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ABSTRACT

We give an elementary proof of the local central limit theorem for i.i.d. integer valued and
vector valued random variables, and an extension of this theorem to non-identically distributed
variables.

1. Integer valued variables. In this paper we give elementary, characteristic function free,
proofs of some results of Gamkrelidze [1], results which include the local central limit theorem for
i.id. variables. For more general theorems than those proved here, see [4]. Let ¢ and @ be the
standard normal density and distribution functions, and let a A b stand for the minimum of a and
b. To keep the notation simple, we first state and prove a local limit theorem for sequences of
random variables. At the end of this section we state a more general result for triangular arrays,
which follows from exactly the same argument, and derive the local central limit theorem for i.i.d.

variables from it. Vector valued variables are considered in Section 2.

Theorem 1: Let X;,1 > 1, be independent integer valued random variables, and put S, = X1+ Xo+
...+ X,.. Suppose there exists a positive number o such that max; P(X; = k)AP(X; =k+1)> «a
for at least an of the integers j = 1,2,...,n, for all n > ny for some integer ng. Suppose also that
there are numbers a,,b,,n > 1, such that ¢cy/n < b, < C+/n, for positive constants ¢ and C, and
such that lim,_, P (Lﬁﬂ- < t) = ®(t),—00 < t < 0. Then supy [bnP(Sn = k) — qS(k%b:lN -0
as n — 0o.

The condition involving o was invented by McDonald. See [2] and [3]. Throughout, ¢ and C
will stand for positive absolute constants, not necessarily the same at each occurrence. We just
mention that the hypothesis b, > ¢4/n in Theorem 1 is implied by the other hypotheses.

Proof of Theorem 1: Let exn, = (k — ay)/by. Let hin = ®(ext1,n) — (€x,n), and note

(1) maxy, |bphi,n — ¢(ex,n)] — 0 as n — oo.

If W,,n > 1, are integer valued random variables, then (W,, — a,)/b, converges in distribution to

the standard normal if and only if

k

(2) supz P(W, =t)—h;, —0as n— oo.
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We say (W, — a,,)/b, has standard normal local limits if supy |b, P(W, = k) — ¢(exn)| — 0 as

n — 00, or, equivalently, if
(3) supy bn|P(Wy, = k) — hi,n] — 0 as n — o0.

If X is an integer valued random variable, we put s(X) = sup;|P(X = j+ 1) — P(X = j)|,
and note that if Y is integer valued and independent of X then

(4) s(X +7) < s(X),

and also that if Ay, Ag,..., Ay, is a partition of the sample space,

m

(5) s(X) < ) s(X|Ar)P(An),

k=1

where the conditional s is computed from the conditional probabilities. The following lemma is
well known, and essentially used in [1]-[4]. Since the proof is easy, we provide it.

Lemma 1. If sup,, ns(W,) < oo, and (W, — a,)/b, converges in distribution to the standard
normal, then (W,, — a,,)/b, has standard normal local limits.

Proof: We have
(6) sup,, 7lhkt1,n = bkl < 0.

Let din = P(W, = k) — hg5. In view of (6), and the first hypotheses on W,,n > 1, there is a

positive constant ¢ such that |dg,n — dk41,n| <-¢/n for all n and k, which implies
) |dk,n — djn| < c|lj — k|/n for all n,k, and j.

Let ¢ > 0. We show that |dy »| > €/+/n can happen for only a finite number of n. Suppose, first,
that di,n > £/+/n. Then by (7), di,n > €/2+/n for all j such that c|j - k|/n < £/2¢/n. The number
of such j exceeds e1/n/2¢. Summing d; , over these j yields a number exceeding (¢4/n/2¢)(¢/2+/n),
which by (2) can happen for only a finite number of n. The case di, < —¢/+/n is handled similarly.
O

We will now show that Lemma 1 can be applied to S,. It is here that this paper differs from
its predecessors.

Lemma 2. Let b(k,n) = (’,:)2‘", 1< n,0<k<n,b(k,n)=0otherwise. Then

(8) [b(k + 1,n) — b(k,n)| £ 32/n,n > 1,0< k < n.
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Proof: Since b(k,n),0 < k < n is symmetric around k£ = n/2 and monotone on 0 < k < n/2, we
have b(k,n) < 1/(|n — 2k| + 1), since there are |n — 2k| + 1 integers no further from n/2 than £ is.
Thus, for either £ < n/4 or k > 3n/4, (8) holds. Otherwise, both k+1 > n/4 and n — k > n/4, so

