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Abstract

In the Bayesian approach to model selection or hypothesis testing with models or
hypotheses of differing dimensions, it is typically not possible to utilize standard noninfor-
mative (or default) prior distributions. This has led Bayesians to use conventional proper
prior distributions or crude approximations to Bayes factors. In this paper we introduce
a new criterion called the intrinsic Bayes factor, which is fully automatic in the sense
of requiring only standard noninformative priors for its computation, and yet seems to
correspond to very reasonable actual Bayes factors. The criterion can be used for nested
or nonnested models, and for multiple model comparison and prediction. From another
perspective, the development suggests a general definition of a “reference prior” for model

comparison.

1. INTRODUCTION

1.1 Is Another Model Selection Criterion Needed?

We obviously think so, but why? First, we feel that model selection should have a
Bayesian basis. This is not so much based on generic Bayesian arguments, as on a belief
that Bayesian methods of model selection and hypothesis testing are particularly needed

for the following reasons:

(i) Measures based on frequentist computations, such as P-values (in, say, chi-squared
testing of fit), are at best extremely difficult to interpret and at worst highly misleading
(cf, Edwards, Lindman and Savage, 1963; Berger and Sellke, 1987; Berger and Delampady,
1987; and Delampady and Berger, 1990).

* This work was supported by the National Science Foundation, Grants DMS-8923071
and DMS-9303556, and by BID-CONICIT, Venezuela.
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(ii) Analysis of non-nested and/or multiple models or hypotheses is very difficult in a

frequentist framework.

(iii) Non-Bayesian methods have difficulty incorporating “Ockham’s Razor,” the notion
that if two models explain data equally well, the simpler is to be preferred; Bayes factors
do this automatically (cf, Spiegelhalter and Smith, 1982, and Jeffreys and Berger, 1992,
and the references therein), while other methods require introduction of adhoc penalties

for model complexity.

(iv) Prediction is often the real goal and, in accounting for model uncertainty in predic-
tion, it is virtually necessary to use Bayesian methods, which can keep all models under
consideration, weighted by their posterior probabilities (cf, Draper, 1994, for a review and

earlier references, and also Section 5).

Discussions of these issues here would take us too far afield, but it is important to stress
that we feel it to be necessary to do hypothesis testing and model selection in a Bayesian
fashion (whereas in, say, estimation problems Bayesian analysis may be convenient, but is
not always necessary). Among the many fine discussions of these issues are Jeffreys (1961),

Edwards, Lindman, and Savage (1963), and Kass and Raftery (1993).

A second basic premise of our motivation is that one needs automatic methods of
model selection. Within the Bayesian community there has been continual debate over
whether subjective or objective Bayesian methods should be used; most Bayesians today
accept that both can be useful. (The objective Bayesian methods are typically based
on noninformative priors, and are sometimes called “default” or “automatic” Bayesian
methods to avoid the loaded connotation of the label “objective.”) The argument in
favor of automatic methods of model selection is particularly compelling because one often
initially entertains a wide variety of models, and careful subjective specification of prior
distributions for all the parameters of all the models is typically not feasible. Another
sense in which we seek to be automatic is to avoid specification of the “loss function” lying
behind the model selection process and simply use Bayes factors for model selection. Bayes
factors can be optimal in a Bayesian decision-theoretic framework (e.g., with 0 — 1 loss),
but are not necessarily so for other losses. While we would encourage consideration of the

loss and use of the subjective decision-theoretic approach to model selection, it is likely



that default methods will dominate in practice.

Unfortunately, operation in strict accordance with the above two basic premises is
not possible. The reason is that Bayes factors in hypothesis testing and model selection
typically depend rather strongly on the prior distributions, much more so than in, say,
estimation. (For instance, as the sample size grows, the influence of the prior distribution
disappears in estimation, but does not in hypothesis testing or model selection.) And,
for most model selection problems, one cannot use standard improper noninformative
priors; such priors are defined only up to a constant multiple, and the Bayes factor is
itself a multiple of this arbitrary constant. The conclusion is that one cannot proceed
in any clearly optimal fashion: only subjective Bayesian analysis is truly defensible for
model selection, but it is not practically feasible unless only a few simple models are being

considered.

The best one can hope for is thus a method that is automatic and yet produces actual
Bayes factors corresponding to reasonable (proper) prior distributions. An obvious way
to achieve this is simply to choose “conventional” proper prior distributions for testing or
model selection, priors that seem likely to be reasonable for typical problems. This was the
approach espoused by Jeffreys (1961), who recommended specific proper priors for certain
standard testing problems. (The conventional proper priors Jeffreys used for testing and
model selection should not be confused with his more famous “Jeffreys priors” which are
typically used as noninformative priors for estimation problems. Indeed, whenever we use
the phrase “the Jeffreys prior” in this paper, we will be referring to the latter type of

noninformative prior.)

This “conventional proper prior” approach has met with considerable resistance, from
Bayesians as well as non-Bayesians. We suspect that the negative reaction is, to a large
extent, an example of what I. J. Good has called the SUTC (sweep-under-the-carpet) at-
titude, by which methods that have unappealing features (such as conventional proper
priors) that are highly visible are resisted, whereas methods with features that are much
worse will be accepted if the undesirable features are not visible (i.e., are SUTC). An exam-
ple of the latter occurs with BIC, the Bayesian information criterion developed by Schwarz

(1978). This criterion starts with an asymptotic approximation to the Bayes factor, and



then simply ignores the term involving the prior (because it typically has a bounded effect
asymptotically) even though this term affects the Bayes factor multiplicatively and can be
very large or small; at first sight, BIC is thus as bad as use of a noninformative prior with
an arbitrarily chosen constant multiple. Yet many Bayesians who criticize use of conven-
tional proper priors will routinely use BIC. (We do not mean to be unduly critical of BIC
— in fact, until now it has been our favorite general purpose model selection criterion —
but it SUTCs something considerably worse than what is recommended by Jeffreys. Note,
also, that Kass and Wasserman, 1992, give an additional justification of BIC; see Sections

1.3.2 and 2.4 for further discussion.)

So our target as a good automatic method of hypothesis testing and model selection is
the conventional prior approach of Jeffreys. The chief difficulty with this method (besides
its failure to SUTC its disadvantages) is that it requires development of a reasonable
conventional proper prior. In Jeffreys (1961), considerable effort is expended to develop
such priors, even though only simple situations are studied. And it is far from clear that
Jeffreys’s arguments for developing such priors can be formalized, so as to become a general

method.

What we propose here is a completely general method of testing and model selection
that will be argued to be essentially equivalent to a conventional proper prior approach, but
without the need to determine a reasonable proper prior (which we, in effect, SUTC). In-
deed, the answers we obtain seem to closely approximate Jeffreys answers for the problems
he considered. From a different perspective, our approach can be thought of as automat-
ically “correcting” BIC by inserting a reasonable value for the term that BIC ignores.

Further desirable properties of the method will be discussed as we proceed.

1.2 Preliminaries

Models My, M,...,M, are under consideration, with the data X having density
fi(2]0;) under model M;. (The densities are assumed to be taken with respect to a
common measure, which is otherwise irrelevant to our analysis.) The parameter vectors

0; are unknown, and are of dimension k;.
Bayesian model selection proceeds by selecting prior distributions 7;(8;) for the pa-
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rameters of each model, together with prior probabilities p; of each model being true. The

posterior probability that M; is true is then
7 p
P(Mile) = (3 - Bid) ™" (L)
=1 %"

where Bji, the Bayes factor of M; to M;, is defined by

my(®) [ £;(210;)m;(6;)d8;

it = @) T 1i@l0i)mi(8:)d0;

(1.2)

here mj(@) is the marginal or predictive density of X under M;.

Although we use this standard Bayesian language, note that one does not strictly
have to assume that one of the models is true; in particular, Bj; can be viewed as the
“weighted” likelihood ratio of M; to M;, and hence can be interpreted solely in terms of
comparative support of the data for the two models. (See Kass and Raftery (1993) for
discussion and references concerning this viewpoint.) Also, although we formally discuss
only model selection, our development will also apply to hypothesis testing. Thus, if it is
desired to test H;:0 € ©;, for : = 1,...,q, where X ~ f(x|@), then (1.1) and (1.2) are
still valid with f; = f, 8; = 0, p; being the prior probability of H;, and m;(@) being the

conditional prior density of @ on O;. (See, also, Bertolino, Piccinato, and Racugno, 1992.)

At this point, we focus on determination of the Bj;. We will return to issues sur-
rounding determination of the P(M;|z) in Section 5, but the central issue is to compute
the Bj;. Note that if all models were assigned equal prior probability p; = 1/q, then the
Bj; strictly determine the P(M;|z). Also, the Bj; have the separate comparative likeli-
hood interpretation for model comparison, and hence can be motivated outside of strict

Bayesian reasoning.

Computing Bj; requires specification of 7;(8;) and 7;(6;). Often in Bayesian anal-
ysis, one can effectively use noninformative (or default) priors 7¥(8;). Three common
choices are the “uniform” prior, 77 (8;) = 1; the Jeffreys prior, 7/ (8;) = (det(I:(6:)))!/?,
where I;(0;) is the expected Fisher information matrix corresponding to M;; and the ref-
erence prior, T(8;), definitions of which can be found in Bernardo (1979) and Berger and

Bernardo (1992).



Using any of the 7 in (1.2) would yield

mN (@) [ f;(=10;)7Y (8,)d6; s
mN(z) [ fi(=]0:)7N (6:)d6; 3)

N
Bji =

The difficulty with this solution is that the 7V are typically improper, and hence defined
only up to arbitrary constants ¢;. Hence Bﬁ is defined only up to (c;/ci), which is itself

arbitrary.

A common solution to this problem is to use part of the data as a training sample.
Let =(¢) denote the part of the data to be so used, and ®(—/) represent the remainder
of the data. The idea is that @(£) will be used to convert the 7}¥(8;) to proper posterior

distributions
N (8:l2(2)) = fi(=(£)|6:)7] (8:)/m] (=(£)), (1.4)

where (slightly abusing notation) f;(2(€)|;) is the marginal density of X (£) under M; and

m¥ (2(0)) = / fi(x(0)|8:)7 (6:)d8. (1.5)

The idea is to then compute the Bayes factors with the remainder of the data, z(—2),

using the 7V (8;]x(£)) as priors. The result is easily shown to be

[ fi(z(—0)18;,2(£)7 Y (6,]=(£))d8;

Bil®) = (=016, 2(0))n 7 (8:]2(0))db;
= Bj}’ . B{}’(m(e)), (1.6)
where
BY (2(8)) = m¥ (@(0)/m (2(0)). @)

Clearly (1.6) removes the arbitrariness in the choice of constant multiples of the 7/V: the
arbitrary ratio ¢;/c; that multiplies Bﬁ would be cancelled by the ratio ¢;/c; that would
then multiply Bf(2(£)). Note, also, that, while the first motivating expression in (1.6)
seems to require the conditional distribution of &(—£) given (£), the second expression

only utilizes the typically much simpler marginal densities of ().

