Optimal designs for polynomial regression when
the degree is not known

by
Holger Dette and William J. Studden
Technische Universitat Dresden Purdue University

Technical Report # 93-42

Department of Statistics
Purdue University

August, 1993



OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION WHEN
THE DEGREE IS NOT KNOWN

by

Holger Dette* and William J. Studden**
Institut fiir Mathematische Stochastik Department of Statistics
Technische Universitat Dresden Purdue University
Mommsenstr. 13 1399 Mathematical Sciences Bldg.
01062 Dresden West Lafayette, IN 47907-1399
GERMANY U.S.A.

ABSTRACT

This paper considers the problem of determining efficient designs for polynomial re-
gression models when only an upper bound for the degree of the polynomial is known by
the experimenter before the experiments are carried out. The optimality criterion maxi-
mizes a weighted p-mean of the relative D-efficiencies in the different models. The optimal
(model robust) design is completely determined in terms of its canonical moments which
form the unique solution of a system of nonlinear equations. The efficiency of the optimal
designs with respect to different criteria is investigated by several examples.

1. Introduction. Consider the polynomial regression model

£
gu(z) =) a3
=0
where z € [-1,1] and 1 € £ < n. The experimenter chooses experimental conditions
z € [~1,1] and then observes a real valued response with expectation g¢(z) and variance
o2, where different observations are assumed to be uncorrelated. An experimental design
is a probability measure on [—1,1] and the performance of a design ¢ in the model gy, is

evaluated through its information matrix

M(€) = / fo(2) T (2)dé(z),
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where fi(z) = (1,z,...,2%)T (£ = 1,...,n). It is well known (Hoel (1958)) that the
D-optimal design £P in the model g¢(z) puts equal masses at the zeros of the polynomial
(z? — 1)P)(z) where Py(z) is the ¢th Legendre polynomial. In order to examine how a
given design behaves in the model g; with respect to the D-optimality criterion one uses

the D-efficiency

m_)#

(L1) - 0= (!M:(e?n

An obvious drawback of the D-optimal design ¢ tD is that it is not necessarily very efficient
in polynomial regression models with degree different from £. As an example consider
the D-optimal design ¢P for linear regression which puts equal masses at the points —1
and 1 and has efficiency 0 in the quadratic model. Conversely, the D-optimal design ¢}
for the quadratic model has only 82% efficiency in the linear model. Because in many
applications of polynomial regression models the degree of the polynomial is not known
before the experiments are carried out, the D-optimal design £,D is not used very often in
practice.

In this paper we consider the somewhat more realistic situation that the experimenter
knows an upper bound for the polynomial regression, say n € N. In order to find a design
which has good efficiencies in all polynomials up to degree n we maximize a concave

function of the efficiencies in (1.1). More precisely, we define

(1.2) $p.5(8) = [Z ﬂ,(eﬁ‘,(f))”] P
=1

where p € [~o00,1] and B = (B1,...,Ba) is a prior distribution on the set {1,...,n} with
B > 0 which reflects the experimenters belief about the adequacy of the different models.

Here the cases p = —c0 and p = 0 have to be understood as the corresponding limits, that
is
n - _2
(13) ®-oo(€) = minfefie(€)},  o,0(6) = [J(efe())"
=1

(note that the limit lim &, 5(¢) is independent of 3). A design ; g is called ®, s-optimal
p——00

(with respect to the prior ) if it maximizes the function in (1.2) or (1.3). The case of the

geometric mean p = 0 was introduced by Lauter (1974) and a solution of this problem in

the case of polynomial regression models can be found in Dette (1990).

2



In this paper we present a complete solution of the ®, g-optimal design problem for
all p € [-00,1]. The &, g-optimal design with respect to the prior 8 is determined as the
design whose canonical moments form the unique solution of a system of n — 1 nonlinear
equations. These equations can be solved very easily by standard numerical methods as
the Newton Raphson algorithm. The proofs are based on a combination of equivalence
theorems for mixtures of information functions (see e.g. Pukelsheim (1993), p. 283-293),
the theory of canonical moments (see e.g. Studden (1980, 1982) or Lau (1983)) and a one
to one correspondence between the set of (symmetric) probability measures on [—1,1] and
the set of optimality criteria in (1.2) (see e.g. Dette (1991)). In Section 2 some preliminary
results are given which will be needed throughout the paper. Section 3 deals with the case
p = —oo for which the solution of the optimal design problem is more transparent. Finally,
the general case of the criterion (1.2) is treated in Section 4 and some examples are given

in Section 5.

