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1 Introduction

Consider the random coefficient regression (RCR) model
yi = Xifi + €, (1.1)

where y; is a ¢; X 1 vector of observations. X; is a t; X p constant design matrix, 3; is a p X 1 vector
of random coefficients for the ith experimental subject and ¢; is a vector of errors for ¢ = 1,2,- -, n.

Furthermore we assume that (8;,&i,¢ = 1,2,-,n) are independent and
Bi ~ MVN(8,%), and&; ~ MVN(0,0°L), (1.2)

where § is a p X 1 vector of the mean of the §; vectors and [; is a t; X ¢; identity matrix.

The RCR model (1.1) arises from that the probability distributions for responses of different
individuals belong to a single family and that the regression parameters vary across individuals
because of random-effects. It is widely used in growth-curves, medical studies, repeated-measures,
or longitudinal studies. A lot of experiments are performed for the study of the population param-
eters, 3, o? and X. Unfortunately, the inference concerning g for this model (1.1) is a notoriously
difficult problem, especially when the data is unbalanced or incomplete, which is the typical case
in clinical trials.

The maximum likelihood (ML) estimate and the restricted maximum likelihood (REML) esti-
mate for the RCR model (1.1) were extensively studied by many authors in literature, although the
explicit form of the maximum likelihood estimate for this model is not available. Computation of
the ML or REML estimate usually resorts to EM algorithm. The literature includes Laird, Lange
and Stram [10], Jennrich [9] and Laird and Ware [11]. Harville [8] reviewed the ML and REML
approach with some restrictions on the covariance matrix X, in the context of ANOVA model.

Bayesian inference based on a noninformative prior for the population parameters is very at-
tractive when both t; and n are small, or the data is unbalanced. As stated by Harville [8] (Section
8.3), the ML and REML estimators are simply the mode of the posterior and marginal posterior
based on a flat prior. Jeffreys prior would produce a shrinkage estimator which. has uniformly

smaller MSE than both the ML and REML estimators, although it has a little downward bias.



Thus Jeffreys prior may have some appeal for frequentists who care about MSE but not about
small bias.

In the case of one way ANOVA, which is the simplest version of the model (1.1), the reference
prior has been studied by Berger and Bernardo [2]. Ye [18] also studied the one way ANOVA model
by emphasis on estimation of variance components ratio.

We study the general RCR model (1.1) using Bayesian approach through noninformative priors.
The outline of this paper is as follows. Section 2 contains several matrix results and the derivation
of the Fisher information matrix of the RCR model (1.1). In Section 3, we derive the Jeffreys prior,
reference priors and bounds for these priors. In Bayesian analysis, it is important to know if the
posteriors are proper or not when the noninformative priors are used. In Section 4, we study the
sufficient conditions for the proper of the posterior distributions corresponding to the Jeffreys prior
and reference priors and the existence of the posterior moments. In Section 5, a hybrid Markov
chain sampling scheme, which is used for computing posterior expectations, is developed, and an

illustrative example is also given. Comments and generalizations are given in Section 6.

2 Preliminaries

2.1 The Likelihood

In the model (1.1), B;’s are random parameters and 8, ¥ and o? are population parameters.
Therefore, The likelihood function depends only on 3, ¥ and a2

Since y; = XiBi + €, Bi ~ MVN(B,X), & ~ MVN(0, 02I;), and B; and ¢; are independent,
then
yi ~ MVN (X,-@,X,-EXf + a2I,~) . (2.1)

Therefore the likelihood function, ignoring the constant, is

n

L(B,%, 0% | data) = [H

i=1

XiEXf + 0211'

-1 1 n _
] r {‘5 S (i — X:B)'(XEX! + L) (gi — Xeé’)} :
i=1
(2.2)
where “data” is (yi, Xs),i=1,2,-+-,7.



2.2 Notations and Several Matrix Results

We will use the following notations throughout this paper. A, |A| and tr(A) denote the
transpose, determinant and trace of a square matrix, A, respectively. Denote vec() to be the
matrix operator which arranges the columns of a matrix into one long column, and vecp() to be
the matrix operator which arranges the columns of lower left corner of a symmetric matrix into
one long column. The Kronecker product of two matrices, A and B, is denoted by AQ B. A >0
means that A is semi-definite positive and A > B means A— B > 0. G denotes a (p(p+1)/2) X p*
constant matrix (vecV)/d(vecpV), where V is a p X p symmetric matrix. ¢ always denotes some
constant independent of parameters, while the value of it may vary from place to place.

We will heavily use the following matrix results in this paper. Results 2.1 and 2.2 can be found
in J. R. Magnus and H. Neudecker {12] (pp. 30-31). Result 2.4 follows from Result 2.1. Results 2.5
and 2.6 are given by Wiens [16].