The above use of a training sample makes sense only if the m{¥(2(£)) in (1.5) are

finite. This is formalized in the following definition.
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Definition 1. A training sample, z(£), will be called proper if 0 < m} (2(£)) < oo for all

M;, and minimal if it is proper and no subset is proper.

Example 1. Suppose X = (X3,...,X,), where the X; are ii.d. N (u,0%) under M,. Un-
der M, the X; are i.i.d. N(0,0%). (The common formulation here would write 0 = 03 =
0%; we indicate in Section 2.1 why this should be avoided.) Consider the noninformative
priors 7¥(a1) = 1/01 and 7Y (u,02) = 1/02. (Although 7} is the formal Jeffreys prior, it
is standard to instead use 1/0,. We use the Jeffreys prior for illustration because certain
computations are somewhat simpler.) It is straightforward to show that mJ (z;) = oo
for a single observation, so a training sample consisting of one observation is not proper.
Training samples of two or more distinct observations are proper, however. Thus a training
sample such as @({) = (z;, ;) is minimal, and, indeed, then

1 1

my (2(£)) = (e 1 27’ mj (2(£)) = Jrlei— o (1.8)

Typically, a minimal training sample is one for which all parameters in all models
are identifiable. Often it will simply be a sample of size max{k;}; recall that k; is the

N

dimension of ;. It can be a smaller sample, however, especially if the 7;

are proper in
some variables. Indeed, if the 7}¥ are actually proper densities, then the minimal training
sample is the empty set, and Bji(2({)) = BJI-\{ . Although minimal training samples are
well defined even for dependent data situations, such as time series, there may well be
advantages in accomodating the dependence structure in the choice of a minimal training

sample. This will be explored elsewhere.

1.3 Relationship to Other Bayesian Methods

We briefly list other “automatic” Bayesian approaches to the problem, emphasizing

those of greatest relevance to our approach.

1.3.1 Use of Conventional Priors

Jeffreys (1961) introduced use of conventional proper priors for model selection and
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hypothesis testing. In the situation of Example 1, for instance, he argued for use of

(o)) = —, Ty 02) = — L
1\01 _0’1, 2\, 02 —0_2 7r02(1+;t2/a%)’

(1.9)

which utilize the standard noninformative priors for the scale parameters, but a (proper)
Cauchy(0,02) density for the conditional prior of u given g;2. By choosing 7(u|oz) to be
proper, the indeterminancy up to multiplicative constants of the Bayes factor is avoided,
at least in terms of u. Jeffreys would identify 0 = 0% = o? in this situation, and hence
would not worry about indeterminancy of n(o) = 1/0; if this pfior occurs in both models,

a multiplicative constant would cancel. We return to this issue in Sections 2.1 and 5.4.

Jeffreys argument for (1.9) is rather lengthy, and may or may not be viewed as con-
vincing. His solution is, however, eminently reasonable; choosing the “scale” of the prior
for p to be o3 is natural, and Cauchy priors are known to be robust in various ways. Al-
though it is easy to object to having such choices “imposed” upon the analysis, it is crucial
to keep in mind that there is no alternative (except subjective elicitation). Alternative de-
fault methods either themselves correspond to imposition of some (proper) default prior or,
worse, end up not corresponding to any actual Bayesian analysis. This issue is important

enough to deserve emphasis:

Principle 1. Methods that correspond to use of plausible default (proper) priors are

preferable to those that do not correspond to any possible actual Bayesian analysis.

As indicated earlier, it is not our purpose here to defend this principle; we highlight
the issue primarily to clearly state our goal. In this regard, we will try to mention which
default Bayesian methods are, and are not, consistent with this principle. Proposals that
are consistent include those of Zellner and Siow (1980), Zellner (1984), Poirier (1985),
Stewart (1987), Mitchell and Beauchamp (1988), Albert (1990), Madigan and Raftery
(1991), George and McCulloch (1993), McCulloch and Rossi (1993), Raftery (1993), and
Verdinelli and Wasserman (1993). The limitation of these approaches is that they tend to
be problem specific, with careful thought going into construction of the default prior for
the specific scenario. While we are not at all opposed to careful thought, our goal is still

a completely general and automatic method, but one consistent with the above principle.



1.3.2 BIC and Asymptotic Methods
The famous BIC criterion of Schwarz (1978) is based on approximating Bj; by

s _ fi(=]0;)(det ;)17
P fi(=]0:)(det I;) 1727

(1.10)

where j,- is the observed information matrix under model M; and 9,~ is the MLE. The
motivation for this arises from approximating B;; using Laplace’s method, resulting in the
asymptotic approximation
L _ fi(=0;)(detd;) /2 (2m)ki/2n(6;)
" fi(=)0;)(detI;)"12  (2m)ki/2my(8;)

(1.11)

As the sample size goes to infinity, the first factor of BL typically goes to 0 or oo, while the

]t
second factor goes to a constant. This is the primary motivation for dropping the second

factor in the definition of Bﬁ (The BIC criterion for model selection is the log of BS;

j
S,
17

by n—(k2=k¥1)/2 i the i.i.d. case. Discussion and other references for such asymptotic

sometimes it is stated as 2 logB?:, and often the ratio of determinants in (1.10) is replaced
expressions can be found in Haughton, 1988; Gelfand and Dey, 1992; Kass and Raftery,
1993; and Raftery, 1993.) '

While the second factor in (1.11) is asymptotically constant, it can be arbitrarily
large or small, and can in fact be the dominant factor for small n. It is hence non-
ignorable in practice. Furthermore, for nested models this second factor typically favors
the simpler model, often quite substantially, so that ignoring the second factor has the
effect of systematically biasing the result in favor of the more complex model. This is
the type of systematic violation of Principle 1 that we seek to avoid. Finally, for many
problems, the above asymptotics are not even valid; the later Example 3 will provide an
illustration. (That said, we should note that B}-S;- is one of the better Bayesian methods
in terms of systematic bias; it is, at least, correct asymptotically up to a multiplicative
constant. And Kass and Wasserman, 1992, show that the approximation does correspond,
asymptotically, to an actual Bayes factor in nested model situations when the simpler

model is true; see Section 2.4 for further discussion.)

The above asymptotic expression also has several theoretical uses. In Section 4, it

will be used to help develop conventional priors. And, as suggested above, (1.11) is quite
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useful as a criterion for evaluating proposed model selection criteria. If a proposed criterion
(expressed in Bayes factor form) is not asymptotically equivalent to (1.11), then it does not
behave like a true Bayes factor. In a sense, our goal in this paper is to even be “correct”
to second order, so that methods which fail the first order criterion are far from what we

are trying to achieve.

1.3.3 Conventional Noninformative Priors

In Section 1.2, it was observed that the problem with typical noninformative priors,
N

m;', is that they are defined only up to arbitrary multiplicative constants, c;, and that
such constants would be multiplicative factors of Bayes actors. Efforts have been made
to conventionally specify the constants, ¢;. For instance, Smith and Spiegelhalter (1980,
1981) and Spiegelhalter and Smith (1982) propose choosing the ¢; so that (in our language)
Bji(2(£)) equals 1, when ®(£) is chosen to be the (imaginary) minimal training sample that

would most favor the simpler model.

The Smith and Spiegelhalter method is a sensible method that comes close to satisfying
Principle 1. It fails to completely do so, however, because it also has a systematic bias
in favor of the more complex model. This bias arises because of the specification that
B;i(®(£)) is to be 1, even though the (imaginary) training sample is chosen most favorable

to the simpler model. This will be discussed further in Section 2.4.

1.3.4 Training Sample and Partial Likelihood Methods

The training sample idea, as discussed in Section 1.2, has been informally used many
times. More formal developments of the idea can be found in Lempers (1971), Atkinson
(1978), Geisser and Eddy (1979), Spiegelhalter and Smith (1982), San Martini and Spezza-
ferri (1984), and Gelfand, Dey, and Chang (1992), although not all these works utilize the
idea with ordinary Bayes factors. Other references and the general asymptotic behavior of

training sample methods can be found in Gelfand and Dey (1992).

In terms of the asymptotic criterion that was discussed at the end of Section 1.3.2, it
can be shown that, if the size of the training sample increases with the sample size n, then

the ensuing Bayes factor is not asymptotically equivalent to (1.11), up to a multiplicative
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constant. Hence we will be concerned only with methods that have fixed training sample
size, regardless of n. None of the above developments (except Smith and Spiegelhalter,
with their imaginary training sample) have operated with Bayes factors as in (1.6), with

fixed training sample size.

Aitkin (1991) can also be considered to be a training sample method; it takes the
entire sample @ as a training sample to obtain 7¥(8;|z), and then uses this as the prior in
(1.6) to compute the Bayes factor. This double use of the data is, of course, not consistent

with usual Bayesian logic, and the method violates the asymptotic criterion rather severely.

O’Hagan (1994) proposes using a fractional part of the entire likelihood, [f(x|8)]*,
instead of a training sample. This tends to produce a more stable answer than use of a
particular training sample but will also fail the asymptotic criterion, unless a « 1/n as
the sample size n grows. The behavior of fractional Bayes factors is well worth study,
particularly choices such as a = mg/n, where my is the minimal training sample size. This
choice may result in Bayes factors that correspond to use of sensible default priors, at
least for linear models and certain choices of the background noninformative priors; such

justifications have yet to be formally established, however.

Independently of our work, de Vos (1993) has proposed a training sample method for

linear models that is similar to our proposal. See Appendix 2 for discussion.

