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Abstract: This paper concerns the global performance of the ker-
nel estimators considered in Zhang (1992) for a mixing density
function g based on a sample from f(z) = [ f(z|0)g(8)d6 under
L? loss, where 1 < p < oo and f(z|f) is a known exponential
family of density functions with respect to the counting measure
on the set of nonnegative integers. Fourier methods are used to
derive upper bounds for the rate of convergence of the kernel es-
timators and lower bounds for the optimal convergence rate over
various smoothness classes of mixing density functions. In par-
ticular under mild conditions, it is shown that these estimators
achieve the optimal rate of convergence for the negative binomial
mixture and are almost optimal for the Poisson mixture. Global
estimation of the mixing distribution function under L? loss is
also considered.

Key words and phrases: Mixing density, kernel estimator, dis-
crete exponential family, rate of convergence.

1 Introduction.

Let X;,...,X, be independent observations from a mixture distribution
with probability law '

al
o flesa)= [ falB)g(0)ao,

where f(z|0) is a known parametric family of probability density functions
with respect to a o-finite measure u, and g is a mixing density function on
(0,6%). Suppose

(2) f(z|6) = C(6)q(z)8®, Vz=0,1,2,...,

where 0 < 6 < (or <) 6* < o0, ¢(z) > 0 whenever z = 0,1,2,... and pu is
the counting measure on the set of nonnegative integers.
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Zhang (1992) considered a class of kernel estimators for the mixing den-
sity function g, its derivatives, and the mixing distribution function, and
proved that the mean squared error at a fixed point achieves or almost
achieves the optimal rate of convergence under mild conditions. In this pa-
per we consider the LP properties of these estimators and the optimal rate
of convergence under these global criteria. In particular, Sections 2 and
3 give upper bounds for the convergence rates of these estimators for the
mixing density and distribution respectively for the case where 6* is finite
and known. Section 4 supplies corresponding lower bounds for the optimal
convergence rate. A consequence of the results in Sections 2, 3, and 4 is
that, under mild assumptions, the kernel mixing density estimators are op-
timal for a negative binomial mixture and are almost optimal (except for an
iterated logarithmic factor) for a Poisson mixture [Corollaries 1 and 2, and
Theorem 3].

Section 5 considers the case where 6* is infinite. Upper bounds for the
convergence rates are obtained for an improved version of the kernel esti-
mator. Unfortunately the results are less satisfactory here compared with
the lower bounds stated in Section 4; the upper and lower bounds differ by
some power of a logarithmic factor even for well behaved weights.

A key point of this paper is that in general, without further assumptions,
global nonparametric estimation of a mixing density (or distribution) of a
discrete exponential family is difficult in that the optimal rate of convergence
is logarithmic (not polynomial).

Among related mixture problems, the deconvolution problem appears
to be the best understood. Recent and important advances to the solution
were made by Carroll and Hall (1988), Fan (1991a), (1991b), Zhang (1990)
and many others using Fourier analysis. In particular kernel estimators for
the mixing density (or distribution) have been obtained which achieve the
optimal convergence rate.

Another problem that has been of much interest is the estimation of
the mixing distribution of a Poisson mixture. Tucker (1963) approached
this problem through the method of moments, and Lambert and Tierney
(1984) and Simar (1976) considered the nonparametric maximum likelihood
estimation for the mixing distribution. Loh (1992) and Zhang (1992) have
independently obtained results on this problem as well as for mixtures of dis-
crete exponential distributions via Fourier analysis. Walter and Hamedani
(1991) successfully applied orthogonal polynomial techniques to mixtures
of exponential families. Rolph (1968), Meeden (1972), and Datta (1991)
have also used Bayesian methods to construct consistent estimators for the
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mixing distribution.

Throughout this paper we shall denote by P = P, and E = E; the
probability and expectation corresponding to g respectively, by R{z} the
real part of a complex number z, by k() the jth derivative (if it exists)
of any function A with h(®) = h, by h* the Fourier transformation of any
integrable function h, so that h*(t) = [ e’¥h(y)dy whenever [ |h(y)|dy < oo,
and the LP-norm of any measurable function A by

(J22 [h()IPdy)*/?  if 1< p< oo,
Iall, = ol s
€ss sup-—oo<y<oo| (y)l 1 p=o0.

We shall use the notation ' and k" to denote the decomposition k = &’ + "
such that &’ is an integer and 0 < &” < 1 for all real numbers .
2 Kernel estimators.

In this and the next two sections, we shall assume that 6* is finite and
known. The case of 8* = oo is considered in Section 5.
Let k: R — R be a symmetric function satisfying

[ kady=1,  F@=0, vi>1,

(3) / Yk(y)dy = 0, V1<j<a,
and -~
) | k()i dy < oo,

for some positive number ag. Define

I{O f£z< m’n} cn 2 \T ,—1t0 1%
2mq(z)w! e, RA(it)"e™™ }k™(t/cn)dt,

(5) K. (z,6) =

where m,, and ¢,, are positive constants tending to oo and I{.} denotes the
indicator function.