Result 2.1 For any p X p matrices A, B, C, and D,

(vec(Dt))]t (C’t ® A) (vec(B)) = tr(ABCD). (2.3)
Result 2.2
vec(ABC) = (C* @ A)vec(B). (2.4)
Bt
Result 2.3 Suppose >0, and A> 0, then
B C
A B!
< |4]-1C]. (25)

Result 2.4 If for p x p matrices A and B, 0 < A < B, then
ARA<AQ®B<BQ®B. (2.6)

If p X p matrices A; > 0,i=1,---,n, then

> 404 < > x)o (3 x). (2.7

i=1 =1
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Result 2.5 If A is a p X p matriz, and X is a p X p symmetric matriz, then
|G(A ® A)Gt| = |GGY| - |A[PF. (2.8)
Result 2.6 For a p x p symmetric matriz V,
vec(V) = Gtvecp(V). (2.9)

2.3 The Fisher Information Matrix for 3, £ and o

The following result was given by Tracy and Jinadasa [15].

Lemma 2.1 If a px 1 random vector y ~ MVN(u,V), then the Fisher information matriz for p
andV is
v-1 0
I, V)= . (2.10)
G-tV hHG!

Using Lemma 2.1, the Fisher information matrix for 3, ¥ and o? thus obtains.

Proposition 2.1 For a RCR model (1.1) with the likelihood function given in (2.2), the Fisher

information matriz for 3, ¥ and o2 is

I8, =, 0®) =Y _IL(8, =, o°) (2.11)
=1
with
L(B) 0 0
LB, T, 0= 0o 1pm  1KE,6%) |, (2.12)
0 LINZ,0%) LI(o?)
where
L(B) = Ai, ILi(Z)=G(4A:i® A)G, : (2.13)
L(%,0%) = G vec(C), Ii(0?) = tr (X:TX} +02L)72), (2.14)
A% XUXDXE+ o)X, G XXX + 02 L) 72X, (2.15)
Proof: See Appendix A. |



Consider the following transformation:

=5
A=X/o?
% =o?,

which will be used to develop the reference prior of the RCR model (1.1).

Proposition 2.2 The Fisher information matriz for 3, A and o? is

I(:q’ A, 02) = zn:Ii(:Q, A, 02),

i=1
with
2B,'/0'2 0 0
1
L(B, A, o?) = 2 0 G(B; ® B;)G* Gvec(B;)/o?
0 [Gvec(B;) /o) t;/o*
where

B XY XiAX! + L) X; = 0% A
Proof: Note that

Ii(g, A, 0‘2) = [%%%Z—z}] Ii(@’ X, 02) [%E—g%] ’

where
I 0 0
a8, T, 0?) .
55, A, o7~ | 0 Tl O

0 [veep(A)] 1

Thus Proposition 2.2 follows from Proposition 2.1 and Results 2.1, 2.2 and 2.6.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



3 The Noninformative Priors

3.1 The Jeffreys Prior

Specification of a prior distribution is an important issue in Bayesian analysis. When subjective
prior is not available, use of noninformative priors. has an extensive tradition in statistics. A com-
monly used noninformative prior is Jeffreys prior, along with the “uniform” prior (7y(8, £, 0%) = 1).

Use of 7y is generally very successful, although there are concerns about its lack of invariance
to transformation. Also, a number of counterexamples to its use have been encountered (see, e.g.,
Fraser, Monette and Ng [7], and Ye and Berger [19]). Jeffreys prior exhibits many nice features that
make it an attractive prior. One such property is parameterization invariance. In one-dimensional
parameter problems, Jeffreys prior is also an optimal noninformative prior in the sense that it
maximizes the missing information (see Bernardo [6]).

The Jeffreys prior for the RCR model (1.1) immediately follows from Proposition 2.1. Denote
77(8,%,0?) be the Jeffreys prior. Then

(M

s p| | SR DRI

77](@7 z, 02) X n 2 n 2
=1 =1 Ii(E,O’ ) zi:l Ii(a )

(3.1)

where I;(8), Li(X), I;(Z,0?), and I;(c?) are defined in (2.13) and (2.14). The Jeffreys prior w.r.t.

the parameterization (3, A, o?), denoted by T7(8, A, o?), is

1
2

a1y (B: @ By) — 22l Bg,(zve;(z};l B el jor2,  (32)
=1 i=1"

>

=1

FJ(,@,A,0'2) &

where B; is given by (2.19).

3.2 Reference Priors

Although Jeffreys prior is invariant under reparameterization and has been proven to be a
successful noninformative prior for one-dimensional parameter problems, Jeffreys himself, however,
noticed difficulties in multi-dimensional parameter problems, especially when nuisance parameters

2

present. In our problem, we are concerning inference of 3, ¥ or ¢*. This puts us in a typical

situation where reference prior has been shown to be a very promising noninformative prior (cf.,



Berger and Bernardo [1], [2], [3] and [4], Ye and Berger [19]). A review and discussion of the current
status of the reference prior can be found in Berger and Bernardo [4].

In the following theorem, the reference priors for 3, A and o? obtain. Note that the reference
prior depends on the “group ordering” that is typically a listing of parameters according to perceived

“importance.”