1.3.5 Bounds on Bayes Factors

In comparing M, with a nested model M;, one can typically find an upper bound,

le = sup B21, (112)
{(m1,m2)€T'}

over a class, I', of appropriate prior distributions. Such a bound says “the comparative
support in the data for M, versus M;” is at most Bs;. Such bounds can be very useful in
establishing a Bayesian Ockham’s razor that is independent of prior opinion (cf., Jefferys
and Berger, 1992), and in demonstrating severe evidential inadequacy of non-Bayesian
measures such as P-values (cf., Edwards, Lindman, and Savage, 1963, Berger and Sellke,
1987, and Berger and Delampady, 1987). Indeed, in Delampady and Berger (1990) it is
shown, in this way, that model selection via classical chi-squared testing of fit gives answers

which (as commonly interpreted) are very biased in favor of the complex model.
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Bounds, such as Bj;, cannot, however, be used as general model selection tools, be-
cause they operate only in one direction; corresponding lower bounds, B,,, are typically
zero. Also, B can be an unrealistically large upper bound and typically does not behave

in accordance with (1.11) asymptotically.

1.4 Preview

In Section 2 we introduce the idea of the intrinsic Bayes factor (IBF) for nested
models. Several variants of the IBF are presented, and illustrated on simple examples.
Section 3 discusses the IBF for nonnested models or hypotheses, and illustrates the method
on several data sets. (We consider only fairly basic examples in this paper, so that insight

into the behavior of IBFs, and comparison with other methods, can be more readily seen.)

Section 4 introduces the notion of the intrinsic prior; this is the (often proper) con-
ventional prior that would give answers similar to the IBF. The demonstration that IBFs
correspond to Bayes factors for sensible conventional priors is a cornerstone of the justifica-
tion for the approach. When computable, the intrinsic prior can itself be used to conduct
the Bayesian analysis, in place of using the IBF. Thus another view of the developments
here is that they provide a method for deriving conventional priors for model selection and

hypothesis testing.

Section 5 considers problems of prediction and model uncertainty, and shows how IBF's
can be used to overcome the difficult question of model weighting. Section 6 summarizes

the results and provides practical guidelines.

2. INTRINSIC BAYES FACTORS FOR TWO NESTED MODELS OR HY-
POTHESES

2.1 Nested Models

Assume that M; is nested in M3, in the sense that we can write 82 = (§,7) and f;
and f, satisfy
fi(2]01) = fa(z|§ = 61, n =), (2.1)

where 1)y is a specified value of 7. It will sometimes be convenient to identify 6; with

(61,m0), so that ; and 8, lie in the same space. Also, we will sometimes simply write
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8, = (6:1,m), although this is a dangerous (but common) practice. The danger is that
6; in fi(«|01) and 6, in f2(x|(01,7)) can have very different interpretations, yet because
the symbols are the same it is all-too-easy to assign them the same prior (especially when

default priors are being used).

Example 2. We wish to predict automotive fuel consumption, Y, from the weight, Xj,

and engine size, X3, of a vehicle. Two models are entertained:

M;:Y =X1B1+e1, e1~N(0,0})
My:Y = X151+ XoPz + €2, €2 ~N(0,02). (2.2)

Thinking, first, about Mz, suppose the elicited prior is of the form 72(f1, B2, 02) = ma21(B1)-
ma2(B2)-m23(a2). It is then quite common to choose, as the M; prior, 71(81, o1) = 7m1(B1)-
m12(01), 1.e., to use the same prior for §; as in Model 1. (Even worse, conceptually, is to
equate oy and oy and give them the same prior.) The point, of course, is that $; has
a different meaning (and value) under M; than under M. For instance, regressing fuel
consumption on weight alone will yield a larger coefficient than regressing on both weight
and engine size, because of the considerable positive correlation between weight and engine
size in the data. (To clearly see this, consider the case where weight and engine size are

exactly linearly related.)

This is an important issue because many of the schemes for developing conventional
priors are based on a formalization of such parameter identifications, and are hence suspect.

Intrinsic Bayes factors will naturally avoid the problem.

In Section 2.3 and Section 4, the following assumption, which is virtually always true

for nested models, will be needed.

Assumption N. If M, is nested in M;, assume that, as the sample size n — oo,

~

8, "M 92 — (81, m0), (2.3)

where 8, is the MLE under M,
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2.2 The Intrinsic Bayes Factor

For a given data set @, there will typically be many minimal training samples as

defined in Section 1.2. Let
At = {z(1),z(2),...,=(L)} (2.4)

denote the set of all minimal training samples, ®(£). Clearly the Bayes factor Bs;i(£),
defined in (1.6), will depend on choice of the minimal training sample. To eliminate
this dependence and increase stability, a natural idea is to average the B;(£) over all
z(£) € Xr. This average can be done either arithmetically or geometrically, leading to the
arithmetic intrinsic Bayes factor (AIBF) and geometric intrinsic Bayes factor (GIBF)
defined, respectively, by

ar _ 1 - N 1 2 N
By = i3 2321(5) = By - i3 Z Bia(2(4)), (2.5)
=1 =1
L 1/L L 1/L
Bf' = (H Bu(@) =Bj - (H B%(w(f))) ; (2.6)
=1 £=1

where the BN,(2(£)) are defined in (1.7). Note that B&! < B3}, since the geometric mean
is less than or equal to the arithmetic mean. Thus B will favor the nested (simpler)

model to a greater extent than will B!

Important Point 1: We define B{} to be 1/B4\!, and not by (2.5) with the indices
reversed. The asymmetry arises because of M; being nested within M;, and will be
explained in Section 2.3. For B$! there is no problem; reversing the indices in (2.6)

clearly results in 1/BZ?.

Important Point 2: If the sample size is very small, there will clearly be problems with
using a part of the data as a training sample. For very small samples we recommend

alternative versions of intrinsic Bayes factors, defined in Sections 2.3, 3.3, and Section 4.

Example 1 (continued). X = (Xi,...,X,) was an i.i.d. sample from M;: N(0,0%) or
My: N(p,02). Using 7l¥(01) = 1/01 and 7¥(p,02) = 1/02, computation yields

2 nz?. .
By = o 1+ —8‘2—) /2, (2.7)
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where s? = Y (z; — z)%. Together with (1.7) and (1.8), and noting that X7 consists of all
i=1
L = n(n — 1)/2 pairs of (different) observations, it follows that

ar_ oy 1 (@1(8) — 22(0))?
B =B 7 2.5 70 + 30

_ 1 (zi — zj)?
=By n(n —1) ; Vrlz? + 22’ (28)

o (T e = 220
B = B (E 2ﬁ[w%(€)+w%(€)]) ' (25)

Note that B and BS! are defined for essentially any nested models, even those

which are non-standard, such as the following.

Example 3. Assume that X = (Xi,...,Xy) is an i.i.d. sample from either M;: X; ~
N(61,1) with 6; < 0; or My: X; ~ N(6,,1) with 6, € R'. Once again it is important to
keep in mind that 6; and 6, might well be distinct quantities, apriori, even when 6, < 0.
It could be dangerous to formulate this problem by saying X; ~ N (6,1), with M;:6 <0
and M;: 6 € R'. The danger is in being misled by the same symbol, 6, appearing in M,
and M, which might cause one to assume that, say, 71(6) (under M;) equals m2(8}0 < 0)

(under M3). Such assumptions are simply not typically warranted.

The usual noninformative priors here are 7 (61) = 1(_0,0)(61) and 73 (6;) = 1. Easy
calculations then yield

BY =1/®(—/nZ), (2.10)

where ® is the standard normal c.d.f. A minimal training sample is a single observation,

since

1 lz__12
mie)= [ e, = a(-a)

and md (z;) = 1 are both finite for a single observation. It follows from (2.5) and (2.6),
that

B;‘II_(I)( \/_x) nZQ( z;), (2.11)

Bz"i’—q,( \/_l_) [H‘I’( x,)] . (2.12)
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That this is a non-standard example, which is difficult to handle by ordinary (default)
methods, is partly indicated by the fact that the asymptotic expression (1.11) (and hence
BIC) are not valid here. The correct asymptotics can be found in Haughton and Dudley
(1992), which studies very general problems of this type. For later reference we record the

asymptotic analogue of (1.11):

m(Z)

&(—y/nz)m (min{z,0})’

Ba & (2.13)

this is valid if 7, is continuous and m; is continuous and has a finite limit, 7;(0), at zero.

2.3 The Expected Intrinsic Bayes Factors

For small sample sizes, the training sample averages in (2.5) and (2.6) can have large
variances (as statistics in a frequentist sense), which indicates an instability of IBF's when
the sample size is small. Also, computation can be a problem if L is large (see, also,
Section 2.5). One attractive solution to both these problems is to replace the averages
in (2.5) and (2.6) by their expectations, evaluated at the MLE. Formally, we define the
expected arithmetic intrinsic Bayes factor and expected geometric intrinsic Bayes factor

by, respectively,

L
1
BEAT = BY - 130 EMBI(X (1) (2.14)
=1
1 L
BEST = BY - exp{ 3 E{log B(X ()], (2.19)
i=1 .

where the expectations are under My, with @, set equal to the MLE 8. If the X (£) are

exchangeable, as is common, then the averages over L are clearly superfluous.

That (2.14) and (2.15) are justified as approximations to (2.5) and (2.6) for large L and
under M is obvious. However, they also are valid approximations under M; if Assumption
N in Section 2.1 is satisfied, for then (under M) 8, = (8;,n,) which, together with (2.1),
shows that the expectations in (2.14) and (2.15) are equivalent to those under M;. This
very helpful property is unique to nested models and will, unfortunately, prevent us from

deriving analogues of (2.14) and (2.15) for nonnested problems.
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Example 1 (continued). Here the X () are exchangeable, so from (2.14) and (2.15) we
see that

(Xi — X;)?
2/m(X? + X32)

EAI _ N . pM;
By,™ =By - E02

_ BN . 1 — exp{—nz?/s?})
-5 (SR ) e

see Berger and Pericchi (1993) for computation of the expectation. Also,

EGI M, (Xi — X;)?
BEGT = B . exp {E [log 5/ +X12)] , (2.17)

where 8, = (Z,s2/n). Here the expectation can be evaluated only as an infinite series (see
Berger and Pericchi, 1993); but numerical computation is straightforward, as discussed in

Section 2.5.

Example 3 (continued). Using (2.11) and (2.12), (2.14) and (2.15) become, respectively
(again using exchangeability of the X (£)),

<I>(\/_)

BE! = g - exp (Bl log 8- Xu)) (2.19)

here X; ~ N'(6,1) under M; and 6, = &. Again, the expectation in (2.19) cannot be done

- B(— x/\/"), (2.18)

in closed form.

