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Walter and Hamedani (1989) proposed a class of orthogonal
polynomial estimators for the mixing density of a mixture of dis-
crete exponential families. In this paper the convergence rates
of these estimators are studied with respect to weighted L? loss
over various smoothness classes of mixing density functions. In
particular, sufficient conditions are obtained in which the esti-
mators attain the optimal convergence rate.

1 Introduction

Let Xi,...,X, be independent observations from a mixture distribution
with probability law

0.
(1) fwg)= | S(zlf)g(6)dd,

where ¢ is a mixing probability density function on (0,6*) and f(z|8) is a
known parametric family of probabilty density functions with respect to a
o-finite measure v. In particular we assume that

(2) f(a:|0) = C(G)q(iﬂ)ol‘, Vz = 0) 192,"',

where 0 < § < 6* < oo, g(z) > 0 whenever z = 0,1,2,... and v is the
counting measure on the set of nonnegative integers. This class is quite
broad and includes the following mixture distributions.

EXAMPLE 1. The random variable X is said to have a Poisson mixture
distribution with mixing density g if

L

P(X =)= /0 e~9(6% /2!)g(6)d8, Yz =0,1,2,-.
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EXAMPLE 2. X is said to have a negative binomial mixture distribution
with parameter v € {1,2,---} and mixing density g if

1 —
P(X=1)= /0 (z +: 1) 6°(1 — 0)”g(6)d6, Vo =0,1,2,--.

In 1989 Walter and Hamedani proposed a class of orthogonal polynomial
estimators for the mixing density g of the mixture distribution as described
in (1). In this paper, we shall investigate the convergence rates of these
orthogonal polynomial estimators with respect to weighted L? loss. In par-
ticular Section 2 gives upper bounds for the rates of convergence of the
estimators over various smoothness classes of mixing density functions. Sec-
tion 3 supplies lower bounds for the optimal convergence rates for a subset
of these smoothness classes. As a consequence of the results of Sections 2
and 3, sufficient conditions are obtained in which the estimators attain (or
almost attain) the optimal convergence rate. Finally the Appendix contains
somewhat technical lemmas that are needed in previous sections.

Over the last few years, there has been a great deal of interest in mixture
problems. Important advances have been made on the deconvolution prob-
lem by Devroye and Wise (1979), Carroll and Hall (1988), Zhang (1990),
Fan (1991a), (1991b) (1991c) and many others using Fourier techniques. In
particular kernel estimators have been obtained which achieve the optimal
convergence rate.

In the context of mixtures of discrete exponential families, Tucker (1963)
considered the estimation of the mixing distribution of a Poisson mixture
via the method of moments and Simar (1976) approached the same problem
using maximum likelihood. More recently, Zhang (1988), (1992) and Loh
and Zhang (1993) considered estimating the mixing density of a mixture of
discrete exponential families via Fourier methods and obtained kernel esti-
mators which attain (or almost attain) the optimal convergence rate under
suitable conditions. As mentioned earlier, Walter and Hamedani (1989),
(1991) and Walter (1985) considered similar problems and have proposed
alternative mixing density estimators using orthogonal polynomials.

Other mixture problems were studied by Robbins (1964), Deely and
Kruse (1968), Jewell (1982) and Lindsay (1983), (1989) among others. Rolph
(1968), Meeden (1972) and Datta (1991) used Bayesian methods to construct
consistent estimators for the mixing distribution.

Throughout this paper, we shall denote by P = P, and E = E; the
probability and expectation corresponding to g respectively, by RU) the jth
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derivative (if it exists) of any function h with A = h, and the weighted
LP-norm of any measurable function h by

Allw.p = { (f |h(y)[Pw(y)dy)'/? if 1 < p < oo,
w,p ess sup, |h(y)| if p= oo,

where w(y) is the weight function and ess sup is with respect to the measure
w(y)dy. If w(y) = 1, we denote ||.||wp by [[.||-

2 Mixtures of discrete exponential families

Let C :(0,6*) — R* beasin (2) and w: (0,6*) — R* be a measurable func-
tion such that ||C?/wl||; < co. Let {pu,,i}§2o be a sequence of orthogonal
polynomials on (0, 68*) with weight function

(3) wo(6) = C*(8)/w(6).

