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Abstract

In this article, the problem of constructing uniform confi-
dence bands for the spectral distribution function is con-
sidered. A subsampling method. based on recomputing
the spectrum over subseries of the data, is presented and
shown to be asymptotically valid. In fact, the method
and theory applies quite generally to the problem of con-
structing uniform confidence bands for parameters tak-
ing values in a function space. A small simulation is also
presented.
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1 Introduction

The goal of the present work is to present an asymp-
totically valid method for the construction of uniform
confidence bands for the spectral distribution function.
The method is based on a jackknife approach in that
the basis of the construction is the recomputing of the
estimated spectrum over certain subseries of the data.
The jackknife has been used predominantly to estimate
and remove bias of an estimator, or to estimate the stan-
dard error of the estimator. See Carlstein (1986) in the
stationary time series context. Here, we utilize the es-
timate recomputed over subsets of the data to actually
approximate an entire sampling distribution. A general
theory for such an approach for the construction of con-
fidence intervals for real-valued parameters is presented
in Politis and Romano (1992), both in the case of i.i.d.
data and in the context of homogeneous random fields.
The use of the jackknife to estimate a sampling distri-
bution was first considered in Wu (1990) in the i.i.d.
case for statistics that are asymptotically linear. Here,
the theory is generalized to accomodate parameters that
are functions so that confidence regions for the unknown
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function may be constructed. Also, very little is assumed
about the structure (such as asymptotic linearity) of the
statistic. Attention is focused on the stationary time
series case here, though generalizations can be made.

In section 2, the method is described and some general
theory is presented. The problem is then specialized to
the case of the spectral distribution function in section
3. Some numerical work is also presented.

2 Construction and general the-
ory. I

Let X;,...,Xn be observations from a stationary time
series. The underlying probability mechanism generat- -
ing the process is denoted P. The X; may take values in
an arbitrary sample space S. Interest focuses on some
unknown parameter § = 8p. We will assume 0p takes
values in a normed linear space ©, with norm denoted
[| - lI- The special case where © is an appropriate func-
tion space endowed with the supremum norm will result
in uniform confidence bands for the unknown function;
this will be made explicit in section 3 and such a spe-
cialization is not necessary at this point.

Let T, be an estimate of 8p, also taking values in ©.
A confidence region for @p could be constructed if the
distribution of ||T,, —8p|| were known. Let Hn(P) denote
the distribution of ,{|7;; — dp}| under the true model P.
Here, 1, serves as an appropriate sequence of normaliz-
ing constants. Also, let H,(-, P) be the corresponding
c.d.f. of H,(P). The following will be assumed.

Assumption A. H,(P) converges weakly to a limit law
H(P) as n — oo.

Assumption A follows if 7,{T, — 0p], regarded as a
random element of ©, has a weak limit. Here, © must be
endowed with an appropriate o-field so that 7, [T, —8p] is



measurable and an appropriate weak convergence theory
ensues. We avoid such issues by considering the sequence
of real-valued random variables 7, ||T;, — 0p|| initially.

To describe the method, fix an integer 6 < n and let
Sn,i be equal to the statistic T} evaluated at the subseries
of size b given by {X;, Xit1,..., Xixs—1}. Thus, Snils
defined for i = 1,2,...,n - b+ 1. The approximation to
Hy(z, P) we study is given by

n=-b4+1
Ho(z)=(n=b+1)"" S~ 1{n||Ss - Tull < 2}

i=1

The motivation behind the method is the following.
For any i, the data set {X;, Xiy1,..., Xiys—1} is a sam-
ple of size b under the stationary model P. Hence, for
any i, 1 < ¢ < n — b+ 1, the exact distribution of
7(Sni — 0p) is Hy(P). Ilence, the empirical distribu-
tion of these n ~ b+ 1 should serve as a good approx-
imation to Hy(P), assuming the underlying process is
weakly dependent. If b and n are large, Assumption A
will imply that H;(P) and H,(P) are both near each
other because they are both near H(P). However, 8p
is unknown, so it is replaced by its estimate 7},, which
is asymptotically permissible because 7|7}, — 0p| is of
order 7;/7, in probability. Assumptions on & will ensure
7/ Tn tends to zero.

Recall some standard notation. For a stationary time
series X = {X,,n € Z*}, define Rosenblatt’s a-mixing
coefficent by ax(j) = sup, g|P(AB) ~ P(A)P(B),
where A and B vary over events in the o-fields gener-
ated by {X,,n < k} and {X,,,n > j + k}, respectively.
The sequence X is said to be a-mixing if ax(j) — 0 as
J —oo.