16k + 1,m) — b(k, n)| = nb(k, n - 1)-(7'6%‘1%1—"_1,'9)

n |n — 2k — 1] <E |n -2k — 1| <32

S{r-D-2k+1 G+D)m-K =7 Jn-D-2k+1-n" =

Let T be those positive integers n for which there is an integer j(n) such that P(X, = j(n) +
1) > @ and P(X, = j(n)) > a. Let Z,,n > 1, be random variables taking on no values exept 0
and 1, such that Z,, = 0if n ¢ T, whileif n € T',Z,, = 1 only if X,, = j(n) or X,, = j(n)+ 1.
We also require that the random vectors (X, Z,),1 < n < 00, are independent, and that P(Z,, =
1, X, =j(n))= P(Z, =1,X, = j(n)+ 1) = a. It is easy to construct such Z, by randomization:
If you observe X,, = j(n), flip a coin with probability of heads equal to a/P(X, = j(n)). If you
observe X,, = j(n)+ 1, flip a coin with probability of heads equal to a/P(X,, = j(n)+ 1). Put
Z, = 1if a head is tossed, and if a tail is tossed or if no coin is flipped, put Z,, = 0.

Now X3, X3,..., X, are conditionally independent given Z;,2,,...,2,. Let A= {nl, Ng,...,
nk} C {1,2,...,n} N T. Conditioned on the event © that Z; = 1 for exactly those ¢ in A, X,,, —
j(n1), Xn, — j(n2),. .., X(ng) — j(ny) are i.i.d., each taking on the values 0 and 1 with probability
one half. Write

k k
9) Su= Y (Xn, —j(m))+ > i)+ Y, X
i=1 i=1 {1,2,...n\A
Then conditioned on O, the three sums in (9) are independent, and the first sum has a binomial
(k,1/2) distribution. Thus s(5,|0) < 32/k, by Lemma 2, and (4), or, writing this a different way,
if we let A(n) be the number of integers k in {1,2,...,n} such that Z, = 1, we have s(5,|0) <
32/A(n).
Since always s(X) < 1, we get 5(.5,|0) < (32/A(n)) A 1. Together with (5) this gives

(10) s(Sn) < E(32/A(n)) A 1.

To complete the proof of Theorem 1, in view of Lemma 1 it suffices to show the expectation
on the right of (10) to be smaller that ¢/n for an absolute constant ¢ and large enough n. But A(n)
is itself binomial, with success probability exactly 2 and number of trials at most n and at least

an, if n > ng. Thus Var A(n) < n20(1 — 2a) < n/4, and Chebyshev’s inequality gives

P(A(n) < &®n) < P(|A(n) — EA(n)| > a®n) < Var A(n)/(a®n)? < 1/4(a®n)?,
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so E(32/A(n)) A1 < 32/a’n + P(A(n) < a’n) < 32/a’n + 1/4(a2n)é, if n > ng. O

We note that it is easy to show that if W), is integer valued and a,,b, are constants such that
ey/n < by, < Cy/n,n > 1, then (W, — a,)/b, converges in distribution to the standard normal if
(Wn — an)/by has standard normal local limits. The following theorem can be proved in the same
way Theorem 1 was proved. In fact, it follows from Theorem 1, and the observation that its proof

shows that the rate of convergence there depends only on «,¢,C, and the rate of convergence of
sup, |P((Sn — @r)/brn < t) — ®(t)] to zero.

- Theorem 2: Let X;,1 < k < n,1 < n < oo, be independent integer valued random variables.
Suppose there erists a positive number o such that max; P(Xx, = j) AN P(Xgn =3+ 1) > a for
at least an integers 1 < k < n, if n > ng, for some integer ng. Put T, = ZZ:IXIC,‘IL' Suppose
there are numbers a,,b,,n > 1, such that ey/n < b, < C\/n,n > 1, for positive constants ¢ and
C, and such that Iﬂb:—aﬂ- converges in distribution to the standard normal. Then supy |b,P(T, =
k)—¢(5—27“"->|—>0asn—>oo.

IfY;,Ys,...are i.i.d. random variables with mean p and variance % such that ged{j: P(Y; =
j) >0} =1,and V, = Yj +... 4+ Y,, then there is an m such that P(V,, = k) > 0 and
P(V,, = k+1) > 0 for some k. Writing Vi, = Vi + (Vam — Vi )+ - .+ (Vim = Vii=1)m ) + (Vo — Vim),
and noting that the first j random variables in this sum have the distribution of V,,, we can apply

Theorem 2 and the central limit theorem for i.i.d. random variables (applied to Y,,n > 1) to get

the local central limit theorem for i.i.d. integer valued variables stated in Spitzer [5], p. 79, namely

(11) supy | P(Vy, = k)ov/n — ¢( ’;—\}%‘N — 0asn— oo.

We remark that the analog of Theorem 1, where the condition involving « is replaced by the

condition that there is a positive constant 4 such that >, P(X; = k) A P(X; = k+ 1) > « for
k

at least yn of the integers j = 1,2,...,n, remains true. See [1]. It is not difficult to adapt the

argument just given to prove this analog,.