In particular, these polynomials are normalized so that

J
(4) pwo'lj(g) = Z ku’Orjrzaz’

z=0
with Ky, ;; > 0 forall j > 0, and

0‘
Dwo i(0)Puws,i ()wo(8)dO = 65,

where §;; denotes the Kronecker delta. We further assume that {pu,,j}52o
is complete with respect to ||.|[w,,2- Note that this is always true if * < oo
[see for example Szegd (1975) page 40]. Next define

. _ kwo,j,x/Q(-’E) ifo<z <y,
Auo,j(7) = { 0 otherwise.

We write

(5) h(8) = w(8)g(0)/C(6), VO <6 <",

and assume that the mixing density g satisfies ||g]|w,2 = ||P]||w,2 < 00. Then
h has the formal orthogonal polynomial series expansion

o0

h(@) ~ hwoyjpwo,j(o)’
J=0
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where 5
(6) h"wo,j = /0 h(a)pwo,j(g)wo(a)dg’ V] =0,1,2,---.

Observing that

E’\‘wo,j(Xl) = Z f(z;g)/\wo.j(x) = h‘wo,.’i’ Vi=0,1,2,---,

z=0

we estimate huyq,j bY Aug,; = 071 Tiey Aug,i(X:) and g(6) by
(7) Gn(8) = [C(8)/w(O)] D hun,iPuo,i(6), VO <O <6,
~

where ¢, is a positive constant tending to oo.

Proposition 1 Suppose ||C%/w||1 < 0o and ||g||lw2 < co. Let gr be as in
(7). Then

E Hgn g||w2 < {n -1 Z ma'x [k'LUo,J z/q($)]2 + Z h"wo,]}l/za
j=cn+1

With Ky, ;e and By, ; as in (4) and (6) respectively.

Proor. We observe that
B[ 132(6) - g(OPu(0)ds
= B[ 13 huniPuod(® ~ HOPwo(0)d8)
3=0

IA

(8) {3 Eg(hunj = hun)* + Z B2y i3
=0

—Cn+1

The last inequah'tyAfollows from Jensen’s inequality and the completeness of
{Puo,i}20- Since huyy,; = n71 Tig Awp,j(Xi), the r.hus. of (8) is bounded
by

nt ZE [’\wo J(Xl)] + Z hwo,3}1/2

—Cn+1

IZmax[ka,],w/q(z)]u S R

—Cn+1
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This proves the proposition. |

REMARK. The motivation for (7) originates from Walter and Hamedani
(1989) who proposed a similar class of estimators. They also obtained a
result analogous to Proposition 1.

We now study the performance of the estimators §, with respect to the
following class of mixing density functions. For positive constants a, M and
m=1,2,..., wedefine G(a, m, M, wp) to be the set of all probability density
functions g on (0,6*) such that ||g||w,2 < 00 and Y32, j2*h2 ;< M with
hu,,; as in (6). We note that this class implicitly depends on the discrete
exponential family of interest, in particular on C(8). This ellipsoidal class
is chosen mainly for reasons of mathematical tractability. However ellipsoid
conditions can amount to the imposition of smoothness and integrability
requirements, see for example Johnstone and Silverman (1990) page 258. In
our case, we have the following characterization.

Proposition 2 Let m > 1 and {pw,,;}32 be as in (4). Suppose there ez-
ist constants Vjm, j = m and another sequence of (normalized) complete
orthogonal polynomials {pwhj}?‘;o with weight function wy such that

9 [Puy,i(O)w0r(B)]™ = (=1)"Vjm,mPun,j4m(O)wo(8), Vi 20,

and
(10) 1 < Juf [viml/7* < sup Wi/ 5 < a2,

JZm

where a, oy and ag are positive constants. Then if h is a measurable function
on (0,8*) such that h(™) ezists,

0 = Jim A"I(0)[pun (0w ()6

im RD(8)[pu 3 (8)un ()]

whenever 0 < i < m, j >0, and ||h{™)||,, 2 < 00, we have
oo (oo}
a1(Y 2Ry NP S IRy 2 < @2( D7 5%RE, )2,
j=m J=m
where Ry, ; is defined as in (6).