Theorem 1. Assume X;,...,X, is generated from a
stationary time series which is a-mixing. Assume As-
sumption A. Also assume 7,/r, — 0, b — oo and
b/n — 0 asn — oo. Let z be a continuity point of
H(-, P), the limit c.d.f. corresponding to H(P). Then,
Hn(z) — H(z, P) in probability. If H(-, P) is continu-
ous, then

Suptlﬁ"(z)—'H"(;ch)l—'O (1)

in probability. Let h,(1 — @) = inf{z : f{,,(z) >1-a}.
Correspondingly, define (1 — a, P) = inf{z : H(z, P) >
1~ a}. If H(:, P) is continuous at h(1 — @, P), then

Prob{r,f[Tp - O0p|| < hu(l—a)} = 1—a  (2)

as n — oo. Thus, the asymptotic coverage probability
under P of the set

{0€0: 7T, - 0] < hn(l - )}

is1—a.

Proof. Let H,(z) be defined by

n—b+41
Ha(@)=(n=b6+1)"" > 1{n]|Sn:—0p| < z}.

i=1

We claim H,,(z) — H(z, P) in probability, if z is a conti-
nuity point of H(-, P). To see why, let Y,, ; = 1{n||Sp ;i —
Opl| < z}. so that H,(z) is an average of (a triangular
array of) stationary, bounded, weakly dependent random
variables. Moreover, E[H,(z)] = Hy(z, P) — H(z,P)
as n — o0o. So, it suffices to show var[Hp(z)] — 0 as
n —oo. Set N = n — b+ 1. Then, by stationarity,

N .
~ 1 2
var(Hn(z)] = Nvar(Yn_1)+7 Z(l—%)cov(}’,,_l,}’,,,“,-).
izl

Bound cov(Yy,1) by one, and for i = 1,...,5—1, bound
cov{Yn 1, Yn,14i) by one. So,

N
~ 2
var{fn(2)] < (2 +1)/N + Z; lcov(Ya,1, Ya,144)l-
But, Y1 is a function of {X},...,X,} and Yy 14 is a
function of {X144,..., Xi4s},so that Yy, ; and Y, 1 4; are
determined by Xj;’s separated by 1+ i — b. So, by the
well-known mixing inequality (c.f. Ibragimov (1962)),

[cov(Yn 1, Ya14i)| < dax(1+i—10),

fori=49,...,N. Hence,

N
var[H,(2)] < (20 + 1)/N + -187 Zax(l +i-1b)
i=b

N
<@+ 1)/N + %jz—;ax(j)-
The assumptions on & imply (2b + 1)/N — 0 as n —
6o. Strong mixing implies N~} Zf,:l ax(j) = 0. Thus,
Hp(z) — H(z, P)in probability, if z is a continuity point
of H(-, P). )

To deduce the same for H,(z), let E, be the event
{nllT% — 0p|] < €}. Then, assumption A and /7, —
0 imply P(E,) — 1 as n — oo. So, by the triangle
inequality,

Ho(z - €) < Hn(z) < Ha(z + €)

with probability tending to one. Hence, if z £ ¢ are
continuity points of H(:, P), the above argument implies



Hu(z + €) — H{z + ¢, P) in probability. Letting ¢ — 0
allows one to conclude H,,(z) — H(z, P) in probability.

The rest of the argument is fairly routine. The result
(1) follows by a subsequence argument; see the proof of
Theorem 1 in Politis and Romano (1992). The resuit (2)
holds easily if H(-, P) is also assumed strictly increas-
ing at A(1 — a, P), in which case one can also deduce
that h,(1 — @) — A(l — a, P) in probability. Without
this assumption, (2) remains true: the argument is sim-
ilar to the proof of Theorem 1 of Beran (1984) given
Hyp(z) toH(z, P) in probability.

Remark 2.1. Since an i.i.d. sequence is a-mixing, the
theorem applies to this setting. In the i.i.d. context,
however, it is more natural to use all ('g) subsamples of
size b from the original data. If the underlying process
is i.i.d., this would be more efficient. On the other hand,
slight deviations from the assumption of independence
can easily lead to invalid inferences, so it may be de-
sirable from a robustness point of view to not assume
independence.

Remark 2.2. If n is quite large, it may be unnecessary
to recompute the statistic over all n — b + 1 subseries
of length b. Instead, one can introduce a lag variable
h, and compute the statistic over subseries of length b
beginning at indices 7 of the form Xjj41 as j runs from
0,...,[(n — b)/h] + 1. Taking h = 1 is obviously most
efficient; see section 3.4 of Politis and Romano (1992).