Given any probability density function g on (0,6*), we shall extend its
domain to the whole real line by setting g(y) = g(y)I{0 < y < 6*} for all
y € R. Let

(6) My)=C(y)g(y), V—o0<y<oo.
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It follows from (1) and (2) that f(z;g)/q(z) = f(f‘ 6°h(6)d6. By the Fourier
inversion formula, we have

|7 b6 - y/ekia)dy
/0 " cnk(cn(6 — y))h(y)dy
So@rat [ yehisday [ RAGTE Y (e

=0 —Cn

Thus as in Zhang (1992), we observe that K,(z,8) can be used as a kernel
for h in the sense that for —o00 < 6 < oo,

(7) EgKo(X1,0) — h(0) = b1,(0) + b2,(8) — 0,
as (my, ¢p) — (00, ) along a suitable path, where
®) bin(8) = [ [0 - v/ea) - B(O)k(y)dy

and

(9) bzn(a) Z fO “”h(?/)dy/ R{(zt)m _’w}k*(t/cn)dt

!
s 2rx -

With this as motivation, we estimate g(8) by

(10) n(0) =n71 i {Kn(X;,0)/C(0)} {0 <0< a,}.

=1

The constants m,,, ¢,, and a, are chosen such that

(11) ¢+ max log(1/¢(z)) < fologn,
(12) cn < (8%¢)"H(my, — By log Cn),
and

A if C(6*) >0,
(13) an = { 9 — a*/cn if C(a*) =0,

with some constants 0 < fp < 1/2, f1 > 0, and 0 < a* < oo.
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We shall investigate the global performance of the estimators §, with
respect to the following classes of mixing density functions. Let 1 < p < o
and w be a measurable function on (0, 6*) with [|w||, finite. For & > 0 we
define G, g+ = Go,9+(p, w, M) to be the set of all probability density functions
g on (0,8*) such that

(14) lw(6){g*)(8) — ¢ (8 + 8)}Ip < MI8|*", V5,

where o is the integer with 0 < o’ = a— o/ < 1, and M is a constant such
that G, ¢+(p, w, M) is nonempty.
Assume that there exist constants v > 0, C§, C%, and C% such that

(15) sup (8" —6)7/C(8) < CT,
0<8<0*

(16) sup (8 — 0)/|C)(8)|/{C(6)i} < C;, VO<j<p,
0<0<o*

and

(17) ICCNG+6) - CW)9) < C36°", 0< 0 < 0+6 < 6,

where p’ is a nonnegative integer with 0 < p”" = p— p/ < 1.

REMARK. If C(6*) > 0, we shall set v = 0 although (15) holds for all
7 2 0 and p > 0. Conditions (16) and (17) are satisfied for every p > 0, if
C(0) is an analytic function in a neighborhood of §* (e.g. C(8) = (1 — §)
with 0* = 1 for the negative binomial family).

Throughout the paper, we use Remy(z, 8, m) to denote the remainder of
the (m + 1)-term Taylor expansion of h, which can be written as

Remy(z,8,m) = h(:v+6)—ih(j)(x)6j/j!
=0

(6 —y)mt

(18) o (m — 1)' {h(m)(x + y) - h(m)(z)}dy

Theorem 1 Suppose o > 0, 1 < p < o0, and that (15)-(17) hold with v > 0
and p=a+7. Let g, be given by (10) with the kernel K,(z,8) in (5) such
that cg > o+ v in (4). Let (11)-(13) hold with 81 > o+ 4. Then

sup{ Eg||w(dn — 9)llp : 9 € Ga,o(p,w, M)} = O(c;®) .
Corollary 1 Suppose the conditions of Theorem 1 are satisfied and

(19) ¢(z)BoB*(z")? > 1, Vz >0,
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Jor some constants By, B, and 3. If (11) and (12) hold with equality, then

{ O(1)(1/ logn)® if 8=0,

sup Egllw(gn — )il = O(1)(loglogn/logn)™ if 0 < 8 < oo.

9E€Ya,0*

REMARK. Corollary 1 applies to negative binomial and Poisson mixtures
for which 8 = 0 and 1 respectively.

PrOOF OF THEOREM 1. Let X[o,5}(8) = I{0 < 6 < a}. Since gi)(6—a) =
0 for 0 < 0 < a, by (18) and (14)

lIxio,a1wg |,
= ”X[o’a](a)w(ﬂ)Remg(,-)(O —a,a,a — j)”p

¢ (a - y)a'—j—l (o) (e')
=y [0 ~ a4 ) - 6 - )} ay
a ((1 - y)a'_j_l _ ol ol
< A (a'—j—l)!M{l ‘.Jl+yl + a* }dy,

so that foralla >0 and 0 < j < o

(20) IX0,a1wgDllp < 2Ma*~3j(a/ - j)! .