We defer the proof of Proposition 2 to the Appendix. The following ar-
gument shows that (9) and (10) are satisfied by the classical orthogonal
polynomials of Laguerre and Jacobi.
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LAGUERRE POLYNOMIALS. Suppose wo(d) = #°e~%, with 6 > 0 and
B > —1, is the weight function of the normalized Laguerre polynomials

” ) i fiy gy .
puni® =B+ D)L (FHA)E s
J —\i-z) 4
For 7 > 0 and m > 1, we write

wy (0) = 0ﬁ+m€_0 9

Puy i(0) = [r(ﬁ+m+1)(j+ﬁj+m)]_1/2zj:(j+.ﬂ+m>ﬂ’

z=0

and

J+m
X[T(8 + m + 1)(j +ﬂj+ m)]—1/2.

Vismm = <—1)m(—j§,—m)![r(ﬂ+1>(" tA *m)]lﬂ

Then (9) follows from the Rodrigues’ formula for Laguerre polynomials and
(10) holds for o = m/2. O

JacoBl PoLyNoMiaLS. Suppose wo(6) = 0°1(6* — 8)P2, with B > —1,
B2 > —1and 0 < 0 < 0* < co. Then the orthogonal polynomials with wg as
the weight function correspond to the normalized Jacobi polynomials

pr,j(o) = ijﬂl B2 (j ‘;ﬂZ) (0*)_j

j ](]—1)(J_$+1) .7+;81 J—T(n _ g*\T
x;)(ﬂ2+1)(ﬂ2+2)...(ﬂ2+x)< w )0 (6 — 6*)",

where

Cippy = [ BLH P+ DTG+ DTG+ Byt Bat D)oo
BPLbe = LT (g NB BT (f + By + TG + B2 + 1)

ifj>1,

and is equal to

[ LB+ B2+2) R
(0%)B1+B2H1T(By + 1)T(B2 + 1)

if j =0.
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For m > 1, let pu, j, 7 > 0, denote the set of normalized Jacobi polynomials
with weight function

wy(8) = ™ (9" — g)P2t™ V0 < 9 < 6,

and
Vigmm = (0%)"(F + m)!Cjprtm pr4m [ [1'C5tm.01,6,)-
Then (9) follows from the Rodrigues’ formula for Jacobi polynomials and
(10) holds for a = m. O
For the rest of this paper, we shall assume that M is sufficiently large
so that G(a, m, M, wg) is nonempty.

Theorem 1 Suppose ||C?/w||y < co. Let §r be as in (7) and

(11) 0% 10g([kug izl /a(2)) < Pologn,

for some constant 0 < Bo < 1/2. Then
sup{Ey||gn — gllw;2 : 9 € Glaym, M, wo)} = O(1)(c5™ + ex *n(Pro=1)72),

Proor. We first observe from (11) that

(12) 12 max [ku, j,z/q(2)]? = O(cano~1).

0<<

We also observe that

(13) sup{ E hw0 ji9€G(a,m M, wg)} = O(c;**).
j=cn+1
Now the theorem follows from (12), (13) and Proposition 1. O

Corollary 1 Suppose 8* = oo, w(f) = 0= C2%(0)e? and wo(8) = 6Pe~? with
B > —1. Let {pu,,;}320 be the sequence of (normalized) Laguerre polynomi-
als on (0, 00) with weight function wy, g as in (7) and

g(z)yoyT(2!)Y > 1, Vx>0,

for constants o, 71 > 1 and 0 < v < 1. Then by choosing ¢, = élogn with
0 < 6 < Bo/log(271) and 0 < Bo < 1/2, we have

sup{E|lgn — gllwz : g € G(a,m, M, wo)} = O(1)(1/ logn).
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ProoOF. From the properties of Laguerre polynomials, we have

uouie/4(2))
< () (j ' [’) [w(s+ 1) (j . ﬁ)r.‘”

