the U function. Hence, we shall also use this special case and the fact
that

X ~ Ku(a, 8,7,0) = X ~ Ga(a, B). (4.8)

The moments of a Ku(a, 3,7, §) distribution can easily be computed in terms of the
U function and they are given by

T(a+k) Ul@+k, a+k+1—1v, B/0)
6+ () Ul, a+1-—v, B/

E(X*) = (4.9)

5. Posterior distributions

When introducing and studying the properties of a M/M /oo queue, it is natural to
“do so in terms of A and p, since they are the parameters governing the arrivals to and
departures from the system. Nevertheless, it can be seen from (2.1), (2.2) and (2.3) that
the distributions of the relevant measures of performance of the queue depend on A and
p through 6 = A\/p and p. (Recall also that € is the expected steady-state number of
busy servers or number of customer in the system, and that u is the inverse of the average
time that a customer spends in the system at steady-state.) Hence, for inferential and
prediction purposes, it seems more natural to work in terms of p and 4, and we will do so

from now on.
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It can be seen, from (3.1), (3.2), (3.3), and (3.4), that the four likelihoods for (8, u),

corresponding to the four different experiments, can be expressed in a unified way as
(s, 0) o pre e~ #Ostat0utad) gm =08, (5.1)

where ny = d4ny + 0305, M = 64ng+ 010, ts = nzsxz (total of service times), and ¢, = % Ys
(total of inter-arrival times) are observed, and 161, 03,04 are 0 — 1 constants that idenltify
the performed experiment, so that d; = 0 in &;, ¢ = 1, 3,4. Notice that §; = 0, for some
i, implies 6; = 1 for 7 # 4, ¢ = 1,3,4. Also, §; = 63 = 04 = 1 for experiment . A

conjugate prior density based on the form (5.1) is
p(p,0) o< pmot g H#botPo ) goo—1 g—kob (5.2)

and it defines a proper density for ng > 0,69 > 0,80 > 0,0 > O and ky > 0. It is
also proper for Ko = 0 provided that ng > ag, for By = 0 provided that by > 0, and
also for by = 0, provided that ag > ng and By > 0. A distribution with the density
p(p,0) in (5.2) will be called, following the customary procedure, a Gamma-Kummer
distribution, and denoted by GaKu(ng, bo, Bo, @0, ko). The name stems from the fact that,
if (u,0) ~ Ga(n,b, B, o, k) then the conditional distribution of x4 is Gamma,

p(p | 0) = Ga(u | n,b+ B9)
(b+ BOY™ =l e n(b+08)

= T(n) u> 0, (5.3)
and, for b > 0, the marginal distribution of 8 is Kummer,
- ) 904—1 —k6 .
p(0) = Ku(f|a, k,n, B/b) = (5/%) ° 9>0. (5.4)

I(a)U(a,a+1—n,bk/B) [146(8/6)]*
If b= 0, and o > n, it can be seen from (5.2) and (5.3) that the marginal distribution of
0 is a Gamma

ka—'n,

p(0) = Ga(fla —n, k)= Tla—n)

ge—""l 7R g > 0. (5.5)

For ease of notation, whenever b = 0 (with o > n) in a Ku(f|a, k,n, 5/b), we will consider

it to represent the Gamma density in (5.5).
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If the prior distribution of (8, u) is GaKu(ng, by, Bo, o, ko), then it follows from (5.1)
and (5.2) that the posterior density is given by

p(lu’ielda‘ta) & E(N?g) p(/"ag):GaKu(:u',Hlnlvbluglaalak1)7 (56)

where n1 = ng+ng, by = bg+dsts, B = Po+data, ay = ag+m, ki = ko+9;. Therefore,
the Gamma-Kummer family of distributions is conjugate for all the experiments considered.
It is indeed remarkable, and quite a peculiar characteristic of this simple queueing system,
that we can use the same conjugate prior for such different experiments. (It should be

noted that the likelihood functions are not proportional.)