Taking the expansion at § + 6* — a, we obtain in the same manner

(21) 111~ Xpoa)wgllp < 2M (6"~ )*~ /(' = j)!, 6 < 0,0 < j < o
Let xn(0) = I{0 < 0 < a,} and 6, = 6* — a,,. By (6) and (7),

Eyllwn =l < Eylw(@n — Edn)llp + lxawbin/Clly
Hlxnwban/Cly + (1 = x0)gly -

By (21) and (13), ||(1 — x»)wgll, < 2M &2/t = O(c;*). This and Lemmas
1 and 2 below imply that

Eqllw(gn = 9)llp < O(cz®) + O(cz* M)l|wllp/Clan) -
This proves Theorem 1 by (15) and (13).

Lemma 1 Suppose the conditions of Theorem 1 hold. Then,

E, sup |07 Kn(X;,0) — E,Kn(X1,0)| < 272450 k|| /x

—00<f0<o =1
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and

)*COG Nkl g CONE
w(z +1)! - 76*

s @)l ¥ @

T>mn

Lemma 2 Suppose the conditions of Theorem 1 hold. Then,

”anbln/C”p < 0(cz”),

where the O(1) is uniform over G, g+(p, w, M).

We refer the reader to Loh and Zhang (1993) for the proofs of Lemmas
1 and 2.

3 Estimating a mixing distribution.

Suppose the marginal density of X is

9#

(22) J(@:G)= | f(216)dG(6),

where f(z|0) is as in (2) with 6* finite and known, and G is the mixing

distribution. If the density g = G’ exists, then f(z;G) = f(z;g). In this

section we consider the estimation of the mixing distribution G. Our results

here are parallel to those in Section 2 for the estimation of the mixing density.

We denote by Eg the expectation when G is the true mixing distribution.
Let K,(z,0) be as in (5), and define

n ooy [ 0T L [ Ka(XG,9){C(y)} My 10 <0< ay,
(23) Gn(6) = { 1 if @ > a,,

where a,, is as in (13), and a, is a negative constant such that 1/C(y) =
Y a0 q(z)y” is an increasing analytic function for a, < y < 6*. Similar to
(7)-(9) , we have

(24) EGGr(8) — G(6) = B1n(8) + Ban(6) — 0

for 0 < 0 < a,, under suitable conditions, where

@) B = [ [ {ZEZUD 66 - ek - Go)
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and

(26) Ban(8) = — 3 I v*h(y)dy /_ . {(it)“’ 0 Z,_(zt;dz} k*(t/c)dt.

T 9pal
ol 21!

Let & > —1 and 1 < p < 00. Define ga e = g;d{;.(p,l M) to be the set
of all probability distribution functions G on (0, 0*) such that
(27) |G+ (8) — G+ 4 6)|, < M|s|*", V6.

REMARK. If 0 < 1 +a < 1/p,and M > 1, then g;‘f’,f. is the class
of all distribution functions on (0,6*). If & > 0, then g;‘fg.(p,l,M ) =
ga o* (pa 1 M)

Theorem 2 Let @ > —1 and 1 < p < oo. Suppose (15)-(17) hold with
p>a+l+max(y,1)ify#1landp>a+2ify=1. Let G, be given by
(23) withao > o+ 147 in (4) and B1 > a+ v in (12). Then,

sup{EgGn = Gllp : G € Goe(p,1, M)} = O(e;>7).

Corollary 2 Suppose the conditions of Theorem 2 are satisfied, and that
(19) holds for for some 0 < 3 < oo. If (11) and (12) hold with equality,
then

O(1)(1/logn)>+! if =0,
e Fall(Ga = Gl = {O(naoglogn/logn)aﬂ §0< 5 < co.

Proor oF THEOREM 2. Let x,, and 6, be as in the proof of Theorem
1. By (24)-(26) and Lemma 1,
Eall(Gn - )l

< Ecl(Gn = EgGn)llp + IXn(Bin + Ban)llp + I(1 = x2)(1 = G)|l,

< 0(e;* )+ IXnBinllp + (1 = x2)(1 — G)ll;-
Note that | [7 e~*2{C(2)}~1dz| < 2/{|t|C(8)} implies
)*C(0)er Ikl

m(z 4+ 1)!

By the proof of (21), we have [|(1 - x,)(1 - G)||, < 3M82*t1/(o/ + 1)!. The
conclusion follows from

Lemma 3 Under the conditions of Theorem 2, ||xnBin|l, = O(c;*™1),
where the O(1) is uniform over g:d’;.(p, 1, M).

0*
cn”XnB2nC”oo < 2(1 + l/m’n-) Z (

T>Mn

This lemma is proved in the Appendix.
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4 Optimal rate of convergence.

In Sections 2 and 3, we obtained upper bounds for the maximum || - ||,
risk of our kernel estimators over the classes G, g = Gy 9+(p,1, M) and
g;‘fg. = ;‘%. (p,1,M). Here we derive corresponding lower bounds for the
rate of the minimax risk

(28) Tn,a,0% = iélf sup{ Ey||§rn — 9llp : 9 € Ga,o+(p,1, M)}

and )

(29) Y e = inf sup{Ec]|Gn - Gll,: G € g4, (p,1, M)},

where the infimum runs over all statistics §, and G, based on X1,...,Xn,
and G, ¢+(p, 1, M) and g;‘f{;.(p, 1, M) are given by (14) and (27) respectively
with w(8) = I{0 < 6 < 6*}. The rates of (28) and (29) can be regarded as
characterizations of the degree of difficulty for estimating the mixing density
g and the mixing distribution G respectively.