Theorem 3.1 For the RCR model (1.1), the reference priors for different groups of ordering of
(8,02, A) are:

Group Ordering Reference Prior
{@, 02’ A}’ {02’ ﬂg A} or {02’ A, @} |G E?:l(Bi ® B'.)th-;-/o.Z

(60,02, {0, 8,07 or {4, 0% 0} [GITRa(B: @ By) — =i A= B0y 2
= (3.3)

where B; is given by (2.19).
Proof: See Appendix B. [ |

3.3 Bounds for Reference Priors and Jeffreys Prior

The results in this section will be used to prove that the posterior distribution is proper and the

posterior means for parameters of interest exist when we use the Jeffreys prior or reference priors.

Proposition 3.1

n
c
I Al < p=ry (3.4)
=1
= c
l;Ail < 152D (3-5)
where X is the largest eigenvalue of L.
Proof: See Appendix C. | ]

By Proposition 3.1, the following result is immediate.

Proposition 3.2

, 2,09 <
(8 ) < X

Nor e (3:6)



c

, 2,00 < ——o 3.7

(5,0 < 2B gt (3.7)
The bounds for the reference prior w.r.t. the parameterization (3, ¥,0? are

*r(8,%,0%) < —— (3.8)

S = gP*+pr+2’ :

Tr(3,%,0%) < —S 3.9

R (39)

Proof: Using Proposition 3.1, Results 2.4 and 2.5. [ |

4 Posterior Analysis of the RCR Model

4.1 The Posterior Density for 3, ¥ and o?

Denote 7(83, X, 02 | data) to be the joint posterior density for 8, X, and o? with prior (8, Z,0?).
Then

1
2

©(8,%,0? | data) « w(B,%,0%)- f[ lX,'EXf + oI
i=1
. exp {—% zn:(gz - X,-[j’)t(XiEXf + azfi)_l(yi - X,-,Q)} . (4.1)
i=1

Due to the complexity of the Jeffreys prior and reference priors, analytic analysis on the posterior
is difficult, for example, the explicit form of the marginal posterior of the parameters is not available.
It is not easy to see whether the joint posterior density, #(8,X,0? | data), is proper or improper.
Especially when we deal with the unbalanced observations, it becomes extremely hard. It seems
necessary to pose some conditions on the data structures in order to obtain a proper joint posterior
density. For example, we need to know how many subjects should be taken and how many full
rank design matrices X; are needed for obtaining a proper posterior.

By using the upper bound of the Jeffreys prior and reference priors in Proposition 3.2, the
posteriors can be proven to be proper. In Sections 4.2 to 4.4, we prove the Jeffreys posterior
is proper and the corresponding posterior means of parameters exist under certain conditions.
Under similar conditions, using same technique, the posterior derived from the reference priors

and “uniform” prior can also be proven to be proper and the corresponding posterior means of



parameters to be existent (see Theorems 4.3 and 4.4).
By (3.6) and the fact that AP/Z > |£|*/2, an upper bound of # (83, %, 0 | data) is,

n

(8,%,0% | data) < ——u-]]

|2]%0-P2+P+2 . =1

-1
2

X,'EX,? + 0‘2Ii

1 n

- exp {—5 Z(g, - X,'@)t(X;EXit + 0'2I,')_1(:g,' - X,@)} , (4.2)
i=1

By denoting the RHS of (4.2) as 7*(8, X, 0? | data), it is immediate that if 7*(8,%,0? | data) is

proper, then (8, X, 02 | data) is also proper. However, 7*(8, £, 02 | data) is still quite complicated

even though it is much simpler than the original posterior density. In the following subsections,

our inference will be based on 7*(8,X,0? | data) instead of (8, X, 0? | data).

4.2 Auxiliary Variables 3,, 82, -, 6»

The most troublesome part in 7*(3, X, 0? | data) is ¥ and o?. Therefore, we introduce auxiliary
variables (31, -+, By to get a higher dimensional integral and then integrate out X and o2 first.

Let

1 1 1

2 _
r(@h@la"'n@‘nvzaa l da’ta) x m ’ m : lzlﬂ?'_l

. exp {—2%2 i(yi - XiB:)'(y: — XiBs) — % i(@i - BB - @)} : (4.3)

i=1

It is easy to prove that

w*(@,E,az | data) /w(@,@l,---,@n,2,02 | data)dBy - - - dfn,. (4.4)

For simplicity, we call that 7(3, 81, -+, s, £,0? | data) is the joint posterior density for B, B,
Bn, 2, and o2, Then 7*(8, X, 0? | data) is the marginal posterior density for (8,61, s Bn, 5,02 |
data). So it suffices to prove that 7(8, 61, - -,8n,Z,0? | data) is proper.

