LIMIT THEOREMS FOR THE CONVEX HULL OF RANDOM
POINTS IN HIGHER DIMENSIONS

by
Irene Hueter
Purdue University

Technical Report #93-39

Department of Statistics
Purdue University

July 1993



Limit Theorems for the Convex Hull of Random

Points in Higher Dimensions

Irene Hueter*
Department of Statistics
Purdue University

July 1993

1 Introduction

Let Z1,Z,,. .., Z, be n ii.d. random vectors, each with absolutely continuous distri-
bution F. Let N, be the number of vertices of the convex hull of {2, Z,,...,2,}.
What is the limiting distribution of N, as n grows to oo ?

Although numerous papers investigate the behaviour of random convex hulls,
we do not know the asymptotic distribution nor the second moment of any con-
vex hull functional in the higher dimensional space. In this context, even in two
dimensions there are only a few results (see [6],[1] and [7]). The classical method,
introduced by Rényi and Sulanke (1963) and further developed by Efron (1965),
Carnal (1970), Raynaud (1970) and Dwyer (1991) to compute the first moment of
convex hull functionals, is purely combinatorical and cannot capture the dependence
structure between the multivariate extremes.

In a remarkable paper, Groeneboom (1988) found a powerful method to deal with
the convex hull. The method makes extensive use of the one-dimensional process of
consecutive vertices of the convex hull to prove a central limit theorem for N, in
two cases, namely, for a set of n points uniformly distributed on an r-polygon or on
an ellipse. Precise results on the variance of N, are obtained. The basic tools are
Poisson approximation of the sample points near the boundary of the convex hull
and some suitable martingales for the moment calculations. In [7] the same approach
was generalized in various directions. Among others, bivariate exponentially-tailed,
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rotationally invariant distributions, especially, the normal distribution, were studied
for their number of convex hull vertices, but also for the perimeter and the area of
the convex hull.

The purpose of this paper is to develop Groeneboom’s technique in higher dimen-
sions for a class of spherically symmetric distributions, which includes the normal
distribution, whose tails decay at an exponential rate, in order to establish a central
limit theorem for N,, and to investigate the variance of N,. Two cases must be dis-
tinguished. In the first case, the order of magnitude of Var[N,] is obtained exactly,
in the second case, only an upper bound for the order of Var[N,] is obtained. The
rotational invariance is of key importance to our analysis.

Let Fr be the tail probability of the radial component of Z;, L a monotonely
increasing, slowly varying function which satisfies z = L(1/Fgr(z)) for sufficiently
large z, and let the function € be given by L(z) = exp{/{ e(t)/tdt}. Carnal [2]
proved

E[Ny] ~ 2(r [e(n))!/*

in the plane, and twenty years later, Dwyer [3] showed
E[N,] < Vd(8rd/(d — 1))4=1/2 ¢(n)~d-1)/2

in d dimensions, for sufficiently large n. These asymptotical results tell us that the
quicker the distribution tails off, the more convex hull vertices can be expected. The
main results of this paper are the following.

Theorem 1.1 Let N, be the number of vertices of the convex hull of a sample of
size n from a rotationally invariant, exponentially-tailed distribution such that the
smoothness conditions in (10) below are satisfied. Denote by kg = 2% |T (%) the
surface area of the unit d-ball.

(i) If L(n)e(n)*/? 4 oo, as n — oo, then

N, — ¢ g(n)~@-0/2
(Var[Nn])1/2 —_-)N(O’l)’ (1)

for some positive finite constant c;, where
Var[N,] ~ O(e(n)~@1/2),
(ii) If L(n)e(n)}/? — co, as n — oo, then

N, — E[N,)]

Var[N,])/2 = N (1), (2)



where for some positive finite constant c,
E[N,] < ¢ L(n)%e(n)"(-3)/2
Var[N,] ~ O(L(n)%(n)~@4/2),

In view of Dwyer’s result, in the second case of the above theorem our upper bound for
the order of E[N,] is not sharp by the condition L(n)e(n)/? — co. We suspect that
the correct order of the variance Var[N,] is still the same as that for E[N,], namely
O(e(n)~(@-1)/2), However, our method is far from being precise in this case. We wish
to mention the special case of the normal distribution, where the necessary moment
computations are more accessible, and thus, an upper bound for the asymptotic
constant for E[N,] can be established.