Theorem 3 Let 1, 40+ and Y be as in (28) and (29) respectively.

n,0,0*

(i) If1 <p< oo and a > 0, then
lim inf (log n)%rp 06+ > 0.

(i) If 1 <p< 00 and a > 0, then .

cdf
n,o,0*

lim inf (log n)*t1y > 0.

The basic idea behind the proof of Theorem 3 is to find mixing densities
gons 9in, and gap in G4 g+(p, 1, M) such that max;—y2|/gjn — gonll» tends to
0 at a much slower rate than f(.;9;,) — f(:;90n), 7 = 1,2.

The densities g;, are constructed in the following manner. Let a, 6,
and 6, be fixed constants satisfying 0 < a < 6y < 6; < 0*. Define

(30) hyw(0) = vueu_le_ue/l‘(u)

and
hy,(6)/C(0), if 6 < 6o,

(31) Guw(80) = 1(0)/C(0), ifby <6<,
0, if6; <4,
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where [, , is a polynomial of degree (20 + 1) such that g,, is &' times
continuously differentiable. Let gy be a probability density in G, g+, and
define

6o

Un

3w0

52 gon(0) = 900) + 707 () (G (6) — wno(0)

w 0\“T. 0—a Win
(33) 910(6) = ou O+ () [in (80 552) = 22] gurn9),

Un 0 Won

Un 1} Won

w 9 \¢ 0—a Wy,
(59)920) = g0n O+ s (1) [0 (10 752) = 2] gurn(6),

where the constants w;, are given by [ ¢;,(6)d8 = 1, wg is a small positive
constant, u, = églogn, and v, = u,/a, with

_ 8o/ (61 — o) 1 2
bo = m‘”‘{ 10g(61/00) ’Bo/a — 1 — log(6o/a)’ log(1 + a2 /ag)} '

Note that for (p — 1)/(2p) + & > 0 and small wo, g; are all close to gq.
We shall show in the proof of Theorem 3 that

(35) pn= i}lf max (Py{”.an — gllp > €o(logn)™*} : g = gon, gin, OF g2n)

is bounded away from 0 as n — oc for some g9 > 0, and that g;,,0 < j < 2,
are members of G, ¢+(p, 1, M) for small wy and suitable go. This will prove
the theorem since 7, g+ > €gpn(logn)~?.

Lemma 4 Let h,, be given by (30) with u/v = a. Then as v — oo, we
have -

1670 (8)lloo ~ a®~/u/v2r, Ve,

and for 1 < p < oo,

lhuolly = (v"/T(u)){T(pu— p+1)/(poy*-P*1}/>
~  {u/(2ra?)}P=1/(2p)y=1/(2p)

In addition, there exist constants ¢; such that

|BE)(0)|/hun(B) < €567 {1 + |u— 1 — v8)’ + (v8)/%},  Vj >0,
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and as u — o©
B 1o/ |Buplly = a= 3w/ 2{E|Q;(»=2/2Z)|P} P,  ¥j >0,

where Z is a N(0,1) random variable and Q ;(z) are polynomials such that
- d
Qi(2) = 2Q;(2) - —Qj(z), Qo(z) =1.

If u = u, and v = v, as in (33) and (34), then |h,(f;2,(00)| = O(n~ 1w t1/?)
and

(120 (6)I{6 > G0} |, < (2783 /u)~ P~/ CP)p=1 1 < p < .
REMARK. It can be proved by mathematical induction that

j!(—l)’a;j‘zl

Qi) = —anuml

0<i<i/2 (7
It is also clear that 0 < E|Q;(p~'/2Z)|F < co.

Lemma 5 There exists a constant C* = 02,90191 such that

(36) I(6)1{00 < 6 < 61}, < C* Y- |n)(80)]
3=0

Jorallu>0,v>0,1<p<oo,andm>0. Ifu=u, and v = v, as in
(33) and (34), then [P}y = O(a~"u2*%).

Lemmas 4 and 5 are proved in the Appendix. We also need the following
result from Zhang (1992)

@) 3 @) /0 " cos(u(® — a)/80)0%hu o(0)d8]| < 3/(nC(81)).

=0

Proor oF THEOREM 3. For the sake of clarity, we shall break the proof
down into 4 separate steps and drop the subscript » in u, and v,. Part (i)
is proved in Steps 1-3, while Part (ii) is proved in Step 4. Also, we shall use
the notation xo = I{0 < 8 < 65} and x; = {6y < 0 < 6,}.
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STEP 1. Verify the membership of g;, in G, ¢+(p, 1, M). Let €, > 0 and
go be a density function in G, ¢+(p,1, M — €1) such that

(38) go(0) > e1x1(0), V6.