2. Preliminaries. We will repeatedly make use of an equivalence theorem for the opti-
mality criterion (1.2). The general theory for mixtures of optimality criteria is described
in Pukelsheim (1993), p. 283-293. For the @, g-optimality criterion we obtain from these
results the following equivalence theorem (see Pukelsheim (1993), p. 286-288).

Theorem 2.1.Let p € (—00,1], then a design €p g with |Mn(&p )| > 0 is &, g-optimal
with respect to the prior B if and only if for all z € [-1,1]

n T M . n
(2.1) ;ﬂt(eﬂrz(fp,ﬂ))pfl( )M‘Z +(€1p,ﬂ)fe( ) < > Beleffi(Ep,p))P-

=1
Let N(€—oo) = {1 £ § £ 1| Poo(b-o0) = effj(€-o0)}, then the design {0 is P_oo-optimal
if and only if there ezist nonnegative numbers ay (£ € N(€—)) with sum one such that

for all z € [-1,1]

S o LEM i)

(22) 2+1

LEN(€-)

Corollary 2.2. Let p € (—00,1] and £, 3 denote a O, g-optimal design with respect to
the prior B = (B1,...,Pn). For every p' € (—o0,1] the design &y g is ®pr gi-optimal with
respect to the prior B' = (fy,...,B;) where

b Be(effu(£0.8))P" .
Ot = S BB (PP (=1,

3
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Proof: Using the ®, g-optimality of £, g we obtain from (2.1) for all z € [-1, 1]

n T . -1 z n T z -1 z
Zﬁ;(eﬁ(fp,ﬂ))P' t( )Mlg +(€1p’ﬁ)ft( ) — Zﬂt(eﬁt(fp,ﬂ))pfl( )Mt (fp,ﬂ)ft( )
=1

= (e+1)x
1 O " ,
< 5 }Lﬂz<eﬁz<ep,ﬁ))P = ;ﬂ;(eff,«,,ﬁ»r
=1 =1
where &' =37 ) B;(eff;(€p,8))P7, and the assertion follows from Theorem 2.1. [

Equivalence theorems provide a general method for determining if a given design is
optimal and are the basis for many numerical algorithms (see e.g. Wynn (1972), Lauter
(1974)). For the special case of polynomial regression the theory of canonical moments
provides a very useful tool for the determination of optimal designs (see e.g. Studden
(1980, 1982) or Lau (1983)). For a given probability measure { on the interval [-1,1]
let ¢; = f_ll z?dé(z) (j = 0,1,2,...) denote the ordinary moments. If cp,...,ci—; is a
given set of moments (of ¢) define ¢; as the maximum of the ith moment over the set of
all probability measures n with given moments cg,...,ci—;. Similarly let ¢;” denote the

corresponding minimum value. The canonical moments are defined by

ci —c;

Di= i=1,2,...

+ -—
c; —¢;

if ¢f > ¢ and are undefined whenever ¢ = ¢]. A design ¢ on [—1,1] is symmetric if

and only if ppi—; = % for all ¢ € N for which py;—; is defined (see e.g. Lau (1983)). The
determinants of the information matrices My(€) can easily be expressed in terms of the
canonical moments of € (see Studden (1980) or Lau (1983)) and for a symmetric design on

the interval [—1, 1] we have as a special case

¢
(2.3) |Me(6)] = :[_‘[(lhj—zpzj)l'“—J if € is symmetric
i=1
where g2; :=1—ps; (7 2> 1) and go := 1. The canonical moments of the D-optimal design
¢p for the model g, are given by
—-j3+1 1

o +1 =1 o1
D2; Q(Z—j)-l-l, DP2j-1 ) (.7 y 7)



and we obtain from (2.3)

¢ Lt (—j+ 1)2 L4+1—j
(2.4) |M(£7)| = (ge—_;) I1 ((2(@ — )+ -5+ 3)) '

=2

It is well known (see e.g. Lau (1983)) that £ has canonical momentsp; < 1 j =1,...,2n-1,
p2n = 1 if and only if ¢ is supported at n + 1 points including -1 and 1 (which means that
¢P has £ — 1 support points in the open interval (—1,1)). The following result shows that
there exists an intimate relation between these probability measures and the solutions of

the ®9 g-optimal design problem and is an immediate consequence of Theorem 2.3 in Dette

(1991).