3 Uniform Confidence Bands

For The Spectrum.
The general theory in section 2 was motivated by the
problem of constructing a uniform confidence band for
the spectral distribution function, now denoted F(.).
Here, § = F(:). Borrowing notation from Dahlhaus

(1985), let I()) denote the periodogram with tapered
data, defined by

In(A) = 270 H, 2(0)] ™ da(A)dn(=A),
where
da(A) = > A[t/(n+ )] X,exp(—iM]
t=1
and

Hy () = th[t/(n + D]expl—iX].
t=1

The data taper h is assumed of bounded variation and
square integrable on [0, 1]. Let £,,(-) be the correspond-

ing integrated periodogram given by

Fa()) = -Qn—” >

0<2xs/n<A

In(27s/n).

Take 7, = n'/? and regard Y, () = n'/2[F,,() — F()] as
a random element of D[0, 7] endowed with the sup norm
I} - Il. Under suitable weak dependence conditions, the
process Yy (-) converges weakly to a mean zero Gaussian
process Y (-) with covariance

cov[Y (A), Y (u)] = 2aG(min{A, u}) + 2n F4(A, p),

where

A
GO\ = /0 F2(8)dB

and
A rp
Fa(hu) = /0 /0 Fa(ar —a, —B)dad;

here, f is the spectral denstiy and f; is the fourth
order cumulant spectrum (see e.g., Brillinger (1975)).
For various sets of conditions for this weak convergence
to hold, see Anderson (1991), Brillinger (1975), and
Dahlhaus (1985). In summary, under weak dependence
conditions of the underlying process, our Assumption A
holds. Moreover, the limiting distribution has a con-
tinuous distribution (a condition needed in Theorem 1);
see Tsirel’son (1975). Thus, the subseries method yields
asymptotically valid uniform confidence bands for the
spectral distribution function. Since the limit distri-
bution is that of the supremum of a certain Gaussian
process whose covariance structure depends on intricate
fourth order properties of the underlying stationary pro-
cess, analytical approximations to this limit law would
be difficult to obtain; but, see Anderson (1991).

Remark 3.1. The above arguments apply to the case
where ¢ is the standardized spectral distribution func-
tion. Consider the process Z,(-) = n'/2[F,(-)/Fa(x) -
F(-)/F(m)]. The weak convergence properties of Z,, can
be deduced from that of Y,, so that Assumption A holds
here as well.

In fact, the argument can be generalized to get uni-
form confidence bands for the spectral density itself,
which is a harder problem. Here, assumption A must
be weakened so that it is assumed 7, ||T}, — 0p|| — ¢, has
a limit distribution for some ¢,,. This assumption holds
for spectral density estimates; see Woodroofe and Van-
Ness (1967).



4 Some numerical work.

In order to assess how well the method actually works on
the problem of constructing a uniform confidence band
for the spectral distribution function, a small simula-
tion was done. In all cases considered, the sample size
for the data was taken to be n = 1000 and the under-
lying simulated processes were Gaussian. For a given
situation, 200 simulated data sets were generated (each
having sample size 1000), and the subseries estimated
sampling distribution was computed. Confidence bands
were constructed at a nominal level of 0.95 in all cases.
For example, for an underlying white noise process with
block size b = 30, in 188 out of the 200 simulations did
the resuiting confidence band entirely contain the true
spectrum, resuiting in an estimated coverage probability
of 0.94. For b = 40 and b = 60, the estimate cover-
ages were 0.94 and 0.91. The next situation tried was a
moving average process of order one: X, = ¢, 4+ 0.5¢,_1.
For b = 20,30.40, 60, the estimated coverage probabil-
ities were 0.92.0.93,0.92,0.91. respectively. Finally, a
moving average process of order 4 was simulated:

Xt =€ +0.75¢;—1 + 0.5¢;_2 + 0.25€¢,_3 + 0.5¢;_4.

For b = 20, 30,40, 60, 100, the estimated coverages were
0.91,0.93,0.93.0.925,0.90, respectively. Although the
sample size was large, we feel the method performed ad-
equately, especially given the lack of competing methods
for this problem. The choice of block size does not seem
to matter too much, and a block size of 30 or 40 seems
to do well. Future work will address the choice of block
size.

To see how the method performs on a real data set,
the Laser Pulsations Data, a data set used in the Time
Series Prediction Competition in the fall of 1991, was
utilized. The data set is available in an archive on the
Santa Fe Institute computer network. To get access into
the data files, type fip saniafe.edu, login as anonymous.
and then type: cd pu/Time — Series/competition. A
full description of the laser intensity data can be found in
Hubner, Abraham and Weiss (1989). The log of the data
1s plotted in Figure 1, and the periodogram is given in
Figure 2. A 95 percent uniform confidence band for the
spectrum is displayed in Figure 3. having used 6 = 30.
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Figure1: Laser Pulsations Data

log(Intensity)

200 400 600 800 1000

Time




Periodogram

Spectral Estimate

Figure2: The Periodogram of Log Laser Pulsations

Time Series
(o]
<
Al
o
00 05 10 15 20 25 30
Frequency
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