For small ¢; > 0, such go exists if G, ¢+ is nonempty.
By Lemma 5 ||x19uslloo = O(n~1u*'t1/2), Also, we have by (32)

(39)  1/C(06) +o(1)2 won = [ guslu)dy > 1/0(0) + (1),

a5 Jwon — [Xogualli] < Ixtguoll = o(1) and 1/C(80) > lIoguslh > (1 -
(1 = x0)hunv|1)/C(0). By (32), (38) and Lemma 5, x1g0, > 0 for small
we and (p — 1)/(2p) + a > 0. It follows that go, is a density function, as
X0gup 2 0. In the same manner, we find |w;,| < wo, + 0(1), so that by (33)
and (34) g1, and ga,, are all density functions.

It remains to verify (14). By the smoothness of C(8) on [0,6;] and
Lemmas 4 and 5, we have

u—(P—l)/(%)“gf"z)“p = O(um/2) =0@w™), m=d,d +1,
which. implies

"

u~P=0/@R) = 6(2) (6) — g{%)(8 + 6)]|p = O(1) min(u=", u'=*"5).
Since go € Ga0+(p,1, M — €1) and min(u~",u1~"§) < 6",
lagz(6) = 9628 + 8)llp < (M — &1 + O(1)wo)s*"

by (32). This implies (14) with g = goy, for small wp. Since 1(d/d6) ho(u(8—
a)/00)|lco = (u/00)’ for ho(y) = sin(y) and ho(y) = cos(y), we also have

-7,

IA

w000 I m—|
0<1>u<p_1)/<2p>+azuy“np{l+<u/eo>‘ '}
= weO(u™"%)
for m=a/,a' + 1, and j = 1,2, so that
1(gin = 90n))(8) = (gin — 90n) V(6 + 6)llp = O(1)wo8™".

Therefore, we also have (14) with ¢ = g3, and g3, for small wy.
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STEP 2. Next we shall show that

(40) i |f(z; 9n) — f(z; gon)|
=0
Z q() / 6°C(0){g;n(0) — gon(0)}d9‘ = o(n7").
z=0

We shall only prove this for gs,. Set I, 5(8) = 6%, ,(8). By the definition
of l,, and Lemmas 4 and 5 we have

1. (60)| = 0(1) Z(z + 196579 B9 (80)| = O(n1um1/2) (& + 1)765,

for m > 0 and by Lemma 5
01 ’ - 7 I
/ 4D (9)]d8 = O(n= u+1/2)(z + 1) +165.
o

U,z

Integrating by parts o’ + 1 times, we obtain

/:1 cos(u(f — a)/00)6L,,,(8)d6

IA

6o/ [ &“;,*;”(0)|d0+z(oo/uy“u(f (00)

O(n—lu—1/2)(z + 1)a'+10;:,

IN

so that
Z q(z)
=0

= O Y)Y ga)(a + 1T HEE = o(n™Y).

z=0

/ cos(u(6 — a) /00)0”lu71,(0)d0’

It follows from (31) and (37) that

(41) Z q()

z=0

/ cos(u(f ~ a)/Bo)Hﬂ”C(B)gu,,,(O)dH\ = 0(n™).
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Since }°, q(z)0°C(0) = 1, (39) and (41) imply
_ ”gu,vlll 01 - _ -1
(82) lguslh | 22| = T2t | [ cos(u(0 - )/ 00)gu(6)d] = O(n™)

Thus, by (34) the left-hand side of (40) is o(n~1) for j = 2, as it is bounded
by the product of wof§u~(P~1/(?P)=2 and the sum of (41) and (42).

STEP 3. Verify (35) and prove Part (i). In view of (40), we only need to
show
(43) lim inf (logn)* max llgjn — gonllp > 2eo,

Wan

Won

for some positive constant 9. By Lemma 4 there exists a positive constant
61 such that for large n

CO)lgunll, 2 Nrunll, = 11— x0)huall,
> (r-1)/(2p) _ -1, (p-1)/(2P)y > §,4,(P—1)/(2p)
2 26111, O(n u ) 2 61111 .
Since max{| sin(z)|,| cos(z)|} > 1/v/2, by (33) and (34)
wal(u/%)a{”gln - 90n||5 + |lg2n — 90n||5}1/p
w6 (1/VE - max wja /vl ) 190l

(B/CO} (1/VE - mpx /e

which implies (43), as wjn/wo, — 0 and u = §plogn.

STEP 4. Prove Part (ii). Let Gy, and Gj, be the integrations of g, ,

and g;, respectively. If @ > 0, then g;, € Gop+ C g;‘f’g. by Step 1. For

a = 0, we have

v

v

1Guu(0) = Guw(0 + 8)llp < 6llgunlly,
so that g;, € ggﬁ{. for small wo by Lemma 4. By Step 2, Part (ii) holds if
(44) ﬁrfr_l.igéf (log n)**! max |Gjn — Gonllp > 2¢0.