As with B!, we define BEA! = 1/BEAT. In this there is no option, since in most

problems (such as Examples 1 and 3)
E;W [BN (X (£))] = . (2.20)

This also explains the definition of B{jf = 1/B4!; although B{! could be defined as in
(2.5) with the indices reversed, the average of the Bl%(x(¢)) would typically diverge as

L — oo, resulting in a Bayes factor that would violate Principle 1.
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2.4 Comparisons

We pause to compare the various intrinsic Bayes factors 'with each other and with
certain other methods, so as to obtain insight in these simple cases as to whether our goals
are being achieved. The comparisons we make are with the asymptotic expression (1.11),
the Schwarz approximation (1.10), with Jeffreys (1961), and with Smith and Spiegelhalter
(1980); as indicated in Section 1.3, we view these as among the best of the previously
published approaches, when they apply. None of these approaches apply to Example 3;

hence we delay discussion of that example until Section 4.

n
Example 1 (continued). Since i = Z, 61 = (3 22/n)1/? = (2 + s*/n)'/?, 6, =
i=1

s2/n)1/2 it is straightforward to compute the following:
g g

Asymptotic Approzimation: (1.11) becomes

2 ~ ~
BL =BN-52-M. | 2.21
21 21 &1 71,1(0,1) ( )

Schwarz Approzimation: (1.10) becomes

S _ npN
321—321'_-

V2r

Jeffreys Approach: Jeffreys (1961) used the priorsin (1.9), and approximated the resulting
Bayes factor by

1
Bj, =B} - 62 - : :
21 21° 02 Gon[L + 42 /37] (2.22)
Smith and Spiegelhalter (1980): Their Bayes factor is
BSS — BN . i
21 2
It is useful to rewrite my(p,07) as
m2(H, 02) = m2(ploz)m2(02). (2.23)
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If, now, the common noninformative choices m1(01) = 1/01 and m3(02) = 1/0; are made,
then (2.21) becomes

BL = BN - &5 - my(j2]62). (2.24)
Note that By, is of this form with my(u|oy) being Cauchy(0,02), consistent with (1.9).
Likewise, rewrite (2.16) and (2.17) as

. 1 —exp{—j?%/52%}
EAI _ N  ~ . P1—H" /03
B21 = B21 g9 ( 2\/7_1'[/22/6'2] ) (225)
1 (Xi — X;)?
GAI _ pN . M, i— A
By =By - 02 (&2 Biss) 08 5752 +XJ?)]>' (2.26)

Recall that one of our goals was to develop an automatic method that “reproduces” au-
thentic sensible Bayes factors. BEA! succeeds astonishingly well. Indeed, it can be shown

that ‘ o)
L (ulog) = 1 — exp{—pu?/o?
2(#[ ) 2\/'7?[#2/0_2]

is a proper prior (integrating to one over u) and, furthermore, is virtually equivalent to

(2.27)

Jeffreys C(0,02) choice of m2(p|o2); indeed, the two prior densities never differ by more

than 15%, as can be seen in Figure 1, when o5 = 1.

Figure 1. Comparison of the Cauchy (dashed) and intrinsic (solid) priors for Example 1.

This remarkable property of BZA! is, unfortunately, not shared by BEST. The brack-
eted term in (2.26) does not correspond to a proper prior, although it does behave quali-

tatively similarly to mJ(u|o2).
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Comparing By, or BEAT with B5S, we see that the latter is larger by a factor of
about /(14 42/62), which is always greater than one (and can be arbitrarily large). This
phenomenon is quite generally true and provides support for the assertion in Section 1.3

that B5 is biased towards the more complex model.

Similarly, Bs; is larger by a factor of \/m(l + 4%/62%); and is itself thus biased
towards the more complex model. If one had chosen m3(p|o2) to be N(0,032), then BH
would equal By, -exp{—2z2/(262)}. If M; were the true model and n were large, then T = 0
and Bf, & B5,. This is the basis for the argument in Kass and Wasserman (1992) that By,
is approximately a Bayes factor when the simpler model is true in a nested situation. Of
course, ignoring exp{—2>/262} is not always appropriate. (And this relationship between

B3, and Bayes factors has only been established in somewhat special circumstances.)

The story forBzi! and B! is similar. Remarkably, the average in (2.5) again corre-
sponds to a proper prior, even though it is a data-dependent proper prior (see Section 4.2).
The corresponding term of (2.6) is qualitatively similar, but again does not correspond ex-

actly to a proper prior.

2.5 Computational Issues

2.5.1 Computing B3\ and B$/

There are three aspects to the computation of (2.5) or (2.6): computation of BY,

computation of the B (z(£)), and the summation over £.

(i) Computing BJ: This is a standard (though not necessarily easy) problem; see
Rosenkrantz (1992), Kass and Raftery (1993) and Raftery (1993) for discussion.

(i) Computing the B(x(¢)): Interestingly, these are often available in closed form for
minimal training samples. This is true in the general linear model; and see Examples 4
and 6 in Section 3 for quite surprising illustrations. If the computation must be done
numerically, it is obviously advantageous to use a numerical scheme which simultaneously
does all the integrations. As an example, if one uses importance sampling to evaluate the
integrals, it would be nice if one could generate a single importance sample that could be

used for all the BY(x(f)) simultaneously. This is, in fact, quite feasible; because the z(¥)
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are minimal training samples, it can be seen that the integrands in (1.5) tend to be quite
diffuse, so that a “global” importance function can often be effective. Specific algorithms
are currently being studied and will be reported elsewhere. See Gelfand, Dey, and Chang
(1992) and Geyer and Thompson (1992) for related ideas.

(iii) Summation over ¢: Often L, the number of minimal training samples, is (::l), where n
is the sample size and m is the size of the minimal training sample. This can be enormous
if n is moderate or large and m > 2. The natural solution to a too-large L is to sum
only over a subset of X7, the set of minimal training samples. This could be a “random”
selection of samples from X7, or could be systematic. As an example of the latter, in the
situation of Example 1 it would be reasonable to choose disjoint pairs of observations, for
instance {(z1,z2), (z3,24),.-.,(Tn-1,2Zn)}, as the minimal training samples to be used
in computing B! or BG!. Unless n is quite small, this will yield essentially the same
answer as use of all minimal training samples. Systematic choice of the training sample is

a special case of using “weighted” averages to form IBFs; the “weights” in a systematic

choice are simply zero or one.

2.5.2 Computing B4/ and B!

In the nonexchangeable case, (2.14) and (2.15) can be quite difficult to compute, unless
the expectation over M, can be evaluated in closed form (which, however, is possible for
the general linear model and BEAY). In the exchangeable case, however, (2.14) and (2.15)
are typically no harder to compute than Bzl and B3!; one simply simulates the relevant
expectations, using r i.i.d. samples (of sizes equal to the minimal training sample size),
@q,...,2,, generated from M, with parameter 8; = 6, (the MLE for the original data z).

For instance, the expectation in (2.14) becomes
T ~s 1 .
By [B(X ()] = - Z By (). (2.28)

Note that use of (2.28) can be interpreted as a use of “imaginary training samples,” as

opposed to training samples from the actual data.
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3. THE INTRINSIC BAYES FACTOR FOR NONNESTED MODELS OR
HYPOTHESES

3.1 Standard IBFs and Trimmed IBF's

The expressions for B\’ and BS;! are computable for any models, and can potentially

be used as IBFs even in nonnested cases.

Example 4 (Location-Scale). Suppose the M; are location-scale densities
fi(®lpi,0) = 1L o7 gil(zj — pi)/o:), (3.1)

where € = (¢1,...,Zn), and y; € R! and o; > 0 are unknown. The standard noninforma-

tive priors here are 7{¥(u;,0;) = 1/0;. Lemma Al in Appendix 1 then shows that

mi (zj,zk) = 1/(2]z; — zkl). (3.2)

It is easy to see that m{(z;) = oo for a single observation, so that minimal training
samples are any pair of (different) observations. Since (3.2), rather remarkably, does not
depend on M;, it is clear that B (2(£)) = BY,(2(¢)) = 1 for any minimal training sample.
It follows that

3541[ = Bz1 = B%, B12 = B12 = Bllg = 1/3%, (3.3)

which is basically the procedure considered by Spiegelhalter (1980). This is delightfully
simple: all IBFs correspond to simply computing the Bayes factor for the ordinary nonin-
formative priors. We will return to discussion of this situation in Section 4.3. See Pericchi

and Pérez (1992) for an example.

In general, BA! will not equal 1/B{}f, and several difficulties can then arise. First,
it is often not clear in nonnested situations which model is “more complex,” and hence
which model should be called M. This is irrelevant for BS}!, but can strongly affect B!

A second difficulty is that, in nonnested situations,

Bjj = ZB ((£)) ' (3-4)
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can be extremely unstable. Indeed, its expectation can be infinite under one or both

models, indicating serious potential problems.

Example 5. As an artificial — but illuminating — example, suppose that X;,...,X,
are an i.i.d. sample from M;: NM(6;,1) or M;: N(0,63). The usual noninformative priors
are 7V(6;) = 1 and 7'(6;) = 1/6,. For a single observation, z;, m{(z;) = 1 and

ml(z;) = 1/(2|z;|). Hence the minimal training samples are just the individual ;.

Here there is a clear difficulty in stating which model is more complex. Note, however,

that (3.4) becomes B} = 1 37 2|x,|, which is well-behaved under either M; or M;. In
=1

_ n
contrast, the corresponding B = 1 3~ 1/(2|z4|) would not be well behaved (converging
=1

to co as n — o), and would result in a very unstable IBF. Hence, it is natural here to call
M, “more complex” and use
2 n
B =By - : | 3.5
21 217 ; |ze] (3.5)

Of course, Bg! could also be used.

In this simple example the difficulties were resolvable, but in more complicated sit-
uations this might not be so. Hence, it is useful to consider possible solutions to the

difficulties. One potential adhoc solution is to use trimmed averages instead of BJY.

Definition 2. The a-trimmed IBF, BSA! or BSC!, are defined by (2.5) or (2.6), but with
the (a/2)L smallest and («/2)L largest values of BfY}(2(¢)) removed, and L replaced by
(1-a)L.

A moderate amount of trimming, say 10% or 20%, can dramatically improve the
stability of B4/, and is recommended if B4/ is used for nonnested models. Trimming also
overcomes the purely numerical problem that, because of data rounding, it may happen
that, what was thought to be a minimal training sample really is not, with the typical
result that m2Y (x(£)) = oco. For instance, if M, is a continuous location-scale density, then
{zi,z;} is theoretically a minimal training sample, since z; # x; with probability one.
But, in practice, data rounding may cause two observations to be equal, in which case use

of (3.2) would clearly cause problems. Automatic trimming can eliminate this numerical
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problem. (Note that trimmed IBFs are all different entities, in the sense that they do not

converge to the expected IBFs as the sample size grows.)