Theorem 1.2 Let N, be the number of vertices of the convexr hull of a sample of
size n from any normal distribution in IR®. Then, as n — oo,

N, — 63(111 n)(d“l)/2 L
cxmmmya@ . N1, )

where 0 < ¢4 < 00 and

0<es < 2Vd—-1(02m)V2/1(d)2). (4)

Actually, Raynaud [9] gave an estimate for the first moment of the number of facets
F,, which implies an upper bound for E[N,], namely,

E[Nn] < E[Fn] ~ 9% g-1/2 (d _ 1)—1 ld-1)/2 (lnn)(d_l)/2,

Our upper bound is an improvement for large values of the dimension d. The in-
equality E[N,] < E[F,] stems from the fact that in higher dimensions the convex
hull is simplicial with probability one, but not simple. In other words, each vertex
may be incident to more than d edges of the convex hull. Note that for d = 2 our
bound as well as Raynaud’s estimate take the exact value for E[N,].

The step from two to d (d > 2) dimensions is not that straightforward. A key role
is played by the jump measure for the moment computations. However, the derivation
of the jump measure of the process of the vertices is a delicate issue, which reflects
the fact that, in more than two dimensions, the natural order of the parameter space
of the process running through the convex hull vertices is lost. Therefore, the bulk
of this paper is devoted to define a way to follow a typical path on the surface of the
convex hull such that all the vertices can be recorded.



The remainder of this paper is organized as follows. Section 2 states some well-
known properties of spherically symmetric distributions. Section 3 defines and dis-
cusses the process of vertices of the convex hull and the role of Poisson approxima-
tion in this context. In Section 4, we shall locally arrange the points of the process
of vertices in order and try to mimic the two-dimensional situation. In Section 5,
we shall study the behaviour of the local jump measure from a vertex point and
somehow relate the moments of N, with the jump measure by looking at some (su-
per)martingales. Finally, the last section contains the proofs of our main results.

2 Spherically Symmetric Distributions with Ex-
ponential Tails

In this section we collect some well-known features of our distribution family that will
play an important role in the estimation of the moments of N,,. Let Zy, Zs, ..., Z, be
n 1.1.d. random vectors with common absolutely continuous distribution F. Denote
the tail probability of the radial component by Fg(z) = P(|Z;] > z). We think of
distributions with “exponential tails” as those distributions whose Fr(z) satisfies

1
FR(ZC)

for a monotonely increasing function L that varies slowly at infinity , i.e. as 2 — oo,
for each A > 0,

z = L

) (5)

lim L(Az)/L(z) = 1. (6)

T—ro0

Since Fr(0) = 1 and Fp(oo) =0, L(1) =0 and L(co) = oo hold. A slowly varying
function L(z) can be expressed in the form

L(2) = a(z) exp{ / " e(t)/t dt}
1
with @ — ao € {0,00} and € — 0, as ¢ — oo (see i.e. Feller [5]). We shall assume

a = 1 for all that follows. For instance, we have L(s) = v/2In s for the d-dimensional
normal distribution. If we put s = 1/Fg(z), we have

2 = L(s) = exp{ /1 T e(t)/t dt). (7)
Let us further define
0 <v(u)=e(L'(uv)) =¢(1/Fr(u)) — 0, u— oo. (8)

4



Then the elementary correspondence

do_ o) _ ds_ _da
ds s s v(z)z
implies the useful representation
Fr(z) = exp(In Fr(z)) = exp{— /0 du/(v(u)w)}. 9)

Proceeding along the lines of Carnal [2] and Dwyer [3], we impose the following
smoothness conditions on v and thus, on L, that are satisfied by most distributions
in question, and forces that the function ¢ be slowly varying, too,

v(z) is monotone (decreasing) for large z, (10)
z-V'(z)-In(v(z)) = o(1) as z — oo,
v(z)-In(z) = o(l) as z — oo.

For instance, the standard normal distribution with density function (27)%2
exp(—|z[?/2) has v(r) = r~2. It is worthwhile noting that in this case v(L(n))'/?
L(n) = 1. As we will see later on, the behaviour of ru(r)!/2 for r = L(n) will be
of importance. In general, e(n) # O(L(n)?). Take the example Fr(r) = ¢y exp —r*
for k > 0, thus, for large r, L(r) ~ (Inr)*/* and &(r) ~ 1/(klnr). That means, for
k > 2, e(n)"/2 > L(n). Roughly speaking, the smaller the function »(-) around the
value L(n), the thinner is the tail of the distribution.