For assessment purposes, we find it easiest to think in terms of the arrival rate A and
the mean service time i Besides, in a M /M /oo queue, it is very natural to assume that,

a priori, these two quantities are independent. Accordingly, we assume
p(A, 1Y) = Ga(Mao, Bo) Ga™*(plao,bo) or p(A, u) = Ga(Mao, Bo) Ga(ulao,bo),

which results in

p(p, 0) = GaKu(p, 8|ag + ag, bo, Bo, @, 0). (5.7)

(Notice that, since ag + ag > g, ko = 0 is allowed.) It should be noted that A and p
would be a posteriori independent (that is, K1 = 0), only if experiment &; is performed.
We nevertheless see no reasons whatsoever, either operational or methodological, why the
extra observation of v in &£, for instance, should change the prior opinions about (u,#).
Hence, we do propose (5.7) as a prior for all experiments. (The corresponding posterior
is obviously given by (5.6) where, in the expression of ni, ng = oo + ap and k1 = 6;.
. Notice that, if experiment £; is performed, the distribution of 8 is simply a re-scaled F

distribution, and that, as just mentioned, A and p are independent a posteriori.)

The same comments apply to the choice of a convenient non-informative, automatic
or default prior. Most non-informative priors are model-dependent, so a different prior
would be chosen depending on the experiment to be performed, even if the likelihoods are
proportional. It has been argued that, since the choice of the experiment can itself reflect
prior information, this phenomenom is, not only natural, but even desirable. Thus, for

instance, a Bernoulli parameter expected to be very small could make a Negative Binomial
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experiment be selected instead of a Binomial experiment, and the default prior should
reflect this extra information. None of this would seem to apply to our experiments:
which one is ultimately performed would typically depend only on what is easy or cheap to
observe, and usually will not carry any information about A nor . Hence, our proposal is
to use a unique “automatic” prior in all four experiments, and we suggest using the Jeffreys
prior for the least informative experiments, which as we saw in section 3, are experiments
Es and &;. (The Jeffreys priors for all four experiments are derived in the Appendix.) It

turns out, not surprisingly, that both these non-informative priors are equal and given by
PN (p,0) o< pTt 672 (5.8)

The non-informative (5.8) can be obtained from (5.2) by letting np = 0, by = 0, By =
0, ap = %, ko = 0, and it is obviously improper. The corresponding posterior distribution
is

p™ (i, 0|data) = GaKu(u, 8]04n, + d3ns, 6ats, Sata, bang + 610 + %, 51), (5.9)
which can be checked to be proper for all four experiments. (If we had used the Jeffreys
prior for experiment 1, then the resulting posteriors would be improper if experiments &3
or £4 were performed and v = 0 were observed. Similarly, use of the Jeffreys prior for
experiment & can result in improper posteriors when used with data from experiments

E1,&5 or £4.) From (5.9), (5.4) and (5.5), the marginal posterior distribution for 6 is

1
pN(Hldata) = Ku(0|61nq + 61v + > 01,04n, + 030, data/dsts), (5.10)

or, more explicitly:

(ns — 0.5)/ts

s 7290 g L F(2ng +1, 2ns — 1), for &1,
(e + 0.5)/ta (2na 1, 20, —1), for &

1
0~ Ku(ng +v+ 2 1, ng+ng, to/ts), for &,

0 ~ Ga(v + —;—, 1), for &3 and &4. (5.11)

We recall that the vast majority of experiments proposed for analyzing queues result
in likelihoods, and hence posterior distributions, as in £;. For this important particular
case, the non-informative (5.11) results in the usual estimator

s —1 (ng+0.5)/t,

E(f|data) = 9ms—3 (ns —05)/t,’

(5.12)

14



which, for moderate ngq, ng, will be very similar to the MLE 6 = A/fi = (nqa/ta)/(ns/ts).
Another interesting feature in (5.11) is the behavior under the & and &4 experiments,
for which observations in either the service or arrival processes are lacking. (5.11) then
says that, with no prior information (or, more specifically, with the given non-informative
prior that keeps 6 and u independent), observations of the other process do not help in

estimating €, and hence both experiments result in the same posterior.