Theorem 2.3. Let Z(™ denote the class of all symmetric probability measures ¢ on [—1,1]
with n + 1 support points including —1 and 1 such that
(2.5) 1oz | BuBei2 o £=1,....n

P2t P2tP2t+2

(here p; denote the canonical moments of { and gany2 = 0). The mapping
1/): (ﬂl,---,,Bn) —’Goyﬁ.:a'rg £ma'x¢0)ﬂ(€)

13 one to one from the set of all prior distributions (f1,...,0n)-0on {1,...,n} with B, >

0 onto the set Z(™. Moreover, if £ € =™ has canonical moments (of even order)

D2+, P2an~2,P2n = 1, then the inverse of ¢ is given by v~1(€) = (B,...,B%) where

e+1 q2; g2t = 92092¢+42
2.6 gr = -1 —’(1—2——+—) e=1,...,n
29 ‘ 2 - (g2/p2) j=1 P2 P2t PPt

3. Optimal designs which maximize the minimum efficiency. In this section we
will consider the ®_-optimality criterion for which the solution of the design problem
is more transparent than in the general case. This case has to be treated separately
because the optimality criterion ®_(€) = r;}:iix{effg(f)} is not necessarily differentiable.

Throughout this section we will make frequent use of the quantities

| Mo (€2 I Me—1(€12,)

if£=2,3,...,
(3.1) ar = M€ l "
|M2(€’?)|2 ifl=1
| My (£P)?



which can be rewritten as (using (2.4))

(e + 1)t+1(2e _ 1)2!—1

if=2,...,n
¢—1)-1(20 + 1) ] e
(3.2) ap = (4 Y126 +1)
32-3 if 0= 1.

In the following lemma we collect some of the properties of the sequence (a¢)¢en- Its proof

is straightforward and therefore omitted.

Lemma 3.1. The sequence (a¢)eeN i8 increasing, bounded, that is 1 <ay < ; (V£2>2),

and has the limit %.

Theorem 3.2. The ®_o-optimal design £_oo s uniquely determined by its canonical
moments (%,pg, %, ceey %,pzn_% %, 1), where the canonical moments (of even order) ps,...,

Pan—2 are given by the continued fractions

(3.3) pu=1—fﬂ—?ﬁﬂ—”._7“ﬂ (=2,...,n—1)

and py is the largest root in the interval [0,1] of the equation

16
729p2°

(3.4) p2(l—p2)° =

Proof. The proof consists of three steps. In STEP 1 we show that the set N({—o) defined
in Theorem 2.1 is precisely {1,...,n}, in STEP 2 we prove that the quantities in (2.5) are
all nonnegative for the design é_, and finally in STEP 3 we apply the results of Section

2 in order to establish the assertion of the theorem.

STEP 1. (M(é-s) = {1,...,n}) For£=2,...,n —1 consider the equations
(3.5) effy (&) = effe41(€) (l=2,...,n—-1)

where ¢ is a symmetric design supported at n + 1 points including —1 and 1 (that is
¢ has canonical moments %,pz,%,...,%,pzn_z,%,l)). By an application of (2.3) and

straightforward algebra we obtain, that (3.5) is equivalent to

(3.6) q2eP2t+2 = Q¢ £=2,...,n—-1



(p2n = 1) which can easily be rewritten as (3.3). Similarly it follows that the equation
effy (¢) = eff2(£) is equivalent to (3.4). This implies that the design {_o defined in (3.3)
and (3.4) has equal efficiency in all models up to degree n, that is M(é—) = {1,...,n}.

STEP 2. (£—o € Z(™) Obviously {—o is symmetric and supported at n + 1 points
including —1 and 1. In order to show that £ satisfies (2.5) we consider at first the case

£=2,...,n—1 and rewrite (2.5) as
1 — 3qa¢pat+2 — p2tgoe+z 2 0

where we have used that pa¢ = 1 — ¢2¢. Observing (3.6) we obtain

) ar
1—-3a;— 1-— >0
¥ Pzt( l—pzz) 2

which is equivalent to the inequality
(3.7) pag — 2026(1 — 2a¢) + (1 — 3a¢) > 0.