By integrating out ¥ and o2, the marginal posterior density for B, B1, -+, Br is

1 1

7"(@7@1,"',@1 I data’) x / a-’nP+P2+P+2 . IEll-zl-_l

10



- exp {—%; > (yi = Xifi)'(yi — XiBi) — % (B -8y - @)} dxdo®
=1 i=1

_n=p _nptpP4p

s Xn:(gi_xi@i)t(yi_Xi@i)] o (4.5)

i=1

S8 - B)(B: - B

i=1

o8

Note that in the above derivation, we need n > 2p to integrate out X. In the next section, we will

prove that the RHS of (4.5) is proper if the number of full-rank X;’s is greater than 2p.

4.3 The Proper of the Posterior Density
Suppose there are ny of X;’s that are of rank less than p, and these X;’s are the last ny of X;’s,
ie.,
r(X1) =r(Xz) =+ =1(Xy,) =p,
T(Xn1+1) <Py T(Xn) <p
where n; = n — ng and 7(X;) is the rank of X;. Denote (83, B1,---,8n, | data) be the marginal
posterior for 3, B1,---,8n,. Then the following proposition will give an upper bound of

(B, B1,**+1Bn, | data). Here, we assume ny > 1, otherwise, we don’t need the following proposi-

tion.

Proposition 4.1 If ny > 2p, then

W(ﬂg @1, e ',,qnl | data)

1 ‘mz__p 71 ‘Eﬁ'ﬁlie
<c Y (8: - B)(Bi - B) . [E(w - XiB:)'(yi — XiBi) . (4.6)
i=1 =1
Proof: See Appendix D. [ |

Now, we integrate out 3 from (4.6).

11



Proposition 4.2 If ny > 2p + 1, then an upper bound of the marginal posterior density for
By "5 Pn, is given by

_m=p=1 _nptp’4p
2

(B, Bny | data) < c-|> (B: — B)B: — B)* . zl:(w — XiB:) (y: — XiB:) ’ )
=1 i=1
(4.7)

where 3 = (1/n1) Y12, Bi.

The proof is the same as for Proposition 4.1.

In order to prove the posterior proper for 3, ¥, and 0%, we need the following condition:
There exist at least one ¢ < ny such that  y; # Xi(X}X;)™ ' X}y:. (4.8)
Under the above condition, it can be proved that there exist positive constant 6* and 4, so that

S (wi — XiBo)(yi — Xifi) > 8* + 63 BLB:. (4.9)
=1 ]

=1

By the above inequality and Proposition 4.2, it follows that

2

71 -2 -_217—1 71 - +2
7(B1,- > Bn, | data) < c-|> (B: — B)(Bi — @_)t' . [5* + 52@5@:‘] . (4.10)
i=1 i=1
Note that
. (s
S B - BB =B = (BunBa)im -1 F
=1
t
I 0 @5
= BuonB)Q| T et e | (4.11)
/322,1

where I, and I, _, are the n; X n; and (ny — 1) X (ny — 1) identity matrices, respectively, 1 is

an np X 1 vector with all elements equal 1, and @ is an n; X n; orthogonal matrix. Consider the

12



following transformation:

1% 0, a1, s) = (Brr B )@, (4.12)

where 7 is a p X ny matrix. Thus, from (4.11) and (4.12),

n ny—1

2B - B)Bi— B = 3 mimis (4.13)
i=1 =1

> Bi6: =Y nimi. (4.14)
=1 i=1

By Transformation (4.12) and Equations (4.10), (4.13) and (4.14), the bound of the marginal

posterior density for 71, -+, 7y, is

1 ok S _nptplip
1= n1 2
w(T, 50y | data) < c-| Y mint : [6* + 62929,] . (4.15)
1=1 =1
Integrating out 7,, from (4.15) yields
_m=p-t _nptp®
ny—1 2 np—1 2
(1,5 Ing—1 | data) <c-| D mirh : [6* +6) gfgi] . (4.16)
i=1 i=1

Therefore, the only thing left is to verify that 7(51,- -+, 7n,-1 | data) is proper.
Denote 71 = (91, ,%n,~1), Which is a p X (n3 — 1) matrix. Then 7 can be decomposed as

follows:

M 0
9l pppe (4.17)

I
"

T
Ap O
where P and I' are p X p and (n7 — 1) X (n; — 1) orthogonal matrices and A; > Ay > ---A, > 0.
Rewrite ' as I' = (I'; T'3), where I'y and T’y are (ny — 1) X p and (nq — 1) X (1 — p — 1) matrices,
respectively. Note that 7; does not depend on T'; since 7y = P - diag(A1,- -+, A,) - T'h.
In the following context, we assume that for every given I';, let I's be a function of I'; such that

I' is an orthogonal matrix.

13



Lemma 4.1 The Jacobian of the orthogonal decomposition given by (4.17) is

8(771) 4 mopl 2 2
| =J(P,T,T1) x Ai AF — A4 4.18
ap,7,rp| = /BT (I;II ) lsgs,,' i (4.18)
Proof: See Appendix E. ]

Now we can complete the proof of the proper of the Jeffreys posterior.

Theorem 4.1 If ny > 2p+ 1 and condition (4.8) is satisfied, then the Jeffreys posterior for the
RCR model (1.1) is proper.