Another parameter of interest in a M /M /oo queue is p. In general, the joint posterior
distribution of (u,0) is a GaKu(u,8|ny, b1, f1, a1,k1), as given in (5.6). Then, directly
from (5.2), it follows that

oo
p(pldata) o« p™rt e—“bl/ gor o—0(k1+ufr) 4p
0

#nl—l e—-ﬂb].

a O TR —
(k1 + pfr)>
With the proposed informative prior (5.7), p ~ Ga(ag, by) a priori, and if experiment &;

x  Ku(ulni, b1, o1, B1/k1). (5.13)

is performed, k; = 0. Hence, it follows from (5.5) that
p(pldata) = Ga(p|ni — a1, b1) = Galulag + ns, bo + t5). (5.14)
Also, non-informative analysis results in the joint posterior (5.9), so that (5.13) becomes
pN(,u|data) = Ku(u|dang + 03ns, d3ts, % + 04ng + 01V, 84te/61), (5.15)

or, more explicitly:

1
p~ Galng — =,ts), for &,

2
- 1
p~ Ku(ng +ns, ts, §+na+u, ta), for &,
(—V—+i p~ F(2n,,1+42v), for&
(na/ta) a’ ’ >
p~ Ga(ng,ts), for &. (5.16)

Similarly to the marginal analysis for 8, it is also true here that the Bayes estimate
in &1, F(pldata) = (ns — 3)/ts, is very close to the MLE i = n,/t,. Experiments £3 and

&4 also behave as expected: When we do not have observations on service times, then

15



we use both the initial size ¥ and observations on the arrival process to estimate u; on
the other hand, if we do have observations on the service times (and none on the arrivals)
then the added information of v becomes irrelevant for estimating p. Notice that the only
learning process in which p and € are independent a posteriori takes place with £ and a

non-informative prior.

Usually, the parameter A is not as important as € or u. Nevertheless, it might be of
interest in some problems and we next derive its marginal posterior distribution. If, in
general, the joint density of (u,6) is GaKu(0, pn1, b1, B1, @1, k1), then the density of
(1, A) can be deduced to be

p(p, Mdata) = Cum—o—1 g=hk g=da/p o=l g=BiX (5.17)
where C~! = T'(n1) I'(o1) Ulag, a1 +1—mn1,kib1/B1) / (b7~ 67"). Hence
o0
p(Mdata) = CA*+~! e"\ﬁlf prameaml gmuby g=AR/e gy (5.18)
0

The integral in (5.18) must be evaluated numerically, in general. When experiment &; is
performed and the prior (5.7) or the non-informative (5.8) is used, then k; = §; = 0, so
that

p(A|data) = Ga(Maa, £1), for &;. (5.19)

In the non-informative case, a; = %—l—na, (1 = to. Also, when experiment &3 is performed

and the non-informative (5.8) is used, then it follows from (5.9) that b; = 0 and

1

o @]
pY (\|data) o AtatV—3 gt —— e Mt dy
o prts

. .

x Ga(A|ng, ta), : (5.20)

so that £ and &3 result in virtually identical (for moderate n,) posterior distributions for

A (and X and p are independent a posteriori.)
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Even though (5.18) can not usually be expressed in closed form, the moments can
easily be computed in terms of Kummer’s function U. We derive here the mean for further

use.

E(/\[data):/ A p(A|data) dA

0
— /oo unl-—al——l e—ubl F(al -+ 1)

0 (Br + k1 /p)er+l
_ <a1n1 biki\™M T Uny+ 1,1 —ay + 1, ki1b1/B1)
T\ A ) < B ) Ulor, 01 +1—nq,k1b1/61)
_amny Ul +1, ar+1—mny, kibi/B1)
B U(ay, ar+1—ny, kibi/B1)

(5.21)

where the last equality in (5.21) follows from the relation U(a,b,z) = 2!~ U(l +a —
b, 2—1b,z) (see Abramowitz and Stegun, 1964). It can be checked that expectations for
the distributions (5.19) and (5.20) can be obtained as particular cases.

6. Prediction under steady-state.

As mentioned in the introduction, the typical objective when analyzing a queue is to
learn about measures of performance of the queue. In a M/M/co queue in equilibrium,
such measures include the number of customers in the system, /N, which is equal to the
number of busy servers, and the waiting time, W, which is the time a customer spends in the
system, and, since the customer never waits in line, is equal to the service time. Queueing
theoreticians analyzing queues from a probability point of view aim to obtain expressions
for the mean of these quantities (for any given values of the unknown parameters) and to
obtain impor’g'ant relationships among some of them; classical statisticians aim to obtain
estimators of these mean values. Bayesians can not only compute estimators but can
obtain their entire posterior distributions, as we saw in Section 5, since E(IV|A, 1) = 6 and
E(W|A, p) = 1/p. Bayesian methods allow one to even go one step further and determine
the predictive distributions of NV and W, from which direct probability statements can be

made about these quantities.