Integrating by parts three times, we have

/: cos(u(y — a)/00)gu,o(y)dy

3
= Z(—ﬁo/u)j cos(u(f — a)/6o — .7'7"/2)91(4{;1)(0)
=1

J=

+(0o/u)? /00 sin(u(y — a)/00)g,(f?,(y)dy .
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It follows from (33), (34), (42), and Lemmas 4 and 5 that
|G2n — Gonllp = (6/u)(1 + O(1/v/))llg1n — gonlly ,

and likewise

1G1n = Gonllp = (6/u)(1 + O(1/v/u))lg20 — gonllp -
Hence, (44) follows from (43).

5 The case of infinite 6*.

The natural value of §* in (2) is 65 = sup{f : 3", ¢(2)6® < oo}. If (19)
holds with 8 = 0, then 6 is finite and known, and we can set §* = 63 and
the results of Sections 2 and 3 follow. However if (19) does not hold for
B = 0, then 65 = oo and the condition #* < co becomes an assumption in
addition to the knowledge of ¢(-). In this section, we consider the case of
0* = 0o. Upper bounds of the LP risks of our kernel estimators are provided
in Theorems 4 and 5 below, which are proved in the Appendix. The lower
bounds of Theorem 3 still apply here.
Let 7 = /8. Define

(45)  Ksu(z,n) = [vg(2)(22)]71(-1)® /c,. cos(tn)tz“’k*(t/cn)dt,

—Cn

where k is as in Section 2 and ¢, is a constant tending to co. Set
(46)  g5(n) = 9(n*)I{n > 0}, Cs(n) = 20C(*), ho(n) = gs(n)Cs(n)-
Since f(z;9) = [ y**hs(y)dy by (1) and (2), we have
EgKopn(X1,m) = 20C(0*)g(n*)I{n > 0}
= [ enlbleatn = )+ Kealn + u)}halu)dy  ha(n)

= ban(n) + ban(n)
by the Fourier inversion formula, where
(47) ban(n) = [ k(u){ha(n = y/en) — ho(m)}dy,

and

(48) ban(m) = [ K@hay/en = m)dy.
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Zhang (1992) proposed to use K, ,(z,+/a)/[24/aC(a)] as a kernel for g(a) in
the case of §* = 0o. Define

(49) Gin,00(8) = Gon(VO)I{a}, < 0 < a1}, Gom(n) = n7" Z y g(é;’)’ )
where ag, and a;, are positive constants tending to 0 and oo respectively.
We shall study the global performance of this estimator under weighted L?
loss functions.

Let 1 < p < 0o and w be a measurable function on (0, 00) with [|w||, <
co. For a > 0 we define G, oo = Gu,0o(p, w, 1, M, M) to be the set of all
probability density functions g on (0, 00) such that

(50)  llws(inD{g™(n+8) — )M}, < MIS|*", V6,
(51) w(8)9()I{0> a}ll, < Mi[C(a)]**, Va>0,

where wy(7) = (27)/Pw(7?), and a1, M, and M; are given constants. Note
that with n = V8, ||w(8)ho(v8)|l, = ||ws(n7)ho(n)]], for all Borel functions
ho.

We assume that for every 0 < § < 1 there exists a finite constant C}
such that .
(52) ICOB{C®)} < C3, W8>0,

for all 0 < j < p. This condition holds for C(f) = e~? of the Poisson
mixture.

Theorem 4 Leta > 0 and 1 < p < oo. Suppose (17) and (52) hold with
p>a(l+1/a) and p > a+ 1, and that

(53) ¢(z)BoB¥[(22)1)°/? > 1, Vz >0,

Jor some constants By, B, and 0 < § < 2. Let §, o be given by (49) with

Gon = Gx/Cn, C(a2,) = c_a/al, cn = B~H{(Bologn)/(1 — B/2)}1~B/2, and
K;n(z,n) as in (45) with ag > p in (4), where a. and By < 1/2 are positive
constants. Then,

sup{ Egl|w(n,c0 = 9)llp * 9 € Garo0(p, w, 01, M, M1)} = O(1)(logn) =1 =F/2),

REMARK. The B in (53) is the same as that in (19). The Poisson mixture
satisfies the conditions of Theorem 4 with 8 = 1.
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Now let us consider the estimation of the mixing distribution G for §* =
0o. Define

(54) G oo(8) = n Y0 foﬂ Ko X5, 9){C(y®)} 1dy if 0<0<a,
' 1 if 0> a2,

where K ,.(z,7) is given by (45), and 0 < a, — oco. Similar to (24)-(26)
and (47)-(48) we have

(55) EGGn,OO(e) -G(0) = B3n(\/5) + B4n(\/§)
for 0 < 8 < a,, where with G,(y) = G(y?)I{y > 0} and C,o(y) = C(y?),

Bt = [ [ { Sz .60 - ekt - 6.t

and

Cs Q(Z)

Let 1 < p < oo and unction on (0,00) with |jw|, < o0. For a > 0
we define Gy oo = Ga,00(P, w, @1, M, My, M3) to be the set of all probability
density functions g on (0, 00) such that

(56)  |lws(InD{GECHV(n+6) - G, < M5, V8,

But=-[" [ { Caoly/en - z)}desw/cn—z)k(y)dy.