As a final observation, note that one could trim all BY,(2(£)) except the median value,

B7ed, This would result in

medAl _ pmedGI _ npN med __ 1 1
B21 - B21 - BZI B

== (3.6)
12 Bita d ATl Bl2 dGI

This complete trimming actually has considerable appeal, because the arithmetic and
geometric Bayes factors then become the same, and because there is then no need to
ascertain which model is more complex. This definition is not without its own difficulties,
however. For instance, there is a consistency problem in definition if there are more than
N

two models, since the medians of the B;;

3 (2(€)) will typically occur at different ®(¢) for

different (7,7) pairs. Nevertheless, this “median IBF” deserves further study.

We finish this section with a real-data example, indicating the severity of the types of

problems discussed above.

Example 6. Proschan (1963) considers failure data arising from air conditioners on several
different airplanes. For each individual airplane, he suggests that an exponential model fits
the data well. To illustrate this, consider the following 30 failure times from a particular
airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11,
14, 11, 16, 90, 1, 16, 52, 95. Three models are entertained for the (assumed independent)

failure times, X;:
Mi: fi(zil61) = 01_1 exp{—z;/61} (Exponential(6;)),

My ol o) = SRIZUBL— BP/QON 1 oral s, o),

2rox;

My: fs(zily, B) = By~ exp{—(zi/7)’} (Weibull(y, 8)).

Note that these three models can represent very different behavior in terms of failure rates.
The models here are not nested (except for My within M3), and the sample size is not large
enough to trust asymptotics; hence, there are no established default Bayesian methods of

model selection here.
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For My and M, the standard noninformative priors are 7{¥(6;) = 1/6; and 72’ (4, 0) =
1/o. For Ms, both the Jeffreys prior, 3 (v, 8) = 1/, and the reference prior, 7ft(v, 8) =
1/(yB), have been used; we will consider both. Calculation yields, for & = (21 ...,2z,),

I(n I'((n—-1)/2
(@)= 20 mi(e) = DD
(11 z)nw=D/22 /sy
=1 :

(Zz;)™’ (37

n
where S? = Z:l(y,- —4)?, y; = log z;. It is easy to see that minimal training samples are of
1=
the form =(¢) = (zi,zj), =i # z;, so that
1

(zi + ;)%

1
2z ;| log(zi/x;)|

my ((6)) = m3 (2(£)) = (3-8)

For the reference prior and Ms, it can be shown, quite surprisingly, that mY (2(¢)) =
mY (2(£)). However, computation of m{ (z) for the full sample, as well as all computations
for M3 and the Jeffreys prior, required one-dimensional numerical integration (over J3; the

integral over v can be done in closed form). These were done using IMSL routines.

There are 435 pairs of observations, but nine of them have z; = z;. Hence those nine
are not minimal training samples, and were ignored. Since M), is nested in M3, we do not
consider B{jf. And although Mj is not strictly nested in My, it is intuitively clear that

My is a more complex model, so we also do not consider B{}/.

Table 1. IBFs for the failure data.

Al GI Al GI Al GI Al GI
l B21 | B21 | B31 | Bal | B32 | B32 | B23 | BZ3

Jeffreys prior 0.37 0.33 0.25 0.15 0.66 0.46 3.93 2.15
Reference prior same same 0.26 0.23 0.70 0.70 1.42 1.42

Table 1 presents the values of the various IBFs we have considered for this data.
Note that the lognormal model is preferred over the Weibull model by about 1.4:1, but
the exponential model is the clear favorite; this is Ockham’s razor in operation. (For
those who prefer thinking in terms of posterior probabilities, note that, when the prior
probabilities of the models are equal and the arithmetic IBF with reference priors is used,
the posterior probabilities given by (1.1) are P(M;|z) = 0.613, P(Mz|x) = 0.227, and
P(M;|x) = 0.160.)
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The only particularly odd IBF in Table 1 is B4, with the Jeffreys prior, which is
far from 1/B4. This illustrates the possible inconsistency of BﬁI in nonnested models.
Similarly, desirable relationships such as B! /B{\f = B4}/ do not typically hold (but see
Section 5).

The IBFs in Table 1 that are based on the reference priors seem to be sensible and
quite consistent across model comparisons. This appears to be a common phenomenon,

and leads us to recommend using reference 7}V rather than Jeffreys noninformative priors.

3.2 The Encompassing Model Approach

Except in nice situations, such as Example 4, B3i! or its partially trimmed versions
still suffer from the potential ambiguity of requiring M, to be the more complex model.
Often, it is simply not clear that there is a more complex model, and then different answers
can result from arbitrary choice of one as more complex. Note that this problem never

arises with BS!, so that the following applies mainly to Bsi!.

One solution to this problem is to embed M; and M; in alarger model. More generally,
if {M;} is a collection of models being considered, then we call My an encompassing model
if all the M; are nested within M,. Ideally, My would be chosen in a minimal way, but

this is not absolutely necessary.

If M, is an encompassing model, then one can compute the B{}! using the nested

model definition. The intrinsic Bayes factor of M; to M; can then be defined as

Bj" = B! /B = B} - (Biy | Bjp), (3.9)

where BYj and B} are defined as in (3.4). (Note, from the second expression in (3.9), that

m}Y (x) for the full data need not be computed.)

Use of B?{” eliminates the issue of defining the “more complex” model, since Bg{” =

1/ B?]-AI ; indeed (3.9) will provide multiple model consistency, as will be discussed in Sec-
tion 5. And, since only nested model computations are involved, stability is not an issue,

and adjustments such as trimming are typically unnecessary.

The disadvantages of using (3.9) are that one must be able to determine a (minimal)

encompassing model M, (which itself will not necessarily be unique and which may intro-
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duce identifiability problems; see the rejoinder of Gelfand, Dey, and Chang, 1992), and that
the training sample size will now generally be larger (so as to assure that mg(x(£)) < o),
which will typically make the BY (2(£)) more expensive to compute. (In the multiple model

scenario, there are, however, substantial computational advantages to (3.9); see Section 5.)

Example 5 (continued). Here the natural encompassing model is My: N(p,0?), with
corresponding noninformative (formal Jeffreys) prior 7V (u,0) = 1/02. (Again, we use
this prior, rather than the more common 1/0, for computational convenience.) A minimal

training sample, @(£), consists of two observations {z;,z;}, and computation yields

1

N _ 1
my (:c(@)) - \/7?(-'17: _ :17]')2

2m(z? + z?) )
(3.10)

i () = GBI ey -

It follows that (see also Example 1)

Bly = gy D (e — i) expl~(ai — 254}

( <

BY = n(n_l)z (e = ;) (e} + 23, (3.11)

1<g

Then (3.9) defines B,

The encompassing model approach would appear to leave B$! unchanged because,
in the analogous expression, BOGI B§1/ B%I , all the factors involving My would cancel.
This is not quite true, however, because now the minimal training samples would be
the typically larger samples needed to make mo(®(£)) < co. Thus BIF! will denote the
geometric intrinsic Bayes factor, but with the training samples chosen to be minimal under

the encompassing model.

It is a delicate question whether the larger training sample induced by the encom-
passing model is beneficial or harmful. A larger training sample provides more stability,
but seems to correspond to somewhat less attractive proper Bayes factors (an issue that
will be explored elsewhere). For multiple models, however, the pragmatic advantages of
the encompassing model approach will be seen to be very considerable. We conclude this

section with such a multiple model example.
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Example 7 (Hald’s Regression data). This classic data set (cf, Zellner, 1984) is
typically analyzed using normal regression models. There are four potential regressors,
which we denote by X3, X;, X3, and X4, and a possible constant term, which as a regressor

we denote by Xy = 1.

Suppose it is desired to compare the models My: {Xo, X1, X2}, Ma: {Xo, X3,X4}, and
Mj: {Xo,X1,X4}, which are the standard normal regression models with the indicated
regressors. This data set is an extreme “test” because of the very small sample size

(n = 13), and the fact that the design matrix is nearly singular.

The obvious encompassing model here is My: {Xo, X1, X2, X3, X4}. Computation of
the B@! and B§! is then relatively straightforward. Indeed, Appendix 2 presents the
needed formulas for any normal linear model. As indicated there, the minimal training
samples would be of size 6 in this example; and there are a total of 1715 such training
samples. (This was small enough that we did not need to choose a subsample of training
samples to do the computations.) Table 2 gives B{! and B§! for reference priors and
the Jeffreys priors (see Appendix 2). For comparison purposes, Table 2 also gives the
asymptotic (Schwarz) Bayes factor, and the P-value for testing Hy: M; versus Hy: M.

Table 2. Hald’s data; comparison of My to My, M, and M;

M, versus M, My versus M, M, versus M;
P-value 0.47 ‘ 0.0055 0.168
Schwarz 0.080 130.6 0.450
Bg‘,f , reference priors 0.18 13.1 0.458
B{!, Jeffreys prior 0.16 34.2 0.411
B§!, reference priors 0.082 4.60 0.201
B§!, Jeffreys priors 0.004 0.265 0.001

Note, first, the strange values of B§:! with the Jeffreys priors. We have observed this in

other linear model examples, and hence do not recommend the combination of the two.

The values of B{i! are reasonable, and rather stable with respect to the choice of

noninformative prior. The B§: for reference priors seem somewhat small, especially for
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M, versus M,, perhaps suggesting a somewhat excessive favoritism of BS:! towards simpler

models.

The asymptotic (Schwarz) Bayes factors are not unreasonable, except perhaps for the
My versus M, comparison. (Recall, we asserted that, by ignoring the term from the prior,
the asymptotic answers tend to overly favor the complex model; here, My.) Similarly, the
P-value for testing Hy : My versus H; : My is 0.0055, which would seem to be very strong
evidence for Mj; the intrinsic Bayes factors suggest, however, that the evidence is only

moderate, an example of the well-known conflict between P-values and Bayes factors.

Finally, recall that the original goal was comparison among M;, Mz, and M3. From
(3.9) and Table 2 for, say, reference priors, one obtains B = 72,8, B} = 254, and
BT = 0.035. (Interestingly, these are reasonably close to the reference prior BYST = 56.1,

B$T = 245, and B$! = 0.044.) Thus M, is moderately preferred to M and quite
strongly preferred to M,.

3.3 Expected Intrinsic Bayes Factors
For nonnested models, there is no obvious analogue of BEA! in (2.14) or BEGT in
(2.15). This is because, in replacing the averages by expectations, one does not know

whether to take the expectations under M; or M,.