Proof: Using the decomposition given in (4.17), Lemma 4.1 and Equation (4.16),

/71'('[]17"""]77,1—1 | data)dmy -+ dnp,—1

_mip1 I B P
< e / (A 22)7 7 .[5*+5ZA3] - J(P,T,Ty)(]] dX:)(P'dP)(T}dT1)
. =1 i=1
e [A222 P
~ Mi<icjcp X le (T] dx:)(P*dP)(I3dly) < oo (4.19)

(8= + 852, MTF =
because (P!dP) and (T'{dTl’;) are finite Haar measures (for details, see, e.g., Muirhead [13], Chapter
2). |
4.4 The posterior means and variances

The most interesting quantities in Bayesian inference are the posterior means and variances for
the parameters of interest. In our RCR model (1.1), it is important to derive the posterior means
and variances for 8, X, and ol

The following theorem is established for the Jeffreys posterior.

Theorem 4.2 Under condition (4.8), the Jeffreys posterior means and variances ezist for: (i) 3,

ifny > 2p+3; (i) 02, if na > 2p + 1. Further, if ny > 2p + 2, then
pt2
E(o;? | data) < co. (4.20)
Proof: See Appendix F. [

14



Note that if p > 2, then from (4.20), the posterior means and variances of o;; exist when

Similarly, for the reference posterior, we have

Theorem 4.3 Under condition (4.8) and ny > 2p + 1, the reference' posteriors are proper. The
reference posterior means and variances exist for: (i) B, if ny > 2p + 3; (i) o2, ifny >2p+ 1. If
ny > 2p+ 2, then
pt1
E(o;? | data) < oco. (4.21)

Also we have the following theorem for the “uniform” prior.

Theorem 4.4 Under condition (4.8) and ny > 2p + 2, the posterior corresponds to the “uniform”
prior is proper. The posterior means and variances ezist for: (i) B, if n1 > 2p + 4; (i) a?, if

n1 Z 2p+ 2.

Note that for the “uniform” prior, the conditions in Theorem 4.4 are also necessary conditions for

the posterior to be proper and the posterior means to be existent if ny = 0.

5 Computation of Posterior Expectations

5.1 Transformation

In computing the posterior expectations in Section 4.4, it will be convenient to use transfor-
mations: (i) 8 = B8, A = X/0? and 0% = o?; then (ii) A* = logA or A = eA*. The advantages of
the above transformations are that the conditional distribution for o2 given (8, A) is an inverse
Gamma distribution (see (5.2) below) and that A* is an unconstrained symmetric matrix while
A is a positive definite matrix. It has been shown in Yang and Berger [17] that the Jacobian of

transformation (ii) is
OA

AT (d: — )
OA*

[Lic;(df =) ’

where d; and d} are eigenvalues of A and A*, respectively.

(5.1)

Using prior (8, A,0?), combining with the likelihood function (2.2) and the Jacobian (5.1),

15



the posterior of (8, A*,0?) thus is

n

n
7(@,A% 0% | data) o (8,eN",0%) o™ iz % [T |Xie X} + I
i=1

} e Tl (di — d))
[Tic;(d} —d¥)

L
2

- exp {_Ti? Z(yi ~ X:B) (X! XE+ L) N yi — XiP) (5.2)

=1
5.2 Hybrid Markov Chain Sampling

A hybrid Markov Chain Sampling scheme will be used for computing the posterior expectations
in Section 4.4 since these posterior expectations are not available in closed form. The hybrid scheme,
which generates a dependent sample {(8;,A},0?), i > 0} from the posterior (5.2), has three major
components: grouping, an approximate Gibbs step, and Hit-and-Run generation. The parameters
are grouped as (i) B, (ii) A* and (iii) o2. Then, the approximate Gibbs step proceeds as follows:

Step 0. Choose a starting point (8o, A§, 02), and set k = 0.

Step 1. Generate B(i41) from the conditional posterior distribution
©(8 | A}, of, data),

which is a multivariate Normal distribution.

Step 2. Generate A’("k +1) from the (approximately) conditional posterior distribution

7(A* | B(k41)> %, data).

Step 3. Generate a(zk +1) from the conditional posterior distribution

7(o? | Bk+1)s A}, data),

which is an inverse Gamma distribution.

Step 4. Set k =k + 1 and go to Step 1.

For Step 2, we approximately sample from the conditional posterior distribution using one-step
of a Metropolisized Hit-and-Run sampler. The procedure proceeds as follows:

(i) Generate a random direction (symmetric) matrix T, defined by T = Z/ \/izsj—z?] , where

wi.d
, O

z;; "W N(0, 1), ¢ < j, and Z is the symmetric matrix with the (7, j)th element 2,1 < j.

16



(ii) Generate A ~ N(0, 1).
(iii) Set Y = A} + AT. Then set

Y, with probability min(l,W(Ylg(k_l_l),a;‘:,data)/7r(A2|@(k+1),af,data))

Afpr = (5.3)

%, otherwise.