(57) lw(6)(1 - G(O)I{6 > a}ll, < Mi[C(a)]**, Va >0,
and
(58) G(0) < M00t)/2 v > 0,

where w, is as in (50), and @y, M, My, and M, are given constants.
REMARK. Although b3, (7) — 0 for —00 < 7 < © as ¢, — 00, bgn(n) —

hs(—n). Thus, the bias of Gy o will not tend to 0 if we integrate from a

negative number in (54) as we did in (23). This caused us to add condition

(58).

Theorem 5 Let o > ~1 and 1 < p < 00. Suppose (17) and (52) hold with
p > (e +1)(1+ 1/ay), and that (53) holds for some 0 < B < 2. Let Gp oo
be given by (54) with ¢, as in Theorem 4, C(a2) = c_(a'H)/al, and ag > p
in (4). Then
sup{ Egl|w(Gn,co — G)llp : G € G4 (v, w, 1, M, My, My)}
= O(1)(logn)~(¢+)(1=6/2),
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6 Appendix.

We shall extend the domain of C such that (17) holds for all real numbers
6 and §. By (18) we have the expansion

4
(59) 0(0 - y/cn)g(a - y/cn) = Z é‘j(oa _y/cn)
J=1
where Ej(07 6) = 6.7'(0) 6;9,C,a, 7,/’) are given by

al

&a(8,8) = > g9V (0){67/}Remc (8,6, 0" ~ j),

§=0

Rem, (9, §, ') i cU)(9){67/3!},

=0

£&(0,6) = Remy(8,6,0/)Reme(9,46,7"),

£(0,6)

and ' )
6(0,6)= 3" g0} /i) 3 CO@)s 1.
7=0 =0

Proor or LEMMA 3. Let §;(9,6;9,C,a,v,p)be asin (59). For j = 0,1,
define

(oo}

3
Ein = En(8) = /_ S &8, —y/en; G, C, 0 + 1,7, pi)(y)dy,

0 1=1

where p; = a4+ 1 + v;, min(ye,11) 2 0, and'ma.x(po, p1+ 1) < p. Note that
the pair (g,C) in (59) is replaced by (G, C()) here. Integrating by parts in
(25), we find

(60) By, = £on(0) _ on(as) 4 /0 {C(l)(z) €on(2) B gln(z)} 0

T C(H) Claw) C(z) C(z) C(2)

Since the proof of Lemma 2 depends only on the smoothness and bounded-
ness of g(j), C'(j), and x,/C, it also applies to the components of &, and
&in. It follows that ||xnw&on/C|lp = O(c,*!) and that there exist functions
Cin With || XnwCinll, = O(c;*71) such that

COE) fon(2) _ E1n(2) _ oy o
Clz) Cl)  C(» =3~ (in(2)hijn(2),

j=0
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where ko, = C/[c°C?), by, = 1/[¢1C], and hgy = 1/[c,(8* — 6)2]. Notice
the cancellation of the term {C()/C }Rem, here. By the Hélder inequality
and the monotonicity of w, we have for fixed 8 < a,

o C(l)(z) £0n(z) fln(z)
wo) [, { ) €@~ O }
where h;,(8) = lIx{0,617n ||/ (p—1)- This and (60) imply

+0(ez*~ 1) (1+ Z”Xn Jn”p) .

3=0

2
dz| < O(C;a_l) Z Bjn(a)’
j=0

€on(ax)
Cla)
Set 0 = v, 71 = max(y - 1,0)ify # 1, and 1 > 71 > 0if ¥ = 1. Let
ho(z) = (0* — 2)7™*"1 and ho(6) = lIxo,61h0llp/(p-1)- Then for £ > 0 and
1<p< oo,

[1Xn (O)ho(B)llp < (87 = an)™"{(pk + 1)/(p — 1)}~/ {pr}~1/r.

This gives “thQn“p = O(1) by (13). This also gives ”thO‘n”p = 0(1) if
7 > 0, while {|hon|lc = O(1) by (17) if ¥ = 0. Since C(8) = "2, ¢(z)67,

(61)  lixnwBinllp < [jwlly

Xnball, < g™ E ar* (zp/(p~ 1) + 1)~ V/P(pz 4 p) 1/

=0

¢ ™ Ix=/Cllr = 0(1)

by (15) and the choice of 1. Therefore, |[xxkjn|l, = O(1) in all the cases.
The proof is completed by (61) and

on(a.)/Ca)l = | [ Clau = y/en)Gla. - y/en)bv)dy/C(a)

/a.cn a+l
—00

|k(y)ldy = O(c; 7).
Proor or LEMMA 4. The approximations for [[6%hy . (0)||eo and [[hy|l,
follow from the Stirling formula. Let Q7(z,y) be a function such that

h{9)(8) = huw(8)877 Q3 (u — 1 — v8,V0h).
Clearly @3 = 1. Since (8/09)loghy () = (v —1)/6 — v,
07971Q% 1 (u — 1 — v8,/06)
= [(u=1)/6-2]679Q} — j6971Q] + 679 [~vQ}, + V00Q]2/(29)]