Another benefit of the encompassing model formulation is that the expectations can
be taken under Mp; as before, expectations under My will approximately equal those under

M or M,. We thus define (switching to the multiple model notation for later use)

EAI EGI
BEOAI _ By; BEOGI _ By;

ji ji T BEGI"
0y

(3.12)

Example 5 (continued). Computation yields

5’2

(6> +1)’

-y 4 _23(;({1;764(; D, (@3

1 (XX )2
By*' = Byl - E(;%) [E(Xi—Xj)% (Xi=X;) /4] =BY -

(Xi — X;)°
2/m(X? + X?)

where i = Z and 6% = £(z; — 7)?/n. Thus

2 BEAT — 7% (52 +1)(1 — exp{—ji?/6?})’ '
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Expressions for BEGT involve infinite series, and so are omitted here.

4. INTRINSIC PRIORS

4.1 Definition and Motivation.

In Example 1 (continued) in Section 2.4, we saw that B! and BFAT were approx-
imately equal to Bayes factors for the proper (conditional) prior (2.27). Such a prior,
if it exists, is called an intrinsic prior. We view the fact that IBFs tend to correspond
to actual Bayes factors w.r.t. (sensible) intrinsic priors to be their strongest justification.
Hence, determination of the intrinsic priors is of inherent theoretical interest, as well as

providing the best insight into the behavior of IBFs.

There are also potential practical benefits in determining intrinsic priors. One obvious
benefit is that the intrinsic priors could themselves be used, in place of the 7V, to compute
actual Bayes factors. This would eliminate the need for training sample computations and
eliminate concerns about stability of the IBFs. Indeed, one could alternatively view the

’ so as to determine

IBF procedure as a method to apply to “imaginary training samples,’
actual conventional priors to be used for model selection and hypothesis testing. This
could be viewed as the complement to, say, the reference prior theory (Bernardo, 1979;
Berger and Bernardo, 1992), which also uses imaginary samples to develop conventional

priors for estimation and related problems.

While this latter view of the IBF methodology has considerable philosophical appeal,
there are pragmatic arguments against actually operating in this fashion. Foremost among
these arguments is that it is often very difficult to determine intrinsic priors. In contrast,

IBF's are typically extremely easy to determine.

The argument could be made that, for important and frequently used models, it is
worthwhile to determine default priors that can become “packaged” with the models. This
argument is quite strong for default priors in estimation and other model-based inference,
since each model can have its associated default prior. For model selection, however, the
intrinsic prior will typically depend on the pair of models being considered, and so intrinsic
priors cannot be “packaged” with individual models. This will inhibit their routine use,

except for situations in which the intrinsic prior can be derived in advance for an entire
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class of model comparisons. One important situation in which this can be done is linear

models; see Berger and Pericchi (1994).

As with reference priors, our definition of intrinsic priors will center around use of an
(asymptotic) imaginary training sample. Frequently, an asymptotic argument can be used

to verify the following approximation, which we state as a condition.

Condition A. Suppose that, as the sample size goes to infinity and for priors in an
appropriate class, I', (1.2) can be approximated by
m;(8;)mN (6:)
Bj; =BY . L2t (14 0(1)), (4.1)
"N (8))mi(8:) '
where éj and 8; are the MLEs under M ; and M;, respectively. (Here, o(1) — 0 in, say,

probability under M; and M;. Since we are only using this as a heuristic to motivate the

definition of intrinsic priors, a precise statement of the condition is not needed.)

This condition can easily be seen to hold in the standard asymptotic situation of (1.11)

but also holds in nonstandard situations such as that of Example 3 (see (2.10) and (2.13)).

To define intrinsic priors we begin by equating (4.1) with (2.5) or (2.6), yielding the
equation R X
m;(8;)mlY (6:) BN
e O oW =B, “2)
where we define ﬁf}’ to be either the arithmetic or geometric average of the BJY (2(£)). We
next need to make some assumptions about the limiting behavior of the quantities in (4.2).

The following is typically satisfied.

Condition B. As the sample size grows to infinity, the following hold:
(1) Under Mj, éj — 0]', é,‘ — ’Lb,'(o]'), and Bf}’ — B;(GJ)
(ii) Under M;, 8; — 0;, 8; — ;(8:), and BY — B}(6:).

Typically, for £ =i or k = j,

L
Llim ng" [—IE > BY(X (Z))] arithmetic case
* oo =1
Bk(0k) == L (4.3)
Llim exp {Eﬁ,‘f" [% > log Bg (X (Z))] } geometric case;
—oe =1
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if the X ({) are exchangeable, then the limits and averages over L above can be removed.

Using Condition B, and passing to the limit in (4.2), first under M; and then under

M;, results in the following two equations which define the intrinsic prior (7TJI ,mh)

m1(0,)nN (4(8)) _ .o
wN(0;)r](¥i(8;)) B;(8;), (4.4)
mi (50N (8:) _

=N (50l D O (4.5)

The motivation, again, is that priors which satisfy (4.4) and (4.5) would yield answers
which are asymptotically equivalent to use of the intrinsic Bayes factors. We note that

solutions are not necessarily unique, nor necessarily proper.

As a simple example, we have encountered situations in which B}(6;) = B} (8;) = 1
(e.g., Example 4 and Example 6 for lognormal versus Weibull with reference priors). It

follows trivially that solutions to (4.4) and (4.5) are then
(k) = 7 (0k), k=1,j. (4.6)

Thus the intrinsic priors are merely the original noninformative priors. (While this may
seem uninteresting, we argue in Section 4.4 that there is a very important “calibration” of

7V and 7er that is occurring here.)

4.2 Intrinsic Priors for Nested Models

In the nested model scenario of Section 2.1 and under Assumption N, solutions to

(4.4) and (4.5) are trivially given by
w1(61) = 7{ (61), 73(82) = 73’ (62)B;(82). (4.7)
Typically there are also many other solutions, perhaps even solutions that are proper

distributions, but the solutions in (4.7) are the simplest.

Example 1 (continued). For Bjj, it follows from (2.16) and (4.3) that B3(6:) =

0y - 7 (ploz), where ml(p|oz) was defined in (2.27). Hence the intrinsic prior is
mi(o1) = w7 (01) = 1/on,

. 1 (4.8)
w3 (1, 02) = w3 (02)B3 (1, 02) = P -3 (ploz)-
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Thus B3}! behaves (asymptotically) like the actual Bayes factor which uses reference non-
informative priors for o; and o2, and the proper 7}(u|o2) for the conditional prior of u
given o,. Besides the propriety of 71 (u|o2), it is also notable that the intrinsic prior for o
is the reference prior 1/02, and not the (formal) Jeffreys prior 1/02 that was used to derive
B#I. We have observed this latter behavior in other examples also; the IBFs seem to try

to convert the original 7!V into reference priors for common, or similar, model parameters.

Example 3 (continued). For B3, we see from (2.11), (2.18), and (4.3) that B}(8;) =
®(—62/+/2). Hence, (4.7) becomes |

r(0) =7l (61) =1, ©i(6:) =1-B(~6,/V2). (4.9)

Two features of this intrinsic prior are of particular interest. First, on (—00,0),n{ and
74 are not even proportional. Recall we wrote the models as M;: 6; < 0, M,: 6, € RY,
as opposed to My: 6 < 0, M,: 6 € R, to emphasize that the 6; could have differing
interpretations under each model and different priors, even on their common domain.
This possibility appears to have been realized. Note, however, that, on (—o0,0),7{ and

n1 differ substantially only near zero.

The second interesting feature of the intrinsic prior is that

oo

/ w1 (6;)d6y = / (8, /v/2)dby = \/i; (4.10)

Hence, 73 (8,|{62 > 0}) is proper.

The behavior of intrinsic priors that was observed in the above examples seems typical
for nested models. “Common” parameters (or, at least, parameters that can be identified
in the sense of (2.1)) typically have intrinsic priors that are standard noninformative priors
or slight variants, while parameters that occur only in the more complex model (or that
have extended domains in the more complex model) have (conditional) proper intrinsic

priors. This corresponds with intuition and standard practice.

For nested problems in which (4.3) holds (which is typically the case), the above

observations can be formalized in a quite interesting fashion. First, we give a key theorem.
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Theorem 1. For the arithmetic IBF, suppose that (4.3) holds and that m¥(8,) is proper.
Then w1 (83), defined in (4.7), is also proper.

Proof. Because the limit is assumed to exist in (4.3), it is true that

[ @iz = [ 2) ( lim Ept

= Jim %Z [ [ w @ne e Bl @),

7 ZB (X(E))]) de,

=1

L—oo

= lim —Z / my (2(£)) - [m7 (2(0))/my (2(¢))]d=(¢)
= Jim = 2(1) =1,

the last line following from the fact that, if 7{¥ is proper, then so is m¥. O

When 7V (8,) is improper, one can consider a sequence of compact subsets of ©; that
converge to ©1, and obtain the intrinsic Bayes factors and intrinsic priors corresponding
to each subset. With normalization, these priors will typically be proper (using Theorem
1), and the subset IBFs will typically converge to Bsil. We will formalize these ideas
elsewhere, noting here simply that intrinsic priors are typically proper or unique limits of
a sequence of proper priors. Note, also, that if a weighted average of the BY,(x(£)) was
used to define B!, then Theorem 1 would still remain valid; see de Vos (1993) for a use

of weighted averaging.

As a final observation, note that there is no analogue of Theorem 1 for B$!. Indeed,
we saw in Section 2.4 that BZ! (equivalent to BEGT in terms of intrinsic priors, because

of (4.3)) does not seem to correspond to a Bayes factor with proper intrinsic priors.
4.3 Intrinsic Priors in Nonnested Models

For nonnested models, finding a solution to (4.4) and (4.5) is often more difficult.