After a sufficiently large sample (81, A}, 0%), (B2, A3, 03), ..., (Bm> An, 02) has been

generated, the posterior expectation is approximated by
(B3, T, ¢2|data) 2 1 & * 2 2
E™B 5 hB, T, 0%) ~ —n;Eh([jk, exp(A) - 0%s o),
k=1

where h is the function of interest. General discussion about this hybrid algorithm can be found in
Berger and Chen [5].
The above hybrid Markov chain scheme was programmed in double precision Fortran-77 using

the IMSL subroutines. It is available from the authors upon request.

5.3 Example

Consider the Model:

vij = teiBite;, j=1,..,t, t=1...,n (5.4)
where
a; 2 11 . iid
~ MVN , and independently ¢;; ~ N(0, 1).
B; 4 1 2

The simulated data is listed in Table I. Note that the first two design matrices are singular.
Using the reference prior w.r.t. the group ordering {8,0% A}, ie., |G 37, (B: ® B;)G!|2 /a2,

the posterior means are

) 1.864 i ) 1.631 1.020
B = , 62=1.199, &=
4.036 1.020 2.958

which are not off the true parameters very much as the sample size n = 10.
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Table I.
Simulated Data from Model (5.4)

i
subject 0 0 1 1 2 2
1 -0.497
2 3.976 3.043
3 -0.205 1.004 3.922
4 3.409 2.279 7.128 7.307
5 0.462 2971 5.143 7.248 10.836
6 2.608 1.988 6.144 5.058 11.272 10.126
7 2.343 3.298 7.724 4367 10.595 9.557
8 2,234 2.822 3.787 4.185 8379 8.993
9 0.172 0.627 4.505 4.741 7.110 4.928
10 2,440 2.726 7.026 10.972 14.947 15.790

6 Comments and Generalizations

6.1 Comments

For the RCR model (1.1), it is difficult to do comparisons between noninformative priors,
partly because there is no unique way to compare noninformative priors, and there are also too
many choices in the parameter setting and design matrix setting. However, in terms of MSE criteria
for the corresponding posterior mean estimators, we empirically observed that (i) both reference
priors (3.3) and Jeffreys prior (3.1) result in similar Bayes estimators for 3 and 0%, and both
produce smaller MSEs than “uniform” prior for Bayes estimators of § and o?; (ii) Jeffreys prior
(3.1) produces Bayes estimator for ¥ with the smallest MSE, and “Uniform” prior produces Bayes
estimator for ¥ with the largest MSE.

For estimating variance or covariance matrix, it may not be a good idea to use square loss. It

may be more desirable to use some invariant losses, e.g.,

L(62, o%) = (62 — 0% /o™
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Under such a loss, reference priors (3.3) would produce Bayes estimator with the smallest risk.
In conjunction with the above discussion and the consideration of simplicity of a prior, the ref-
erence prior w.r.t. the group ordering {8,0%,A},i.e., |G Y% (B; ® B;)G|? /o2, would be preferred.

Further serious simulation study to this prior is also recommended.

6.2 Generalization of RCR Model (1.1)

The RCR model (1.1) can be generalized to the following mixed linear model, which was
previously studied by Swamy [14] (pp.143),

vi = Zio+ X6 + ¢, (6.2)

where y; is a £; x 1 vector of observations. X; and Z; are t; X p and ¢; X ¢ design matrix, a is a
g X 1 vector of fixed effects. f; is a p X 1 vector of random coefficients for the ith experimental
subject and ¢; is a vector of errors for ¢ = 1,2,.--,n. f; and ¢; are independently distributed as
MVN(B, X) and MV N(0, 02I;), respectively.

The computation of the Fisher information matrix for the model (6.2) is similarly to that in
Proposition 2.1. The only difference to (2.12) is that Li(e, 8) = (Z; Xi)"(XiZX} + o2L)"Y(Z: X3).
The Jeffreys prior for model (6.2) is thus similar to that in (3.1), and reference prior for model
(6.2) is the same as (3.3).

Further, Theorems 4.1, 4.2, 4.3 and 4.4 also hold for model (6.2), provided that the condition
(4.8) is changed to that

There exist at least one 7 < ny such that y; # (Z; X;)[(Z; X)NZ: X)Wz X,-)ty,-. (6.3)

Finally, the computation of the posterior expectation can also be carried out accordingly.
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Appendix A: Proof of Proposition 2.1

Lemma 2.1 yields

L(B) = [a(Xﬂ)] (X;EX! + o2L;)™? [Mt

= XX:IX!+0 L) 'X; ” (A.1)
and
o [P 0] (o (om0
where 3F = X;SX! + ¢2I;. Denote £ = (0im)pxp- Then
dvec(X:EX} +0%L) _ ( X; oy Xt) = vee( XiAm XP), (A.3)
00im 001m

where Ay, = erel, + epel if | < m and Ay = emel,. Here ¢ = (0,---,0,1,0,--+,0)" denotes a

column vector with 1 in the I!! row and 0 elsewhere. Then (A.3) and Result 2.1 imply