() (ﬁ)[ [T @+ s + DI+

t=x+1 i=1

(14) < 7072’ f[ (1+ B HMT(B+1) ﬁ(l + pimhH 2,

i=r+1 i=1

Here we follow the convention that [J32, (1 + Bi~l) = 1if z; > z2. We

1=
further observe that there exist positive constants i and cj such that

J
it <[I[a+Bi7Y) <ezdy Vizl
=1
Thus it follows from (14) that
en(l+ o(1))log(271)
Bo(1 + o(1))logn.

This proves (11) and the corollary follows from Theorem 1. o
The next theorem is a specialization of Theorem 1 which proves to be
useful when 8* < oo. The proof is immediate and is omitted.

Osinsaj)écn log(lkwo,j,zl/q(m))

IN

Theorem 2 Let §n be as in (7) and that for some constant ¢ > 1,

(15) max Ky e <, Vi 20.

Suppose further that

(16) max log(1/¢(z)) + cnlog { < fologn,
0<zr<cn

with constant 0 < fo < 1/2. Then

SuP{Eg“gn - gllw,2 :g € G(a,m, M, wO)} = O(c;a)'
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Corollary 2 Let §, be as in (7) and that (15) holds for some constant
¢ > 1, Suppose
qz)ovi(z!)>1, Vz2>0,

for nonnegative constants o, 71 > 1 and v. Then
(a) if ¥ = 0, by choosing ¢, = &logn with 0 < § < Bo/log(71() and
0 < Bo < 1/2, we have

sup{Eqg|lgn — 9llw,z : g € G(a, m, M, wo)} = O(1)(1/ logn)*,

(b) if 0 < v < 00, by choosing c, = §logn/loglogn with 0 < § < Bo/v
and 0 < By < 1/2, we have

sup{Eg||gn — gllwz2 : 9 € G(@,m, M, wo)}
= O(1)(loglog n/logn)*.

Proor. If v = 0, we observe that

A

Oggzn log(1/g(z)) + enlog¢ < en(l+4 0(1))log(11()
< Bo(l + o(1))logn.

This proves (16) and (a) follows from Theorem 2. The case of 0 < v < o0 is
similar and is omitted. a
REMARK. Corollary 2 apphes to the negative binomial and Poisson
mixtures as the value of 7 is 0 for the negative binomial mixture and 1 for
the Poisson mixture.
As the classical orthogonal polynomials of Jacobi satisfy (15), we have
the following corollary.

Corollary 3 Suppose 0* is finite,
w(f) = C*)0~P1 (" —0)~P2, VO< b <6,

for constants By > —1 and By > —1 and wq be as in (3). Let {Puy,i}jzo
denote the set of (normalized) Jacobi polynomials on (0,6*) with respect to
the weight function wo, §, be defined by (7) and

¢(z)r07i (=) > 1, V20,

for nonnegative constants 79, 71 > 1 and y. Then conclusions (a) and (b)

of Corollary 2 hold.
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3 Lower bounds on the optimal convergence rate

In this section we derive lower bounds for the optimal convergence rate over
the class of mixing densities G(a, m, M, wo) with e satisfying (9) and (10),
i.e. the rate at which

i;lf sup{ E,||Gn — 9llws2 : 9 € G(a,m, M, w0)}

tends to 0 as n — oo, where the infimum runs over all statistics gn based on
Xl’ ] Xn

Theorem 3 Let w : (0,8*) — R* be a measurable function such that
llwly < oo and ||lwolly < co with wo as in (3) and {puy,j}520 be a se-
quence of (normalized) orthogonal polynomials with weight function wo such
that (9) and (10) are satisfied. Suppose there ezists a nonempty interval
(80,61) C (0,6*) such that w is strictly positive and m times continuously
differentiable on (8o, 61) and wy is bounded from above on the same interval.
Then for sufficiently large M,

im (log )™ inf sup{Ey|ldn = gllu : 9 € Gl m, M, o)} > 0.