We derive first the predictive distribution of N. It follows from (2.1) that p(N =
n|p, A) = p(N = n|) = Poisson (n|d), and from (5.4) and (5.6) that the posterior distri-
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bution of 8 is Ku(ay, ki1, ny, (1/b1). Hence, for by > 0,3, > 0,

0 gne——O
p(n|data) = / o Ku(0|o, k1, n1, B1/b1) dO
0 -
(B1/b1)> /°° grieast fHlath
~onl MNay) Ulag, a1 +1 -—?’Ll,blkl/ﬁl) 0 (1+,81/b1)"1

B I(ay +n) Ulay +n,01+n+1—nq, (k1 +1)b1/51)
! T(a1)(Bi/b1)m Ular, a1 +1—=mn1,b1k1/B1)

(6.1)

The only substantial simplification of (6.1) occurs under non-informative analysis with
experiments &3 (so that by = 0) and &, (so that B, = 0). If follows that then p(f|data) =
Ga(f|v + 3,1) and

L(n+v+3)
n! T(v+3) ontvty

pY (n|data) = (6.2)

(Distributions, such as (6.2), appear frequently in Bayesian analysis and are sometimes
referred to as Poisson-Gamma.) Minor simplification also occurs in the denominator of
(6.1) when k; = 0 (experiment &£;), in which case the U function in the denominator

reduces to I'(n; — 1)/I'(n1) (see (4.6)).

Since E(N|0) = 6, it follows that E(N|data) = E(f|data) so that, from (4.9) (assume

B, b1 > 0),
CM1U(C¥1 -+ 1,0(1 -+ 2 — ni, klbl/ﬁl)

(B1/b1) Ular,a1+1—ny1,kib1/B1)

Higher order moments can similarly be computed as simple functions of F(6"|data), and

E(Nldata) = (6.3)

these can immediately be derived from (4.9). Most importantly, from (6.1) we can compute
probabilities of direct interest, such as the probability that the system is heavily utilized
(Pr(N > Ny|data) for some Np), or the probability that the system is empty,

.

U(ar,a1 +1—nq, (K7 + 1)b1/51)

Pr(N = 0O|data) = U(ay, a1 +1—ny, Ki1b1/61)

(6.4)

We now turn to the computation of the predictive distribution of the waiting time, W.
It follows from (2.2), or simply from the definition of the M /M /oo queue, that p(w|u, A) =
p(w|p) = Ex(w|p). Also, in general, the marginal distribution of u, as given by (5.13), is
Ku(p|ny, by, a1, 81/k1). Therefore, for ky > 0,6, > 0,

p(w|data):/ pe” M Ku(p|ny, by, a1, Br/k1) du
0
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.\ 00 n1  p—p(w-bdy)
(51/1»1) ) / 2 € d
0

- I'(n1) U(ni,ni+1—a1,61/k1 (14 pfr/k1)™
_ ki Uni+1,n1+2— a1, (w+b1)ki/61)
fr Ulni,ny+1—oa1,B1/k1)

(6.5)

For k; = 0, that is, for experiment &; (with both the informative (5.7) and non-informative

(5.8)), it follows from (5.5) that p(u|data) = Ga(p|ny — a1, b1), so that

(ny — aq)b™ )

(w+ by)m—or+l

p(w|data) = (6.6)

Also, for 5, = 0 (that is for the non-informative case with £4), it follows from (5.16)
that p(uldata) = Ga(ns,ts), so that p(w|data) will be of the same form (6.6) with n,, ¢,
substituted for (ny —ca;1) and by respectively. (Distributions, such as (6.6), are also common

in Bayesian analysis and are sometimes called Gamma-Gamma distributions.)