L(0im, Onk) [vec(X,-Aszf)]t . (22‘_1 ® EZ‘_I) . [vec(X,-Athf)]
= tr[Sr7 XA X! 3 XiBim XY

= tr[A; - Ape-Ai- A = (vec(Azm))t (A ® A;) (vee(Ank)). (A.4)

Therefore (A.4) results in

L(Z) = G(A; ® A)G". (A.5)
Since
dvec(X;TX} + 02])
902 ec(I )7

then using Result 2.1,

I(01my0%) = [vee(XiAmXD)] - (217 @ 5777 - [vec(L)]
=tr 577t LB  XiBim X}] = [vec(Dim)]' - (B: ® Bi) - [vec(L:)], (A.6)
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where B; = (X;ZX} + ¢%L;)~1X;. Thus, Result 2.2 and (A.6) result in

L(Z,0%) = [%] - (B; ® B;) - [vee(I;)] = Gvec(Cy). (A.7)

Using Result 2.1 again,
L(0%) = [vee(L)]! - (257 @ B7) - [vec(L)] = tr (X:2X} + 02L)7?). (A.8)
Therefore Proposition 2.1 follows from (A.1), (A.5), (A.7), and (A.8). u

Appendix B: Proof of Theorem 3.1

The detail of the algorithm to compute the grouped ordering reference prior can be found in
Berger and Bernardo [4]. We will compute the reference prior only for the group ordering (8, o2, A)
here. The reference priors for other group orderings can be computed similarly.

Following the notations in Berger and Bernardo [4], the functions h;, which are needed to

calculate the reference prior, are

Ihal = 1G(3" B; ® B)GY/2),

i=1

Ihy| = it,-— [Gvec(zn:B;)]t[G(iBi®B,~)Gt]‘1[Gvec(iB,-)] /(20%),
i=1 i=1 =1 =1

"
1] = 1) Bil/o™,

=1

Then, the conditional prior of A givén B and o? is

m(AlB, o%) x |hal? = |G(> B; ® Bi)G'|z.

1=]1

Hence E[log|hs||8, 0%] = —logo* + ¢. So the conditional prior of A and o2 given f is

m(0?, AlB) x |G(§n: B; ® B;)G|? /o>

i=1
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It implies that E[log[h1||(8)] = ¢ and
m(8,0%,A) x |G(Y B: ® B))G'[2 /.
=1

The conclusion of the Theorem thus follows. [ ]

Appendix C: Proof of Proposition 3.1

(3.4) is trivial. For (3.5), since X > 0, then ¥ can be decomposed as

A0
=0 Qt’
0 A
where A is the largest eigenvalue of ¥ and € is a p X p orthogonal matrix. By denote X;Q =
(@P, ceey @7(;')), where ng-i) is a t; X 1 vector, it follows that

A :
"
. . 0 N s
XinXt+ 0% 2 (B, b)) +020; = PR’ 4 021,
Y
AV
Therefore,
I}gi)t () ()
-1 ) 1 hy" by i i
QX! (XXt +o’L) XQ<| i |- [Ii - ] (8, 80) . ()
()t hi’ by’ +0?/A
hp
B«
Denote the right hand side of (C.1) as 1 @ . Then
* Hp—l,p—l
: , (4) (i) : (Y1 (0)
R e N TR
o ;}51) hgl) +0?/) RO ) +a2/A
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and

A
; . I; i i
H;S—)l,p—l < : : ; : (’.}g)’sl”;(;)) . (C3)
B’
By Result 2.3, (C.1), (C.2) and (C.3),
A
Lid n i n ] n ~ . Ii 1 I
;A; < ;hg) . ;H;E—)-l,p—l .<_X ; s 0_2'(’1’%),,’.};))
= = 1= 1= h(i)t
op
A" )
_ L.Z : (h(i)...h(i)) <& (C.4)
RN =4 IRV i R T '
B

Note that the last step of (C.4) follows from the fact that the elements of X;Q = (ig,gi), seey le(j)) are

uniformly bounded. [ |

Appendix D: Proof of Proposition 4.1

From (4.5),
n - ; 1 _:'.Lh;ﬁte
m(8, 1, +,Bn | data) < c- | (8; — B)(Bi — B)! . [E(.yz - XiBi)'(yi — Xif3i)
i=1 i=1
(D.1)

Now, we first integrate out 3, from the RHS of (D.1). By writing A = Y-751(8; — 8)(8: — 8)! and
B = A_%(@n — ), we have

[ 1556 - 8366 - )
175 [ 45 (80 - )@ - B ATE 41

4=

np

dfn

n—p

2 d@n

* gkt _n_;g *
giaut+1| 7 dg;
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n—p—1 n—
= 147 [+ e T g
__n-zg—l

Se-me-s| . (02)

=1

X

Repeating the above procedure to integrate out Bn, 41, -+, 8n~1 gives Proposition 4.1. Note that

[(L+p7p7) " dp* <o if n—k > p. .