PROOF. Since w is bounded away from 0 on (6p,61), let a be an interior
point of that interval and 6, 62, 63, 04 and 85 be fixed constants satisfying

0<lp<fy<b5<a<by<bs5<6 <0,

with

b—a<a, w@ >8>0 V<00
Next define
(17) lyo(0) = U”H“"le_”e/I‘(u),

with u/v = a and gy, : (0,0*) — R be anm times continuously differentiable
function such that

0 if0<f<8b,y,
ll,u,v(H)/C’(G) if0, <8< 0,
Gupw(0) = lu,v(e)/c(o) =Y 20 q(2)0%,(0) if s < 6 < 04,
lg,u,v/C(O) if 04 < 0 <65,

0 if 65 < 6 < 6%,
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where 13 5, and lgu, are (2m + 1)th degree polynomials on (f2,63) and
(84, 05) tespectively. Furthermore we write

(18) t(u,v) = /(:5 cos(u(f — a)/04)gu,(0)d0/ /905 Gun(0)d0.

2

Now choose constants u, and v, = u,/a such that

un 84/(8s — 64) 2
logn max{ log(0s/0,) ’log(1 + a2/62)’
1 1
(19) 04/a—1—log(04/a)’03/a—l—log(03/a,)}'

For constants € > 0 and 0 < g9 < M, let go € G(a, m, M — €9, wp) such that
for sufficiently large n,

go(0) 2> :

um 490 (6)
£

+_____——
u™49,0(65)
15

+________
u™H9,C(64)

e—un(0/a—1-log(0/a)) 1 {9, < § < 64}
¢~ un(0s/a—1-log(s/a)) 19, < @ < B3}

(20) e~un(fafa—1-log(0:/a)) 1 {9, < @ < B5}.

For 0 < 8 < 6*, define ¢1,(0) = go(f) and

(21) g2a(8) = 90(0) + su;m_1/4[c0s(un(0 — a)/04) = t(Un, Vn)]Gun,ua (0)-

For the sake of clarity we shall now divide the rest of the proof into 3 separate
steps and we shall drop the subscript in u, and v,.

STEP 1. Verify the membership of g1, and go, in G(a, m, M, wo).
From the definition of g1, it is immediate that g1, € G(a,m, M, wp). We
observe from (18), (20) and (29) that g,y is a density function on (0,6*).
Define for 0 < 8 < 6%,

h(8) = eu™™ Y 4w(8)[cos(u(8 — a)/04) — t(u, v)]gu,.(6)/C(6).

Then using Leibniz rule and observing that wy is bounded on (62,05), it
follows from Lemma 1 (see Appendix) that

(22) 1Ay 2 = €0(D),
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where the O(1) term does not depend on ¢. Since (9) and (10) hold, we

observe from (22) and Proposition 2 that
o0
(Y 52*h%, )M = €0(1),
j=m

where hug i = JO h(8)Puy,;(0)wo(6)do. Writing

*

Giniaog = || COG2u(8)pun i (0)30; V52 m,

it follows from Minkowski’s inequality and (21) that

(E -7'2019371,,1110,j)ll2 S M- €0+ 50(1)'

j=m

Thus we conclude that ga, € G(@, m, M, wp) for sufficiently small ¢.
STEP 2. To show that

(23) 37 1£(®; 91n) = f(23920)| = 0(1/m).
z=0
Since Iy 4,4 is @ (2 + 1)th degree polynomial, we write

2m+1 )
ll,u,fu(o) = Z ,81'01, V02 <0< 03,

=0

where §;, 0 < i < 2m + 1, are constants satisfying

23 50

7Y ﬂioz 9=0 = O,

de: i=0 ’

LY Bomes = O ),
=0

uniformly in 6, < 8 < 63 and 0 < 57 < m. Thus it follows that g;

O(u™*/2/n) uniformly in 7. Now let 2* = (loglog n)/[2 log(64/63)]. Then

00 85
eu ™ V4 g(a) /02 6 cos(u(6 — @)/04)l1,u(8)d8)