The minimum of the left hand side in (3.7) (as a function of py;) is attained at pay = 1—2a,
and given by ag(1 — 4a¢) which is positive because of Lemma 3.1. This proves that the
canonical moments of {_ o satisfy (2.5) for £ = 2,...,n—1. In order to show the remaining
case £ = 1 we remark that it is easy to see that the canonical moments of {_, are all greater
than % (here we use (3.6), Lemma 3.1 and the assumption that p; is defined as the largest
root of (3.4) in [0,1]). By a similar procedure as above (using (3.4) instead of (3.6)) we
obtain that (2.5) for £ =1 is equivalent to the inequality

] 3 1 1
f(p2) = 27Tp; —54p; +16p2 +27p; —12 > 0 (p2 > 3)-
It is easy to see that f is an increasing function of p; € [%, 1] and consequently it follows
that f(pz) > f(3) > 0, which shows that the canonical moments of {_o satisfy (2.5).

STEP 3 (Proof of Theorem 3.2). From STEP 2 we have that {_, € Z(™) and by Theorem
2.3 we obtain that £, is ®¢ g+-optimal, where 8* = ¥~} (é_s) = (B%,-..,B%) is defined
in (2.6). An application of Theorem 2.1 (p = 0) yields that £, satisfies

S @M E@) ey,

= £+1
In STEP 1 we showed that M (é_) = {1,...,n} and consequently é_, satisfies (2.2) with
ag = f; (¢ =1,...,n) which proves the ®_.,-optimality of {- . n
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In the following sections we will see that the ®_,-optimal design serves as an ap-
propriate approximation for the ®, g-optimal design when p is sufficiently small. For this
reason we will discuss some properties of the canonical moments of the ®_ ,-optimal design

in the following.

Lemma 3.3. Let pg?) denote the canonical moments (of even order) of the ®_,-optimal
design for polynomial regression models up to degree n, then the following statements hold
true

a) pgr;) >3 forallj=1,...,nandne N

b) pg';) < pgr;—l) forallne N

c) If n > 2, then there ezist an indez jo such that

(n)

(n) (n) (n) (n) (n) . )

(3.8) 1=py, >Pop—g >+ > Pojs < Pojopa <.+ <Py

Proof. Part a) is an immediate consequence of (3.6) and was already used in the proof of

Theorem 3.2. It follows from (3.3) that

_———— e —— | — —/— ——— -—

(n) aj|  ajt1] an-2 | ajl Qn—2] (n—1)
: = 1 . 1 T T e = .
P2 177 1 11— an_1 1 1 = P

which proves b). Finally, in order to prove c), we remark that (3.6) yields
(n), (n)

n n 494 P — ay
(3.9) sz) - Pg(.);.z = —Zl—%— £=2,...,n—-1).
28

If pg';) - pg';_)*_z > 0 we thus obtain from (3.6) and Lemma 3.1 for £ > 2

(M (n) _ 9Py — a1 S ap oy — as
Dyp—p —P3p — (n) (n)
P2 Py

>0

where we have used (3.9) for the last inequality. This shows that there is at most one

change point in the sequence (3.8) (note that 1 = pg',:) > pg:)_z) Because

1 1
(n) (4) 5 EI 3
< < 1]—2 -2 = _ >5
by Dy 1 l 1 (n 25)

(which follows from Lemma 3.1 and part b)) it is easy to see that the largest root of (3.4)
satisfies p(") < pgn) . In the case n = 3,4 this property can be shown directly. Consequently

4
the change point jg exists and is unique. ‘ g



The following result gives the limit distribution of the ®_,-optimal design as n — oo.
It shows that the limit is NOT the arcsin-distribution in contrast with the case p = 0 and
the uniform prior (see Dette (1990), p. 1797).

Theorem 3.4. Ifn — oo, then the ®_oo-optimal design converges weakly to a symmetric
distribution ¢€* with canonical moments (of even order) pz,ps,... where for £ > 2, pyy is

given by the (infinite) continued fraction

and py is the largest root in [0,1] of the equation (8.4).