3 Vertex Process

It is very natural to investigate the jump process which visits precisely the vertices
of the convex hull since these harbour the complete information about the convex
hull. This process, however, is itself too complex to deal with, and requires a number
of simplifications, as we will see shortly. Also, it will be convenient to have available
some more notation and to define certain special regions related to the set of vertex
points of the convex hull.

As the number of convex hull vertices is invariant under affine transformations,
we may as well shift the whole sample by a certain amount. More precisely, it will be
advantageous to think of our distribution to be centered at (0,0, ...,r;), where r; is
the radius of a ball that contains a sample of n points with law F' with a probability
tending to 1 (Indeed, we will make this “shift assumption” for the rest of the paper).
Let us first introduce the process which runs through the vertices of the convex hull.



Definition 3.1 For each a = (ay,ay,...,a4_1) € R we define the “vertex pro-
cess” Wn( a) = Wa(ay, as,...,a4-1) = (X1( a), Xa( a),...,X4( a)) as the point (Uy,
Us, ..., Us) of the sample such that Uy — Y41 a;U; is minimal. If there are several
of such points, then we take the one with the biggest first coordinate. This happens
with probability zero for fized a.

Occasionally, the hyperplane just described in the definition will be called the “sup-
porting hyperplane” of the convex hull and will be referred to as H, in the sequel.
The process {W,( a) : a € IR¥"'} is a pure jump process, non-Markovian and has
right-continuous paths. As the vector a runs through all R%?, roughly one half of
all convex hull vertices is counted. However, the process W, is close to be Markovian
in the sense that there is a process W endowed with the preferable Markov property
such that the variational distance between W, and W tends to zero, as n — oo. An
easy coupling argument between a Poisson and a Binomial distribution will estab-
lish an upper bound for this distance. We try to find a Poisson point process whose
extreme sample points look pretty much like the extremes of the original sample
21322y oy L.

For this purpose, we may first determine the region A% close to the boundary of
the convex hull where “most” of the convex hull vertices fall. In other words, we are
looking for a region A% C IR? such that, as n — oo, the following two conditions

hold
P(Wn.(a)€ A, Vae R — 1 (11)
and
P(Z, € AY) — 0. (12)

By the rotational invariance of the distribution, A’ is an annulus, thus,

d-1
Ay = {(u1,uz,...,ug) € R r? < (r, — ug)? + Zuf <r?),
i=1

where r; and ry are chosen as follows:
ro = L(n) (13)
L = To—&nf2
r2 = ro+é€n/2,
and €, is such that
nFr(r1) = m | (14)
nFr(ry) = 1/v,



with 71, 92 — co. Note that there is still a lot of freedom for the choice of ¢,. Then
it is easily verified that the region A} satisfies (11) and (12). Clearly, ¢, — 0. This
tells us that, as » — oo, with high probability the boundary of the convex hull is
contained between two spheres such that the difference between their radii shrinks
to zero.

Now let 7, denote the sample point process of size n and let £, denote the Pois-
son point process on JR? with intensity measure n f dF, which is an inhomogeneous
Poisson point process.

Lemma 3.1 There exist processes 7, and fn defined on the same probability space
such that

2
I~

and
P(in # &)<2P(Z € 4}). (16)

(“]” stands for “restriction to”.) We do not show the proof here, which is standard.
It employs a comparison between the Poisson distribution with parameter n [ 4y AF
and the binomial distribution with parameters n and n [, dF (see [6], Lemma 2.2
for details). Remark on the side that there actually are rotatlona.lly invariant distri-
butions such that no such region A exists, and therefore, Poisson approximation is
not possible, i.e. the algebraic-tailed distributions. Curiously, along with them goes
an E[N,] that is constant for large n (see Carnal [2], Dwyer [3], and also Aldous et
al. [1]).

Now we are ready to define the vertex process {W( a): a € IR* '} of a realiza-
tion of the Poisson point process £,. Then, by the independence of all events of a
Poisson process defined on disjoint sets, the process {W( a): a € IR*'} is Marko-
vian. Note that W still depends on n, although we drop the index. The requirement
P(Z; € A}) — 0 and Lemma 3.1 guarantee that the variational distance between
the vertex processes W, and W tends to zero with increasing n. The upper bound
for the variational distance depends on the distribution. For the normal distribution,
this bound is of the order n=!