Since W ~ Ex(u), EW"|u)=T(r+1)/u". Also, if, in general, u ~ Ku(a, 8,7, ),

then, for r < o

E<L>: 5" T(a—r) Ul@—r,a—r+1—7,B/s)

ur INa) U(g,a+1-1+,5/6) (6.7)

Thus, for r < ny (recall that ny = ng + dang + d3ns), E(W"|data) =T (r+1) E(1/u"), as

given in (6.7). Interestingly enough, and in contrast to the distribution of N, the predictive

distribution of W has only n; — 1 moments. In particular (for k3 > 0 and 5, > 0),

(Br/k1) Ulni—1,n1 — on,kib1/B1)
(n1—1) U(ni,ni+1—a1,kib1/B1)

E(W|data) = (6.8)

An important result in queueing theory, known as Little’s formula, applies to any
system in statistical equilibrium (that meets very general regularity conditions) and es-
tablishes that the expected number of customers in the system is equal to the arrival rate

times the expected time spent in the system. In our case, Little’s formula establishes that
E(N|A, p) = AE(W | ). (6.9)

A question that might arise is whether the relation also holds unconditionally, that is,

whether or not

E(N|data) = E(\|data) E(Wldata) . (6.10)
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It follows from (6.9) that (6.10) holds only if the random variables A and E(W|u) = 1/ are
independent a posteriori, which is only true for experiment £; (with both the informative
independent prior and the non-informative prior) and £3 with non-informative prior. This
fact can also be checked directly. Indeed, it follows from the expressions for the posterior

expectations of N, A and W, as given in (6.3), (5.21) and (6.8), that (6.10) holds only if
U(al,al + 1 s1, klbl/ﬂl) =N U(a1 + 1,1 +1—nq, k’lbl/ﬂl); (611)

but, when applying the following general relation for the U function, (see Abramowitz and
Stegun, 1964),
(b—a)U(a,b,z)+U(a—1,b,2) = 2U(a,b+ 1, z2),

we get
—T1 U(Oél + 1,0[1 + 1-— ni, k’lbl/ﬁl) + U(al,al -+ 1-— ny, klbl/ﬁl)

= (k1b1/B1) Ulor+ 1,01 +2 —ny, kib1/B1). (6.12)

The RHS of (6.12) equals 0 (which establishes (6.11)) only if k1 = 0 (experiment &) or

b; = 0 (experiment £ and non-informative analysis).

7. Transient behavior

An added bonus when studying M /M /oo queues is that the analysis of the transient
behavior of the queue is relatively simple. Since we will not be assuming steady-state
in this section, the only experiment that makes sense is experiment £;. Recall that the

Ga(Mag, Bo) Ga(p|ao, bo) prior for (A, ) is equivalent to

—~—

(0, 1) o %01 g=Fobn  jaotao—l o—bou : '(7.1)

Hence, it seems more natural (and will be seen to also be more convenient computationally)

to express p(@, 1) as

p(0, 1) = p(0lp) p(p) = Ga(Olao, Bop) Ga(plao, bo), (7.2)

instead of using the p(0)p(1|0) representation that we have been using so far. The posterior
then is Ga(f|a, f1p) Ga(plar,b1), with a1 = ag+ne, B1 = Po+ta, a1 =ag+n, by =
bo + ts.

20



Since, in this queue, the waiting time is simply the service time, whose distribution is
time-independent, we only need to compute the predictive distribution of N(¢), the number
of customers in the system at time ¢ (also, the number of busy servers). We recall that
N(t)|0, u ~ Po(6(1 — e™#*)), as given in (2.3). Hence:

o0
p[N(t) = nlp, data] = / Po(n|0(1 — ™)) Ga(Blay,fip) db
0

Bt Tleatn) (1 enkmug

7.3
T'(a1) n! (1 — e #t + Byu)ortn’ (7:3)
and finally
p[N(t) = nl|data] = / PIN(t) = nlu, data] Ga(ular,b:) du
0
_ B Tleatn) /°° (et e o
T I(e) T(a)  nl 0 (I—ewt poctn A0

The integral in (7.4) must be evaluated numerically, but it is a simple univariate integral.