Proof. For fixed n the canonical moments of the ®_.-optimal design for polynomials up
to degree n are given in (3.3) and (3.4). By Lemma 3.1 the quantities a; in (3.3) satisfy
ar < 1 (£ > 2) and by Worpitzky’s Theorem (see Wall (1948), p. 42) the continued fraction

in (3.3) converges. This proves the assertion. |

Remark 3.5. Numerical calculations yield for the first two canonical moments of the
limiting design £*
p2 = 0.68563939 pa = 0.56914133

while the canonical moments of higher order can be calculated recursively from pasi2 =
a¢/qae,€ > 2. For example we obtain pg = 0.5414,ps = 0.5296,p10 = 0.5230,... (note
that zlggo P2t = %) It is also worthwhile to mention, that the sequence of the canonical
moments of the limiting design £* is strictly decreasing in contrast with the sequence of
canonical moments of the ®_..-optimal design for polynomials up to degree n. Figure
1 shows the density of the limiting distribution £* (solid line) together with the arc-sin
density 1/7v/1 — z? (dashed line). The arc-sin density is well known to be the limiting
density of similar sequences of designs. For example if 7, denotes the D-optimal design
for n** degree polynomial regression then 7, converges weakly to the arc-sin law. Note
that the limiting density of £* has less mass near the center and more near the end points

41 than the arc-sin law.

Figure 1 GOES HERE
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4. &,s-optimal designs. In this section we will consider the criterion (1.2) for all p €
(=00, 1]. The case p = 0 was already solved by Dette (1990), the general case (p # 0, —c0)

is more complicated and stated in the following theorem.

Theorem 4.1. Let p € (—00,1], then the ®, g-optimal design is uniquely determined by
its canonical moments (1,p2,3,...,P2n—2,3,1) where (p2,...,p2n—2) 18 the unique solution

of the system of equations

; 41 (EaycE)
: 212 (1 _od2t + Q2eQ2z+2> (Q2j—2P2j)j
(4.1) P2t P2ep2e+2 =1
_ B g (1_292e+2 + 42t+292z+4)cf €=1,..,n-1)
£41pa P2ty2  P2e+2P2t44

which satisfies (2.5). Here

_ M@y
IMe(P)| 75

4.2
2 (14 1)+D%(21 — 1) 15[ { (£+1-j) }
(2(

—(+1-35) W)l(m
(21 + 1)HDCHD £—35)+1)2(¢—-3)+3) }

=2
(¢=1,...,n—1) and the Lth equation in (4.1) has to be replaced by the equation

1 — 922t + unt2 _

(4.3)
D2t D2¢D2142

whenever By =0 ({=1,...,n—1).

Proof. Let ps,...,p2n—2 denote the canonical moments (of even order) of the &, -
optimal design £, 3. From Corollary 2.2 it follows that £, g is ®o g-optimal where the
prior distribution 8’ = (f4,...,8,) is given by

8 = ﬂl(effl(fp,ﬂ))p
{ — T

and &' = Y,_, Be (effe(é5,3))?. Because the map 3 in Theorem 2.3 is one to one we have

(4.4) (Bry---,Bn) = ¥ (pp) = (Bs---5B7)

10



where §; is defined in (2.6) and consequently the canonical moments of ¢, g satisfy (2.5).
On the other hand, if B, # 0, we obtain from (4.4) and (2.6)

4
92j q2¢4-2 d2¢4292¢44 )
ﬂl+1(effl+1(€p,ﬂ))p _ IB;_H _ (Z + 2) jI=Il P2j ( 2Pu+z + P2e42P2t44

Be(efte(£p,))" 7 B (£+1) tl:Il 2 ( — 042 4 qzu]ztiz)
j=1 P2j

P22 P2tP2142

which is equivalent to (4.1). If §; = 0, (4.3) follows directly from (4.4) and (2.6). This
shows that the canonical moments (of even order) of £, g form a solution of the system of

equations defined in Theorem 4.1.

Finally, let (p3,...,p3,_2) denote a second solution of the system of equations in
Theorem 4.1 that satisfies (2.5) and let £* € Z(™ denote the corresponding design. By
Theorem 2.3 it follows that {* is ®o g+-optimal for the prior 8* = (B},...,8%) where

(P;n =1, q;n+2 = 0)

-1 « * %
. 2+1 ; ;
(4.5) g = [1 32; (1—2qij+i,f£—i“—2) (¢=1,...,n).
- 1- ;1 —1 P2j P3¢ P2tPaey2

An application of Corollary 2.2 shows that £* is @, 5-optimal with respect to the prior
G = (B1,...,Bn) where

B (effu(€))™  _ B
ST e ey - b =L

Here the last identity is a consequence of (2.4), (4.5) and the fact that (p},...,p5,_,) isa
solution of the system of equations in Theorem 4.1. It follows from standard arguments of