=0
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< VALY gle)] [ oY B9)dd
z<z* 2 j=0
+ Y g(2)850(um 2 /n)}
z>z*
2m+1 T35 iubs /6, o+ iub /04
037 etnos 85" e
< —m—1/4 173 2
A U OPN e
. 95 _ _ leiu0/€4
—Hz+37> O}/ (z + )0°H 1 ———dd)|
i U

+(63/82)7"O(w™ /2 /n) 3~ q(2)05}

z>z*
24) = o(l/n),

13

where I{z + j > 0} denotes the indicator function of {z + j > 0}. Similarly

it can be shown that

oo 05
(25) eu ™14 g(a)| /9 0 cos(u(6 = 0)/0a)lau(0)d0] = o(1/).

=0

Finally as in Zhang (1992), it can be seen using (19) that

0o 0,
(26) eu™"/4 Z q(z)| /03 6% cos(u(0 — a)/04)l,,(6)d0] = o(1/n).

z=0

Thus we conclude from (24), (25) and (26) that
(27)eu—m"1/4 i g(z)| /095 6% cos(u(8 — a)/04)C(0)gy,»(0)d8] = o(1/n).
z=0 2

Since

g
eu™™44(u, v) / ’ Gun(6)d0
[/}

[ : 05
< ™14 Y g(a) /0 6% cos(u(8 — 0)/04)C(8)gu»(8)d6|
=0 2

= o(1/n),

(23) follows from (21).
STEP 3. Also as in Loh and Zhang (1993), we have

(28) li7{r_1)i£f(log n)™||g1n — g2nllw2 > 261
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where £; is a suitably small positive constant. To conclude the proof, we
observe that for Z = (X1, -+, X,) and A > 1,

PonlF(Zigin) > M(Zig) € 1ot SU(Zi910) = 1(Zigan)]
Z

A
< /\n_ - D f (25 910) = £(23 920
0.

-
Now it follows from (28) and Lemma 2 (see Appendix) that
iglnf max{Py||gn — 9llw,2 > €1/(logn)™] : g = g1n OF g2n} > 1/4,
and hence
nlLr%o(log n)™ i;lf max{E,||gn — gllw,2: 9 = g1n OF g2n} > €1/4 > 0.

This proves Theorem 3. O

We close this section with the following consequence of Corollary 3 and
Theorem 3. Suppose 6* < oo and that there exist constants f; > -1,
B2 > —1,7 > 0,91 > 1and v > 0 such that

w(6) = C*O)0~ P (6" ~6)"P, Vo< 6<0,

and
()i (e > 1, Vz 2>0.

Then

(a) if ¥ = 0, the optimal convergence rate with respect to ||.||w,2 loss is
(1/ logn)™ for mixing densities g in the class G(m, m, M, wp) where wyg is as
in (3). This rate is attained by the mixing density estimators g, of Corollary
3.

(b) if 0 < ¥ < oo, the convergence rate [namely (loglogn/logn)™] of
the estimators of Corollary 3 almost achieve the lower bound of (1/logn)™
obtained in Theorem 3 for mixing densities within the class G(m, m, M, wo).

4 Appendix

ProOF OF PROPOSITION 2.
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Since
0 = Jim A"D(O)[p, i(O)wr(O)¢Y
= lm_ R () [puy (6) w1 (6)] )

whenever 0 < i < m, we observe from (9) and repeated integration by parts
that

0‘
/0 h™)(8)puy ;(6)w1(8)dd

1 [ WO OO0

0‘
= Viemm /0 1(8) Py 4 (0)w0(8)d
= Vj+m,mhwo,j+m7 V]ZO

From the completeness of {pu,,j}520, We obtain
o0
||h(m)ll’l21)1,2 = Z V‘?,mh’lzuo,j'
j=m

Now the proposition follows immediately from (10). o

Lemma 1 Let l,, be given by (17). Then,
(29) l,(8) = 871 /u/(2m) exp[—u(6/a — 1 — log(8/a)) — €u],
where (12u+1)~! < e, < (12u)71. Also as u — 00, we have for 1 < p < 00