Example 6 (continued.) Consider comparison of the nonnested models M;: Exponential

(61) and M,: Lognormal (i, 0). It is easy to verify Condition A for “nice” priors. Condition
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B is also true, where:
under Mj, é2 =(f,6) = (ga(sa/n)l/z)
= BT, (B (S))

(n—»oo)

— 1h2(6;) = (log 6; — 0.5772,1.2825); (4.11)
under Mz, 61 =% — 1 (u;0) = B [X] = exp{u + 30*}. (4.12)

It follows that (4.3) becomes

ngl [ZX.-X;'UOS(X-'/X:')I]

(Xi+X)? arithmetic case

exp { E;‘f ! [log (ZX"}%S‘I,:Z_%((?;,/ X )I)] } geometric case

0.2954 arithmetic case
— (4.13)
0.2383 geometric case;
(J‘Z”a) ZX‘)i'Sl(:(f;(if)‘z/ X; )l] arithmetic case
B; =
2 XiXj|log(X;/X; .
| exp {E(” ) [log (2 ()L.-+g)((,-)2/ ’)I)] } geometric case
(H A(o) = E? [1-}-—0;/—32}%%0_2)] arithmetic case
= (4.14)
HG(O') - exp {—2EZ [log (1 + eﬁ”z)] } geometric case,
where Z ~ N (0, 1). (The derivations above are straightforward.)
For the arithmetic case, equations (4.4) and (4.5) thus become
I , 1 1.2
(1/o)mi(exp{p + 30%})
I(log 6, — 0.5772,1.2825)(1/6
3 (log 61 ,1.2825)(1/61) _ 9 2954), (4.16)

(1/1.2825)7{(6,)

We have not attempted to characterize the solutions to (4.15) and (4.16) in general. The
equations are fairly easy to solve, however, if one assumes that

73 (1, 0) = w31 (1)m32(0)- (4.17)

Indeed, the solutions are then given (up to multiplication of #{ and division of 7§ by an

arbitrary positive constant) by
71 (6,) = 2/49c
w3 (1, 0) = —HA(U)eXP{(l —c)n+ 02)}, (4.18)
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where ¢ = 1.1291. A similar analysis for the geometric IBF yields, as the intrinsic priors,

the expressions in (4.18) with H* replaced by HE and ¢ = 1.2602.

To obtain some insight into the behavior of these priors, it is useful to reparameterize
M, by (v,0), where v = exp{p + 02/2} is the lognormal mean. Then

2 H(o
whn ) — = - T

where H is either H4 or HG. The point of this transformation is that §; and v are then
both the mean parameters of their respective distributions, and it is of considerable interest
that they have the same intrinsic prior. Curiously, this prior is improper but is not the
usual inverse noninformative prior. For some speculations as to why this is so, see the next

section.

The “nuisance” parameter, o, receives the prior 7{,(0) = H(c)/(20). It is easy to

show that 7i,(c) is monotonically decreasing, with the following limiting behavior:

1/(24/7) arithmetic case,
3/16 geometric case,

1/(y/ma?) arithmetic case,
3 exp(—20/+/7) geometric case.

as 0 =0, wi,(0)= {
as 0 — 00, iy (0) {

It is thus clear that 7,(o) is integrable; indeed, we have normalized (4.18) so that, in the

arithmetic case, 7,(0) is a proper density.

The pattern we have observed thus seems to be holding: for parameters that are in
some sense “common,” the intrinsic priors are the same and are of a noninformative type,

while parameters that exist only in one of the models receive proper intrinsic priors.

4.4 Improper Intrinsic Priors and Matching Predictives

Our original goal was to develop an automatic Bayes factor that behaves similarly to
sensible proper Bayes factors. For nested models, the examples and arguments in Section
4.2 suggest that this goal has been achieved by arithmetic IBFs. For nonnested models,
however, IBFs seem to correspond to improper priors, and the extent to which the original

goal has been met is unclear.

The “difficulty” in evaluating the situation for nonnested models is similar to the

difficulty in dealing with “common” parameters in nested models. The discussion following
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Theorem 1 indicated that this could be resolved, in the nested case, by taking limits of
proper priors on the “common” parameters. A similar device would probably work in
the nonnested case, but even then a certain degree of ambiguity will remain concerning

whether the proper priors are appropriately “matched” across models.

An illuminating direct approach to this issue is to attempt to choose priors to match
predictives. The underlying motivation is the foundational Bayesian view that one should
concentrate on predictive distributions of observables; models and priors are, at best,
convenient abstractions. According to this perspective, it is m(y) that describes reality,
where ¥y is a variable of predictive interest. We can choose to represent m(y) as m;(y) =

f fi(y|0:)mi(0;)d0;, but (fi,m;) is thought of as merely a convenient abstraction.

From this perspective, if one is comparing models Mj: f; versus Ma: f,, then the priors
71 and 7, should be chosen so that mi(y) and mo(y) are as close as possible. Thus we
think of m; and 73 as being properly calibrated if, when filtered through the models M,
and My, they yield similar predictives. This could be assessed by defining some distance
measure, d(m1,mz), and calling 7y and 7, calibrated if d(m, m2) is small. A key issue in
operationalizing this idea is that of choosing the variable y at which a predictive match
is desired. It seems natural, in the exchangeable case, to choose y to be an “imaginary”
minimal training sample; this is typically the smallest set of observations for which the
various model parameters are identifiable. Keeping y minimal seems natural because, for
the full data, we of course want m; and m; to discriminate between the models. We explore
this formal approach elsewhere, here being content simply with showing that intrinsic priors

seem to be well-calibrated in our examples.

The clearest examples of this predictive matching notion are Example 4 and Exam-
ple 6 (lognormal versus Weibull case), where m{'(y) = m} (y) for any minimal training

N = nR. Hence the reference priors seem to be com-

sample, y, and the reference priors 7
pletely calibrated in these situations. It is interesting that the formal Jeffreys prior is not

completely calibrated here.

In the other examples considered in the paper, it is harder to establish the extent of the
calibration of intrinsic priors. There are, however, intriguing suggestions of calibration: in

Example 1, the intrinsic prior for o2 was the reference prior, not the original Jeffreys prior;
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and, in Example 6 (continued) of Section 4.3, the intrinsic priors for the mean parameters
seemed to be matched. (We suspect that this matched prior for the mean parameters is
not the usual noninformative prior because 2/v° may provide a better predictive match;

we explore this elsewhere.)

The ideas here are related to ideas of elicitation through predictives (cf, Kadane, et.
al, 1980). Also, similar uses of predictive matching to define priors for model selection can

be found in Laud and Ibrahim (1992) and Garthwaite and Dickey (1992).

5. COMPARISON OF MULTIPLE MODELS AND PREDICTION

5.1 Multiple Model Coherency

If M;,M;, and M} are three models under consideration, actual Bayes factors satisfy

the conditions
1 . B,’j
Bji’  Bij

B;; = = Bip. (5.1)

For IBFs to satisfy (5.1), it is first important to ensure that minimal training samples are
defined relative to all the models { M3, Ms, ..., M,} simultaneously. It is then trivial to see
that the geometric IBF always satisfies (5.1) (cf, (5.3)). This is a very appealing feature

of BSI.

Arithmetic IBFs will typically not satisfy (5.1). An exception is when the encompass-
ing model approach of Section 3.2 is used, in which case it is, again, trivial to verify (5.1).
If it is desired to use the arithmetic IBF, but the encompassing model approach cannot be

implemented, the following scheme can adjust the B;’}I so as to satisfy (5.1).

Step 1. Relabel, so that {My, M,,...,M,} are listed in order of increasing complexity.

Step 2. Compute B;‘}I for all i > j. Note that the m{Y (2) and mY (2(£)) need be computed

only once; determination of all B;‘}I is then just algebra.
Step 3. Define B?f’“ = m}[m}, where

1/p

k—1 q :
my = [[[ B&/ 1] B#| - (5.2)
i=1 j=k+1
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It is obvious that the multiple arithmetic intrinsic Bayes factors, Bf‘]f[ Al then satisfy (5.1).

Example 6 (continued). M; (exponential), M, (lognormal), and M3 (Weibull) are
already ordered reasonably in terms of complexity. From Table 1 for the Jeffreys pri-
ors, we have that B#\! = 0.37, Bl = 0.25, and B#/ = 0.66. Thus (5.2) yields m} =
(BAT - BAD™1/3 = ((0.37)(0.25))"Y/3 = 2.21. Similarly, m} = 0.82 and m} = 0.55. Then
BMAL — ¥ /m* = 0.37, BMAT = 0.25, and B¥4! = 0.67. Thus the “coherency ad-
justment” is here very minor. The numbers in Table 1 for the reference priors happen to

already be coherent (because the B (2(£)) all equal 1).

A justification for Bi’y AT js given by Lemma A2 in Appendix 1. Note that, computa-
tionally, use of Bi]g[ Al is more complex than use of BgI if the number of models is large.

This is because BgI can be rewritten as

B = T 4=1 . , (5.3)
[ miaepe "

so that one need only compute, say, the first factor in (5.3) for each of the p models, to

determine all of the Bi(;-I . In contrast, use of (5.2) requires computation of all g(¢ —1)/2 of
the B{}I for : > j. (Note, however, that we are only discussing simple algebraic operations;
often the most difficult step is computation of the m{ (&) or m¥ (x(¢)), and this difficulty

is common to all IBF's.)

As a final computational note, observe that the encompassing model approach of
Section 3.2 allows use of arithmetic IBF's while retaining the computational efficiency of

geometric IBFs. This is clear from (3.9) (recalling that BY = m¥(z)/ mi (x)).

5.2 Posterior Probabilities

Because Bayes factors can easily be converted to posteriof probabilities via (1.1), it
would seem that determination of the B;; suffices for a statistical analysis; readers could
use their own model prior probabilities, p;, to compute the P(M;|x), or could simply
directly interpret the B;;. For a default analysis, however, use of subjective p; will often
not be possible, and the entire collection of B;; is too large to be digestible if the number

of models, g, is large. Thus default choices of the p; will often be used.
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In many situations, the obvious default choice is p; = 1/q, leading to the reporting of
q .
P(Milz) =1/ Y Bji. (5.4)
i=1

It is somewhat amusing to note that then B;; = P(M;|x)/P(M;|2); thus, if one desires to
SUTC the choice p; = 1/q, one can instead present the P(M;|z) in (5.4) as the “relative

model weightings” from which all Bayes factors can be reconstructed.

In nested model situations, other default choices of the p; are often made. Suppose
there are r; models of dimension k;, r, of dimension ks,...,r, of dimension k,. Then it

is common to:
(i) assign a prior probability p} to the class of models of dimension k;;
(i) give each model of dimension k; equal prior probability p/r;.

The most common choice of the p} is pf = 1/s, although Ockham’s razor might suggest

1

that decreasing choices, such as pf =37'/3>7_, j~', are more reasonable.

Utilization of the above default choices can be important to counteract selection effects

from searching among possible multitudes of submodels.