Be =

optimal design theory, that the ®, g-optimal design is unique and consequently we obtain
that £* = £, 3. But this is equivalent to the fact p2; =p2j Jj =1,...,n and proves the

assertion of the theorem. |

In general the system of equations in Theorem 3.1 has to be solved numerically except

in the case p = 0 where it can be shown that the solution of (4.1) and (4.2) is given by
1—j
Zl—: -2-1
n [ —
Zl—] -:-:-1 Be + E£=J+1 7+1 B

which is the result of Dette (1990), p. 1789. A further simplification occurs if Bp—; = ... =
Br =0 (k< n-—1). In this case the canonical moments of the ®, g-optimal design have

b2; =

11



a similar behavior as in the D,-optimal design problem (see Studden (1980)). A similar
result can also be obtained for an analog of the ®_,, criterion and is stated here for the
sake of completeness. The proof of the following results are immediate consequences of
Theorem 4.1 (p > —o0) and the arguments in Section 3 (p = —oo) and are therefore
omitted.

Theorem 4.2. Let 8 = (b1,---,8k-1,0,...,0,8,), 1 < k < n and p € (—o0,1], then
the ®, g-optimal design is uniquely determined by its canonical moments ps,...,p2n—2,P2n

where Pak,P2k+2,---,P2n are given by

N o
(4.6) Pz,—z(n_j)+1 j=nn-1,...,k

while (p2,...,p2k—2) is the unique solution of the first k — 1 equations in Theorem 4.1.
Theorem 4.3. The design which mazimizes
min{eff,(¢) | £=1,...,k—1,n}

(2 € k £ n—1) is uniquely determined by its canonical moments py,...,p2n where

D2ks P2k+2,- - -, P2n 0T€ given by (4.6), p4,...,por—2 are given by the continued fractions
ag| ar—z| @kl
. - 0=2,... k-
with
at = ,ﬁ ( n-—j )n—j ( n—j+1 )n_j-H n |Mi—2(62-5)]
= — ———:—_-——— n42—k
w1 \2(n—j) +1 2(n—j)+1 | My (R, )[4

and py is the largest root in [0,1] of the equation

16
1-p)? =

if k > 3, and the largest root of the equation

2n_ 2
N n n=t (2n -3
Pa(l m)"(mpq) (%-1)

ifk=2.
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5. Examples.

5.1. Optimal designs with respect to various &, s-criteria. Consider the case
n = 2 (linear or quadratic regression) a uniform prior g = ¢ = 1. In this case there is

one equation for the determination of p; in Theorem 4.1, namely

o) (-3 ot = 52 ()’

and the optimal &, g-optimal design has canonical moments (3,2, 1,1) where p; is the
unique root of (5.1) such that (2.5) is satisfied, i.e. pp > % There is a considerable amount
of literature concerning the relationship between the sequence of canonical moments and
the corresponding design (see e.g. Lau (1983)). Throughout this chapter we will use Lemma
4.4 in Lim and Studden (1988) which is applicable for polynomial regression up to degree
4. Table 5.1 gives the weights of the &, g« optimal design and the D-efficiencies in the
linear and quadratic model for different values of p € [~c0,1]. The case p = —oo can be
directly obtained from the equation (3.4) in Theorem 3.2 which can be interpreted as the
limit of (5.1) when p — —o0. Note that all designs are supported at ~1,0,1.

Pl &ev({£1}) | &8 ({0}) | effy (ép,8) effa (65,60 )
1 0.38515 0.22970 0.8776 0.9725
0 0.38889 0.22222 0.8819 0.9681
-1 0.39208 0.21584 0.8855 0.9641
-2 0.39478 0.21044 0.8886 0.9603
-3 0.39707 0.20586 0.8911 0.9570
—o0 0.41910 0.16180 0.9155 0.9155

Table 5.1: Weights of the &, g« optimal design for linear and
quadratic regression using a uniform prior g*.
The result in Table 5.1 demonstrate that there do not exist essential differences between the
®,,pu-optimal designs for polynomials up to degree 2, with respect to different values of p-
We observe a similar behavior in the cases n = 3 (linear, quadratic and cubic regression).
Here Theorem 4.1 gives two equations for (pz, p4)

2 | 9294 22 3q2 94
1- 2 + ——-) 6 = (1 _— 2 ) . Cp
( P2 pap (Pa(gzpe)”) 2p2 P4 1

(5.2)
2‘14 2 5 _ 4‘14 P
( - ){Pz(qum) M= 2o

and pp,ps have to satisfy (2.5). The optimal design puts masses a, 5 2 a,% — a,a at
the points —1,—t,¢ and 1 where t = pyqy and a = p2p1/(2(q2 + p2p4)) (see Lim and
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Studden (1988), p. 1233). The solution of (5.2) was determined using the Newton Raphson
algorithm and the corresponding designs and efficiencies are given in Table 5.2. Again we

observe some robustness of the design with respect to different optimality criteria &, gu.