Appendix E: Proof of Lemma 4.1

Using the exterior product method in Muirhead [13] (Chapter 2) and 7 = PTTY,
dp =dP-TT 4+ P.dT-T* + PT - dI*.
Thus, by the fact dI''T' = —T'*dT,
PtdmT = P'dP-T - T -T*dI + dT. (E.1)

According to Chapter 2 of Muirhead [13], the exterior product of elements in the matrix on the left
hand side of (E.1) is
P -
[P T - (dm) = (amy). (E2)

Write P = (Pq,P2,--+,Pp) and T = (71,792, *»¥n,-1)- Then

( Pt
- A 0
P}
PldPT = ~ (dfla"'vdgp) 0
' A, O
\ P ?
(o _APLdPy -+ —APLdPy 0 )
MPidP; 0 s+ =XpPLdPy 0
= /\1.??3(1131 /\213%(1.?2 v —/\pE;df3 0 . (E3)
\ MPydP1 MPrdP;  --- 0 0 )
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Similarly, we have

/ 0 - /\1'_)_’%(1’11
/\gjtzd’l’l 0
TI‘tdI‘ = /\3‘Z:t3d’l’1 /\3‘2’%(1’22
\ %71 Aplpdre
and

dT =

“M7pd —Mpndn
—AYpdy2 —MYpiadya
—As7pdys  —AsYp1dys

0 - ’\plf>+1 d7p
d\ 0
0
dx, 0

Mt _1dyn )
- ’\2’137:1 —1d72

From (E.3), (E.4) and (E.5), the exterior product of the right hand side of (E.1) is

p
Adxi A [(NPLP: = Ajyidy:) N(-A PLPi + Xybdys)|

i=1 1<i<ji<p

p n —p—l
= (H ,\,-) I »-
i=1 1<i<j<p
(E.2) and (E.6) yield
d(m) -
o(pP,T,T)

p
x| A\ d
=1

=1  1<i<j<p

P ny—p—1
( Ai) .
=1

1<i<j<p

Appendix F: Proof of Theorem 4.2

A (P3P Avsdz) N

IT =X

—As7h,adys |5 (E4)
—ApYn, 197
(E.5)
A Ady
1<i<p
p+1<j<n1 -1
‘Igdj,-.(E.G)
1<i<p
p+1<i<n1 -1
n

It is straightforward to prove that if ny > 2p+ 1, then the posterior mean and variance of a?

exist.

In order to prove the posterior variances of § exist, it suffices to prove that

E(B'8 | data) < oo.
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Using Proposition 4.1, (F.1) is true if

Iz

Letting A = 1 Z"‘l(ﬁ, ,{7)(@, - ,[_?)t and §* = "%(,@ - ,C?), we have

_netpitp

O i 4
2 2

Z(ﬂz B)(Bi - B)f

=1 =1

B8 = (8A% + §) (478" + B) = g Ap" +28' 420" + §'B.

Then, the Cauchy-Schwartz inequality yields

mfAg = 3o [88: - B) <88 (8- B8 - B

i=1 =1

ny p
D (g = XaBo) (yi - Xiﬂi)] dB J] dB: < co.
i=1

(F.2)

(F.3)

Denote the LHS of (F.2) to be I*. Then by (F.3), using the same technique as in the proof of

Proposition 4.1,

r<n+n+1,
where
o= / (1/n1)2?11(ﬂ1 B)'(8: — B)ITi, dB;
IS0 (8: = BB = BY 7 [Ty — XaBo) (s — X F
/ ﬂ*tﬁ*dﬂ* -
(14887 %
-= _2P_1 71 _ﬂztgﬁte P
5= [0 ‘[E(w—%)‘(w-&@i) [T 45:
=1 =1 =1
25428 .
. = =———df* =0,
-/(1_*_@*1‘@*)_12—
o= / B'BITE., dB:
0B — BB — BT [y — Ko}ty — XeB 5 E

/(1 +@*t@*) 2—-p dﬂ*
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Since

(1) 024 (8 = B)(6: — B) o
n =1(0i — i —
RSl - LS e e [ (g — Xa) (y — XiBs) ,
[y — XiBa)'(yi — XiBa)]™ 2 Li=1 '
~t = Cn q_nptpiip—t
g I@ <ec El( c— X8 LT X 8: ?
- motrte = € . Y — z@z)(yz"" 1@1) ’
it (yi — XaBi)i(y: — XiBi)]l 2 Li=1 .
and when n; > 2p+ 3,
I3 *d * oo _nm-r .
/ @@@"_,<oo,a,nd/(1+@t@) T dp* < oo,
(1+@*t@*) 2
then IT < 00, and I3 < oo. Therefore I* < o0.
For proving (4.20), it suffices to prove that
E(\F | data) < oo, (F.8)

where ) is the largest eigenvalue of ¥. Using the upper bound of the Jeffreys prior, which is given

by (3.7) in Proposition 3.2, (F.8) can be proven in the same way as we prove Theorem 4.1. [ |
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