Wuolly = (@*/T(u))[(pv)™PHT(pu—p+ )k
(v2/(2mu))P=1/@P)p=1/Cr),

In addition, there exists constants c; such that

HGL(O)|/1uu(8) < 079 [L+ lu— 1 — w0 + (087/], V520,
and as u — 00

WG/ Wl = (ufo) w2 (EIQ;( 2 2)PI?, V5 20,

where Z is a N(0,1) random variable and Q;(z) are polynomials such that

Qin(®) = 2Qi() ~ 1=Q3(2),  Qol@) =1
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REMARK. The Burkhqlder-Davis—Gundy inequality can be used to obtain
an upper bound for lllfﬁz,llp and it can be proved by mathematical induction

that .
1)~

Qi(z)= ) G 2R

0<i<i/?

It is also clear that 0 < E|Q;(p™Y/2Z)|P < oo.
ProoF oF LEMMA 1. (29) follows from the Stirling formula I'(u + 1) >
u¥t1/2¢=%,/21. Next since 1, , is a gamma density,

lﬁ,‘u(g) = “luy’U”glp(u—l)+l,p'u(9)7

50 that ||ly|[Z = (v*/T(u))PT(pu — p + 1)/(pv)P*~P*+1. By the Stirling for-
mula,

(v*/T(w))PT(pu — p + 1)/ (pv)P*~P+*
’Uup(pu)Pu—P-l-l/?e—pu\/Q_ﬂ_

(uu—1/2e—u\/2_7r_)p(pv)pu—p+1
up—pu-+p—1 upu-p+1/2—pu+p/2ppu-p+1/2—pu+p—1 (27r)(1—p)/2

= v
WPy (1-P)/2p=1/2(9)(1-P)/2,

which implies the approximation for ||ly,.||p-
Let Q%(z,y) be a function such that

19)(6) = L, (8)679 Q% (u — 1 — v6,v/20).
Clearly Q% = 1. Since [log Ly (6)]®) = (u - 1)/8 - v,

0= 1Q% 1 (u — 1 — v, V)
= [(u—1)/6-0)679Q] - §67ITQ; + 677 [~0Q}1 + V8Q}/(20)]

where Q%,(z,y) = (8/02)Q}(z,y) and Q] 5(z,y) = (0/0y)Q](z,y). It fol-
lows that

Q}41(2,9) = 2Q3(2,y) - §Q3(2,9) — ¥’ Q51(2,9) + (¥/2)Q5 (2, ),

so that Q;-‘(:c,y) is a polynomial of degree j. This gives the inequality for
12(6)].
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For the || - ||, norm, we have |l,(f,,),|”/[|lu,v||g = IO“J'Q;PIP(U_I)H,W. Since
l,» has mean u/v and variance u/v?, by the central limit theorem

(v/Vu)( — u/v) = (v8 — v)/Vu— Z

in distribution under the density I, , as u — oco. Since gamma distributions
have finite moments,

710 ((u w001V 507 Plan(8)d0 — EIQ(Z, P
for all polynomials @ and p > 0. Therefore, as u — 0o
LGB /12
- / 10-3Q*(u — 1 — 08, VoB) [Ply(u1)41,pu(6)d6
E|(u/v)™Q3(Z/pu/p,Vu)P,
~ (u/v)W?E|Qi(Z/ /PP,

where Q;(z) = Q;(z,1) and @;(z,y) is the sum of all terms of degree j in
Q%(z,y). The recursion of ; follows from that of Q7. m

Q

Lemma 2 Let P be a class of probability measures and T be a mapping from
P to a metric space with distance function d(.,.). Let f; be the joint densities
of observations X1,+-+, X, under P; € P, j = 1,2. If p < Pi(f1 £ Afa),

then for any estimator T, based on X1,---, Xy,

max Pi{d(Tn, T(P;)) 2 d(T(P1), T(P2))/2} 2 p/(1+ X).

Proor. Lemma 2 follows directly from the argumant in Zhang (1990, top
of page 827). O
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