2. Vector valued variables. In this section we state Theorem 3, the multivariate analog of
Theorem 1, and indicate how the proof of Theorem 1 can be altered to prove Theorem 3. The
multivariate analog of Theorem 2, and the derivation of the multidimensional analog of (11) exactly
parallel their counterparts in Section 1 and are omitted. We fix the dimension d > 1, let L denote
the d dimensional integer lattice, denote vectors in L with arrows, £ = (z1,232,...,Z4), and let
i’j, 1 < j < d, be the unit vectors in R?, so that fj is the vector of 0s except for 1 in the jth position.
The Euclidean distance between & and § is denoted |Z — §]. We let v be a fixed non-degenerate

d-dimensional multivariate normal distribution, and let #» be its density.
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Theorem 3. Let fl, 3()2, ... be a sequence of independent L-valued random vectors. Suppose there
is a positive number a such that for each j,1 < j < d,rggch(})k =Z)A P(X’)k =Z+1;) > a for
at least an of the integers k,1 < k < n. Suppose also that there is a sequence @,,n > 1, positive
constants ¢,C and a sequence of real numbers by,,n > 1, such that ci/n < b, < C+/n and such that
(S, = @n)/bs — v in distribution, where S, = i X').-. Then

i=1

sup [b3/2P(S, = k) — (k;an) | = 0asn— cc.
keL n

The proof of Theorem 3 is an easy modification of the proof of Theorem 1, which will now be
described. We let € = (k = @,)/bn, k = (ky,...,kq), and replace hy , with

hl'c’n = V{{E R¢: (k,‘ - a,-)/bn <L < (k,‘ +1- ai)/bn,l << d}

The analog of (1) is: max;|bi/2h;c-’n - (€, )~ 0asn— oo If X is an L-valued random vector
we put
— - = L= - - S
s(X) =sup{|P(X = %) - P(X =§)|: |Z-§l=1,%,§€ L}.

Exact analogs of (4) and (5) hold.

Lemma 3: If sup,b{*™/ 2s(VT/)n) < o0, and (I?fn — dy,) /b, converges in distribution to v, then
2 p(tir — & .
sup |05/ *P(Wr = Z) — n(ezn)] = 0 as n — co.
£eL
The proof parallels the proof of Lemma 1: If b2/ ZP(I7V_),L = Z) — n(ez,n) exceeds ¢, then using the
hypothesis on s(I/—I;)’n), it exceeds £/2 for all ¥ a distance of cy/n or less from &, which contradicts
the fact that (I/—I;)'n — &@y)/by converges in distribution to v, since we can find a “square” centered
at &, of these ¢, such that Wn/ n has a large probability of belonging to this square, compared to
the v-probability of the square.
For positive integers m;,1 < i < d, allin {1,2,...,n}, and integers j; € {0,...,m;},1 < ¢ < d,
= d 3. )= = 1 .
put rz(7) = KA b(ji,m;)2™™i. Let m = 2in, mi.

Lemma 4: sup |rz(Z) — ra(9)] < ¢/mldt1)/2,
£,9€Ll

|#—g]=1

Lemma 4 follows from Lemma 2 and the fact that b(k,n) < en=/2.

Let T;,1 < j < d, be disjoint sets of positive integers such that the cardinality of T'; N
{1,2,...,n} exceeds cn for all large enough n, and such that if n € T'; there is Z;(n) such that
P()_()n = &;(n)) > a and P(F()n = Zj(n) +1;) > a. Let ¢,,n > 1, be random variables taking
on only the values 0,1,...,d, such that if 1 < j < dthen ¢, # jif n ¢ T';, and if n € T, {9, =
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i} € {Xn = &i(n) or Xn = &(n) +i;} and P($n = §, Xn = &(n)) = P(n = j,Xn =
Zi(n) + ;j) = a. We also require ()_()n,z/)n),n > 1, to be independent. Fix n. For 1 < d < =, let
E;cT;n{1,2,...,n},and let E;,1 <4 < d be disjoint. Let ¢; be the number of elements in E;.
Let T be the event that 1, = j for exactly those k,1 < k < n, which are in F;, 1 < j < d. Write

n d d

Y Xe=), (Z )‘c’,-—a?,-(n)) +30 &(n)+ >, X

k=1 i=1 \4€E; i=1i€E; i€{1,2,.n\UL_, E;
Conditioned on T, the first two double sums and the last sum are independent; and if we let Y
stand for the first double sum, then P(17 = 8) = r«3).

The rest of the proof of Theorem 3 proceeds as before, noting that the minimum of the d

binomials, representing the number of k,1 < k < n, such that ¢, = j,1 < j < d, is smaller than cn
with probability no greater than ¢/n?, for small enough c.
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