IA

IN

CnOx
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where Q;‘,l(z,y) = (B/Bz)Q;f(z,y) and Q"-‘,2(a:,y) = (0/0y)Q3(z,y). It fol-
lows that

Q12 y) = 2Q3(2,y) — iQi(2,¥) — ¥’ Q%1 (2, %) + (¥/2)Q%2(=, v),

so that Q;-‘(a:,y) is a polynomial of degree 7. This gives the inequality for
[REL(O)I- |

For the || ||, norm, we have |h9,2,|1’/ lhuollh = 1077 @} |Phy(u-1)41,pv- Since
hy,» has mean u/v and variance u/v?, by the central limit theorem

(v/5/A)(6 — u/fv) = (v0 — u)/v/i — Z

in distribution under the density h, , as u — oo. Since gamma distributions
have finite moments,

7 o (- w0y yfoora)

for all polynomials @ and p > 0. Therefore, as v — oo

 hun(8)d0 — E|Q(Z, )P

1N ol = [ 187Q5(u — 1= 06, Vo) Phy(u1)41,50(6)d0

= E[(u/v)'jQ;-‘(Z\/ﬁ/P, V)P,
~ a_juj/2E|Qj(Z/\/I_’)|p’

where Q;(z) = Q;(z,1) and Q;(z,y) is the sum of all terms of degree j in
Q3(z,y). The recursion of §; follows from that of Q.

If u = u, and v = vy, as in (33) and (34), then ||h,(9)1{0 > O}, < 1/n
by Zhang (1992, Lemma 2). The rest follows, since by the expression for g
and the Stirling formula we have hy, ,(8)I{6 > 65} < 65 (27 /u)~Y/ 201,

ProoFr oF LEMMA 5. Define
1Qllo = 3= {1QV ) + 1@V} -
Jj=0

Since ||+ ||o is a norm for the (2¢/ +2)-dimensional space of all polynomials Q
of degree 2o’ + 1 on [, 1], it is equivalent to all other norms on this linear
space. This implies (36) as li(fﬂ),(ﬂl) = 0 for 0 < j < . The rest follows
from Lemma 4.
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ProOF OoF THEOREM 4. Clearly, ||w(8)g(8)I{6 > a2, }||, = O(c;*) by
(51) and the choice of ay,. Also, as in Zhang (1992)

257 |[kllx
b (SO | el | LN Bo .
ra@ @+ 1 S 2 Bollkl/(xB)

It follows from (49) and the argument in the proof of Theorem 1 that

1 Ks.n(@ oo <

Ey”w(gn,oo_Eygn,oo)“p = O(l)nﬁo_l/z max 1/03(77)

aon<nlain

= O(I)nﬁo—1/2cglax(1,a/a1),
so that
Eg|lw(@n,o0 — 9)llp < 11{0 < 0 < af, Jw(Egdn,0 — 9)lp + O(e3®).

For the rest of the proof and unless otherwise specified we shall write
everything as functions of = /8, for which w; is the actual weight function.
Set Xon = I{0 < 7 < aon}, X1n = I{aon < n < 1}, and x2n = I{1 <9 £
a1, }. By (20) and (50) we have ||wsgsXon(lp = O(c;®), so that

Egl|w(8)(§rn,00(8) — 9(O))llp < lws(Xin + X2n) (b3 + b4n)/Csllp + O(c, ),

where b;,(n) are given by (47) and (48).
Let &; be as in (59). For j = 1,2, define

3
Ejn(n, :‘/) = Zfl(n’ _y/cn;gs, Cs’aa Yis Pj)’
=1

where p; = a+7j, 11 = 1, and afo; < 72 < p— a. Then, by (47)
b3n(n) = [Em(n,y)k(y)dy, § = 1,2. As in the proof of Lemma 2, we
have ||wsxjnb3n/Cslly = O(c;®), j = 1,2. Notice that on the set [0,1]
(15) is replaced by n/Cs(n) < 1/C(1) with v = 71 = 1. Also notice
that ||x2nC’§J)/Cs||°° = o(c?) and a1, = oc}) for all small ¢ > 0, while
¥ =72>afo.

The proof of ||wsXjnban/Cslly = O(c;?) is similar and omitted. Note
that (50) implies

11{n > 0}w,(n)g{*)(6 — m)ll, < M|6|*", Ve

ProOOF OF THEOREM 5. We shall combine the methods in the proofs of
Theorem 4 and Lemma 3 with the (g, C) in (59) replaced by (G(y), Cﬁfg(y))
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in the case of B3, and by (Gs(—y),ng(—y)) in the case of By,, j = 0, 1.
This gives .

Eg|lw(Gn.0 = G)llp < O(ez*) + O(1)

| ctwremcreykwa|

The proof is completed, as the integration on the right-hand side is bounded
in absolute value by C(0)Mz [5°(y/cn)* 1 k(y)ldy = O(c;*Y).
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