5.3 Prediction

Frequently, the ultimate goal of the statistical analysis is prediction of some variable
Y which, under the model M; and for given data @, has density gi(y|e,8;). Then the

predictive density of Y, given @, is
q
g(ylz) = Y mi(yle) - P(Mile), (5.5)
=1
where P(M;|x) is given by (1.1) and

mitule) = [ gitule, 0mi(6ilz)abs. (5.6)

As mentioned in the introduction, one of the strengths of the Bayesian approach to model
comparison is that it allows one to keep all models in the analysis, accounting for model

uncertainty by weighting the effect of each model by its posterior probability, as in (5.5).
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To utilize (5.5), we must determine the P(M;|¢) and the m}(y|z). We propose, as
a default analysis, use of IBFs (and the prior probabilities in Section 5.2) to determine
the P(M;|x), and use of the noninformative priors ) (preferably, reference priors) to
determine the m¥(y|z). (See Draper, 1994, for simpler — but cruder — approximations

and other references.)

This proposal for default prediction has no glaring deficiencies; for instance, the “scal-
N

ing” problem for improper 7" is irrelevant to computation of either mj(y|e) or IBFs.
There is, however, a subtle incoherency in the proposal. The incoherency arises from the
fact that use of an IBF corresponds, at least roughly, to use of an intrinsic prior in com-
puting P(M;|z), while m?(y|z) would be computed using 7}¥. Hence the effective priors

being used in each part of the analysis would differ.

An obvious coherent solution to the problem is to determine the intrinsic priors, and
use them to compute the m}(y|z) as well as the P(M;|x). While this “solution” deserves
serious study, we do not recommend it at this time for two reasons. First, determination
of intrinsic priors can be hard. Second, it is not clear that intrinsic priors are suitable

for automatic use in computing the predictive distributions m3(y|e). Use of the 7N

2
for this purpose is known to be quite reasonable, but using the, often proper, intrinsic
priors might well lead to an undesirable biasing of the m}(y|z). To put this another way,

we are forced to use (essentially) proper default priors to determine the P(M;|z), but
N

such priors are typically considerably less robust than the «;"', so we turn to the latter

to determine the m¥(y|z). Note, however, that, asymptotically, the incoherence of our

suggestion disappears, since m}(y|x) does not depend on the prior asymptotically.

6. CONCLUSIONS AND RECOMMENDATIONS
It is worthwhile to summarize the advantages and disadvantages of IBF's.
Advantages of IBFs:

1. They are completely automatic Bayes factors, in that they are based only on the
data and standard noninformative priors. Note, however, that issues such as the “optimal”

choice of training samples in dependent data situations are yet to be resolved.
2. They seem to correspond to actual Bayes factors for reasonable “intrinsic priors,” .
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thus attaining a type of “second order” Bayesian correspondence; in contrast, most other
default methods achieve (at best) a first order correspondence with Bayesian methods,
with many having a systematic bias in favor of the more complex model. Compared with
other “second order” Bayesian methods, such as that of Jeffreys, IBFs have the advantage
of being very generally applicable. (They also have the somewhat cynical advantage that
they SUTC the choice of the default prior.)

3. IBFs apply to non-nested, as well as nested, model comp;arisons, and can be applied

to any distributions.

4. They can be used for default Bayesian hypothesis testing, as well as model com-

parison.

5. They can be applied in situations in which even the usual Bayesian asymptotics

(e.g., BIC) does not apply.

6. They can be used for default multiple model comparison and for default prediction

in the face of model uncertainty.

7. They are invariant to univariate transformations of the data. If suitably invari-
ant noninformative prior distributions are used, they are also invariant to choice of the

parameterizations of the models.
Disadvantages of IBFs:

1. They can be computationally intensive. Recall, however, that the training sample
adjustment factors are often available in closed form (such as when comparing normal linear
models), and sampling from the collection of training samples can reduce the computational

problem to a very manageable level.

2. The arithmetic IBFs may require adjustments to be coherent across multiple

models.

3. The standard IBFs can be unstable if the sample size is small. At the extreme,
when the sample size is only slightly larger than the size of a minimal training sample, the
standard IBF's should probably not be used. However, the expected IBFs can still be used

in many situations, regardless of the sample size; and, if the intrinsic priors can be found,
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they can be used as priors in an ordinary Bayes factor computation.

4. IBFs are not invariant to multivariate transformations of the data that alter the na-
ture of minimal training samples. Because IBF's average over all minimal training samples,

however, the effect of multivariate transformations will be mitigated.

5. IBF's will be formally incoherent in a variety of ways, as are other default Bayesian
methodologies. The standard IBFs (but not the expected IBFs or intrinsic prior Bayes
factors) even have certain incoherent attributes that are not typical of default Bayesian
methods, such as possible violation of sufficiency. While not pleased with these incoheren-
cies, we feel that they tend to have a very minor effect in practice, and are the price that

must be paid for performing a sensible default analysis.

Recommendations:

We have proposed a variety of IBFs in the paper; BAl, BEAT BoAl poAL pMAL

as
well as their geometric analogues and Bayes factors arising from intrinsic priors. This is
probably too large a collection, in that some subset of them will probably suffice to handle
most practical situations. Considerably more practical experienée (and perhaps theoretical
investigation) is going to be necessary before a final set of IBFs can be definitively recom-
mended, however, and these are the candidates that we feel should be studied. Note that

we have already considered a multitude of other IBFs, and the above list is a refinement

of the original huge list of possibilities.

Even though we feel that much study remains to be done among these “finalist” IBF's,

we can give some tentative recommendations concerning their use in practice.

1. We recommend using reference noninformative priors (cf, Berger and Bernardo,
1992) to compute the IBFs. For large data sets, the effect of the initial noninformative
priors is probably minor, but in small data sets we have found that reference priors seem
to give the most stable and reasonable answers. Also, intrinsic priors for “common” pa-

rameters in the models tend to be reference priors, rather than, say, Jeffreys priors.

2. In general, we prefer the behavior of the arithmetic IBF's to that of the geometric
IBFs. This came as a surprise and a disappointment, because geometric IBF's are consider-

ably more appealing at first sight; for instance, they automatically combine across multiple
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models as Bayes factors should, with resulting intuitive and computational advantages (see,
also, Good, 1985). We found, however, that geometric IBFs seem to be less stable than
the recommended arithmetic versions. Furthermore, it is the arithmetic IBFs that appear
to correspond to actual Bayes factors with respect to intrinsic priors. This is not to say
that geometric IBF's are bad, and our conclusions here are, admittedly, tentative. Indeed,
Pericchi and Smith (1994) shows that geometric IBF's yield optimal model weights under

a prequential type of utility function.

3. For comparing two nested models, we recommend B4 or BFAL the latter being

particularly recommended if the sample size is small.

4. For normal linear models, we recommend using the encompassing approach with
B4l for smaller sample sizes, the expectation versions are preferable (see Berger and
Pericchi, 1994). Note that intrinsic priors are also available for linear models, and could

be used directly to compute ordinary Bayes factors.

5. For other non-nested models, we have less clear recommendations. Arithmetic
IBFs, with moderate trimming and multiple model adjustment, seem to work fine. Ge-
ometric IBFs are probably preferable to untrimmed and/or unadjusted arithmetic IBFs.
And the encompassing approach is always appealing if it is easy to determine an encom-

passing model.
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APPENDIX 1. Technical Lemmas

Lemma Al. If X7 and X, are independent observations from the location-scale density

(w.r.t. Lebesgue measure) 0~ g((z; — p)/o) and 7N (u,0) = 1/0, then, for z; # x3,

X1 oz —p, T2 i 1
mieven) = [ [ o e = g

2|.’IJ1 ot $2| )

Proof. Assume, w.l.o.g., that 2 > z;, and make the change of variables (,0) — (v,w) =

44



((z1 — p)/o, (z2 — 1)/o). Then m(z1,z,) becomes

1 o0 oo
m($1,$2) = m/; / g(v)g('w)dwdv
1

=~ .P(V < W),
P ( )

where V and W are independent with density g(:). Clearly P(V < W) =P(W < V) =
1/2, completing the proof. a
Lemma A2. The multiple intrinsic Bayes factors B,{‘;IAI

are defined by (5.2), provide the best fit to the raw B{;I, subject to nonnegativity and the

= m}/mj, where the {m}}

coherency condition (5.1), when fit is measured by

q i—1

> llog(Bij/BENI.

=2 j=1

(Measuring fit on a log-scale is natural for Bayes factors; cf, Good, 1985.)

A

Proof. Define t; =logm} and c;; = log B,-]-I . Then we seek to minimize

g i—1
DO (ti—ti — i),

i=2 j=1

over choice of the {t;}. Differentiating w.r.t. {; and setting the result equal to zero yields

1 k—1 q
tr=t+ - Ckj — chk
1 17= j=k+1

Thus
1/q

k—1 q
* _ b, __ 1 I I Al Al
mg =¢€ = e Bk] / H B]k
j=1 j=k+1

Noting that the multiplicative constant exp{#} is irrelevant to the definition of B%AI =

m} /m7, the result is immediate. O
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APPENDIX 2. Linear Models

Suppose, for z = 1,..., ¢, that model M; is the linear model
M;:Y = X8 +¢ei;, € ~Ny(0,0°1,),

where o2 and B; = (B, Bi2,-- -, Bik;)* are unknown, and X is an (n X k;) given design

matrix of rank k; < n. Let
Bi=(X!X:)"'X{y and Ri=l|y - X:Bi]

denote the least squares estimator of 3; and residual sum of squares, respectively.

Consider noninformative priors of the form
N (Biyoi) = o7 1, gi> -1,

Common choices of g; are ¢; = 0 (the reference prior) or ¢; = k; (the Jeffreys prior). It
can be shown, for such priors, that a minimal training sample y(£), with correspoxiding
design matrices X;(¢) (under the M;), is a sample of size m = max{k;} + 1 such that all
(X!(£)Xi(¢)) are nonsingular. (Note that if ¢; = —1, i.e., constant noninformative priors

are used, then one would instead need m = max{k;} + 2.)

Computation yields that

kB2 D((n—k; +¢;)/2) (detX}X;)/? R{"RHO/

Bii = 9@ma (v — ki +4:)/2) (et X1X;)172 R

and that Bf}’ (€) is given by the inverse of this expression with n, X;, X;, R;, and R;
replaced by m, X;(£), X;(€), Ri(¢), and R;({), respectively; here R;({) and R;(£) are the

residual sums of squares corresponding to the training sample y(¥¢).

Verification of the above statements, together with derivation of expected IBFs and
intrinsic priors for linear models, can be found in Berger and Pericchi (1994). Also, in
that paper, IBFs are compared with the related methodology of de Vos (1993), which, for
linear models, suggests an approximate weighted geometric average of the training sample

Bayes factors, with the weights chosen so as to simplify the resulting computation.
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