P | ppu (1) | €p,pu(£t) t effi(§p,50) | effa(ép,64) | effs(€p,84)
1| 0.31501 | 0.18499 | 0.40193 | 0.8305 0.9138 0.9594
0] 0.31944 | 0.18056 | 0.40105 | 0.8348 0.9143 0.9542
—1| 0.32345 | 0.17655 | 0.40059 | 0.8388 0.9134 0.9494
—2| 0.32703 | 0.17297 | 0.40047 | 0.8423 0.9141 0.9448
=3 | 0.33021 0.16979 | 0.40059 0.8455 0.9137 0.9407
—co | 0.36634 | 0.13366 | 0.42695 | 0.8840 0.8840 0.8840

Table 5.2: &, gu-optimal designs for polynomials up to degree 3 and
a uniform prior. First two columns: weights, third column:
interior positive support point.

Obviously the robustness of the ®, s-optimal design with respect to different values of p
will also depend on the prior 8. As an example for a stronger dependence of the design
¢p,6 on the parameter p we consider the case n = 3 (linear, quadratic or cubic regression)

and the prior 8, = -1%-, By = %, Bs = ilé (more weight on the linear and quadratic model).

The results are listed in Table 5.3.

P fp’zi(:l:l) fp'[g(:{:t) t effl(f’,'ﬁ) effz(fp’ﬁ) effa(fpaﬁ)

1] 0.34203 | 0.15797 | 0.16290 | 0.8321 0.9855 0.6828

0| 0.34167 | 0.15833 | 0.19124 { 0.8336 0.9833 0.7327
~1 | 0.34178 | 0.15822 | 0.21194 | 0.8353 0.9758 0.7645
-2 0.34228 | 0.15772 | 0.22807 | 0.8372 0.9719 0.7864
—3 | 0.34304 | 0.15696 | 0.24122 | 0.8392 0.9684 0.8025
—oo | 0.36634 | 0.13366 | 0.42695 | 0.8840 0.8840 0.8840
Table 5.3: @, ;-optimal designs for polynomial regression up to

degree 3 and the prior B = (%,-}—;‘1,% . First two

columns: weights, third column: interior positive support
point.

5.2. Robustness of the &, s-optimal design. The results of Example 5.1 indicate
that a given @, g«-optimal design for the uniform prior B is quite robust with respect
to different @,/ gu-criteria. Because the ®g gu-optimal designs are very easy to calculate
(Dette (1990)) it might be of interest how these designs behave with respect to the other
®,,5-criteria. As a representative example we consider the case n =4, ff =... = Be = %.
It follows from the results of Dette (1990) that the ®g gu-optimal design puts masses

0.27167, 0.10354, 0.24958, 0.10354, 0.27167 at the points —1,—0.60508,0,0.60508 and 1
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respectively. The performance of the design o g« With respect to the other @, g« criteria

is evaluated through the &, g«-efficiency

‘I’p,ﬂ"(f)
®p,64(Ep,av)

where the design &, gu is determined by Theorem 3.2 and 4.1.

RP(&) = PE ['_'°°7 1]

The results are illustrated in Table 5.4 and show a remarkable robustness of o gu-
optimal design with respect to the other @, gu criteria. For this reason and because of
the easy computation of the ®p g optimal designs we conclude with the statement that
the design £y g+ might be a good choice in polynomial regression models when only an
upper bound on the degree of the polynomial is known and a uniform prior is used to
reflect the experimenters belief about the adequacy of the different models. It should
also be mentioned again that this statement is not necessarily true for arbitrary prior
distributions f.

p | 1 | o6 | 06 | -1 | -2 | -8 | —oo
R,(€o,5+) | 0.99989 | 0.99995 | 0.99996 | 0.99989 | 0.99957 | 0.99906 | 0.93220

Table 5.4: &, gu-efficiencies of the ®¢ g«-optimal design for different
values of p € [~o0,1].
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