The moments can be derived in closed form using the following result, whose proof is

straightforward:

Result 7.1

If a random variable X has a Ga(a, b) distribution, then, for n < a
e " b T'(a—n)
(%) =@ o (7)
To compute E[N(t)|data], note first that, since E[N(t)|u, 0] = 6(1 — e™#*), then

ai(l — e #t)

E[N(t)|u, data] = (7.6)

B
so that, by (7.5),
o1 1 e Ht
EIN =1 E,u/data(__) _ Eu/data(_)
IN@ldata) = 52 (/% )
onby by \*7!
(a1 - 1) [1 " (bl + t> } . (1)

In a similar way, since E[N2(t)|u, 8] = 02(1 — e7#*)2 + (1 — e~#t), it can be shown, after

some algebra, that

2 N al(Oél + 1)[)% a1by albtlll
E[N (t)[data] _(al - 1)((11 - 2)/6% (al — 1)[81 + ;81(011 — 1)(1)1 n t)al—l
ay(ag + 1)b7* [ t B 2 } 8
B2 (a1 —1)(a1 — 2) [ (2t + by)ar—2 (t+b1)a=2] ° .
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We finally consider an extremely interesting issue that we might want to explore when
analyzing a transient M /M /oo queue, namely to investigate whether the queue is basically
in equilibrium, or, more generally, to predict how long the queue will have to run so that
its behavior, will, with high probability, be close enough to steady-state. The issue, in
its entire complexity, would require careful determination of the analysis to be performed
(for instance, predicting N(t) for some ¢ as opposed to predicting N) and determination
of how “close enough” is going to be measured (maybe as some measure of distance, such
as the Kullback-Leibler directed divergence between the predictives for N(¢) and N). In
this paper, we content ourselves with a very simple, preliminary analysis that produces

the desired prediction.

Our proposal is to report the value of ¢ for which, with high posterior probability,
the transient p(N(¢) = n|0, u) would be close enough to the steady-state p(IN = n|f), or

equivalently, for which their ratio,

p(N(t) = nl0, p) — (f — e\ oy e Ht

is smaller than 1. Since (7.9) is a decreasing function of n, it follows that, if (7.9) is close to
1 for n = 0, then it will be close to 1 for all values of n. (We are here taking, as a measure
of distance between the distributions of N(¢) and N, the maximum of the probability ratio;
again, more sophisticated measures of distance between these two distributions could be

used.) Hence, the desired ¢ is such that
Pr{ exp (e ") < 1+ £|data} > 1 — «, (7.10)
for fixed valuss of £ and . We can rewrite (7.10) as
Pr{fe " <log(1+ &)|data} > 1 — c. (7.11)
Defining w; = fe~#?, it is immediate from the joint posterior of (#, u) that
p(wy, pldata) = Galws|ay, Bipe*)Ga(play, by). (7.12)

From (7.12), the marginal posterior of w; can be numerically computed and the equation
(7.11) numerically solved. To the best of our knowledge, this simple and useful analysis

has no classical counterpart.
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Appendix

We present here the Fisher information matrices for the four experiments &1, &2, £3, €4,
as derived from the likelihoods (3.1), (3.2), (3.3), and (3.4), respectively. Under rather
general regularity conditions, the Fisher information about a random vector 6 from a
sample z = (z1,...,2,) with a joint density f(z]6) is given by the matrix I() with i-]
element given by 52

150) = B gz 19)]
Also, the Jeffreys prior is given by p"(8) o det[I(§)]2, where I(6) refers to the Fisher
information in a single observation z and det[A] stands for the determinant of matrix A.

When we apply these results to (3.1), (3.2), (3.3), and (3.4) we obtain:

Ezperiment &

3

e 0 Ng N
Il(/\al"') = ( )(\)2 TL_; > ) det[Il(/\7/'L] - :\‘5 E;_a
°

pY (A ) oc A7t 7t and pY (6, p) oc 67

Ezxperiment &,

Bng+X 1 ( 2
2 Z png + A)(pns +A) — A
LA p) = < f/\_1_ unﬁ!—A) , det[I2 (A, p)] = N2 ’
p? ne
24 2p0)3 20 +1)7 1
Y (O, 1) G 2;) , and pj (9,u)0<( 9 ) “

Ezperiment &3

Lg 4 A _ 1

I (A p) = ( 8

27 ) det[Ts (A )] = 2
ﬁ)\g)’ 6[3( ,,U,)] /\/«’:3’

>
— o

]

n

, and P} (0,p) o 07371

_32
2

PY (A p) o A2
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Ezxperiment £,

1 1

TN Y Ng
14(/\7/1) = (__)\1_ nsngf-,\ ) ’ det[I4(/\7/1‘)] = /\/1'3’

w2 13

PO p) oc A"Fp™%, and pf (0, p4) cc 67 Fp
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