4 Local Approximations of the Vertex Process

The purpose of this section is to find the “best” mapping of the (d — 1)-dimensional
parameter space of W onto a one-dimensional subspace of IR. Indeed, in order that
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the jump measure of the vertex process can be defined, the time range must exhibit
an order. The basic idea is to follow a path that “visits each neighbourhood” of
the surface of the convex hull exactly once, and in such a way that the path is as
“straight” as possible.

If the path runned “straightly”, the two-dimensional situation with one-dimens-
ional time parameter would be perfectly imitated. However, since the convex hull
vertices fall in lines with probability zero, the path will wobble slightly. The con-
sequence thereof is that the jump measure cannot be determined precisely, only
bounded. In fact, the farther away from the path the vertices are, which is tanta-
mount to the less convex hull vertices there are, the less accurate the upperbound
estimate for the jump measure, and therefore, for the moments of N,, will be.

On the other hand, the requirement to visit each neighbourhood exactly once,
is not such a big difficulty as it might appear at first glance. Whenever, there are
not too few convex hull vertices (this would be the case if Poisson approximation
fails, which already was excluded), by the rotational invariance it suffices to study
the convex hull only on a small region and to think of patching together all such
small regions containing a straight path in order to reach conclusions about N,,. Of
course, the path need run close enough to each point. That is meant by “visiting a
neighbourhood”.

Hence, the first step will be to define such a typical small region for the local
investigations, and the second step to give a new definition of the vertex process with
one-dimensional parameter space. By the rotational invariance, in order to discuss
the jump behaviour of the process W on a small region, we may as well look at the
jump measure from a point of W chosen from a small sector S, C A; around the
origin. On a large scale, on S, the boundary of A% appears close to a paraboloid
which is easier to deal with than with the boundary of the annulus A*. We are going
to show that in variational distance the vertex process defined by using the local
paraboloid approximation is sufficiently close to the vertex process W.

To this end, write

XI =/ 27‘26n (17)

and define
d-1
Sn = {(u1,uz,...,uq) € A5 : D ul < (X)) (18)
i=1
In the neighbourhood of the origin of the coordinate system, we will use the paraboloid
d—1

d—1
v = (Z u?)/2r2 Ry — (r% — Zu?)ll2

=1 i=1



as local approximation to the outer boundary {(u1,...,us) € R? : Y9 u? + (ry —
ug)? =13} of A%. Further define

By = {(us, .. ug) € R%: (gj u?)[2ry < ug, 32 < (X)), (19)

i=1

Let &) s, and E”IBn be the restrictions of the Poisson point process with intensity

n [.dF to S, and B,, respectively. Let W and W? be the vertex processes defined
as in Definition 3.1, but now by the sample replaced by a realization of ¢,|s, and
¢.|B,., respectively.

Lemma 4.1 Let the point processes §5 and 68 be defined by

d—1

55 = {WS(al, ey o) 27"2(2 a?)1/2 <V2rye,}, (20)
=1
d—1
65 = {WB(al, ey Qdot) 27‘2(2 a?)l/2 < V/2ryen}. (21)
=1
Then, as n — oo,
P(&; # 67) = O(nFr(r2)(2en/r2) ¢ V/2), (22)

Proof. The probability that we loose any vertices of the convex hull while resorting
to the paraboloid approximation tends to zero as n — oco. In fact, the paraboloid

ug = (241 u?)/2r, runs below the boundary of the d-ball of radius r, centered at
(0,0,...,7rp). Therefore,

P((Sn\ Ba) U (Ba \ Si)) < Fr(rs)(2rae,)@D/2fr{t 02, (23)
and, by (14),
n P((Sn \ Ba) U(By \ Sn)) < (1/72)(2en/r2) @12,
tends to zero because 43 — 00, as n — oo. a

Later on €, will be chosen such that P(W( 0) € B,) — 0.

Note. In the previous proof, we rely on the following argument. For small (a1, ...,
aq-1), i.e. for a = (ay, ..., ag_1) such that | a] < X'/ry, the slope parameter a;
of W(ay, ...,aa-1) = (y1,...,Y4) can be looked at as the angle between the vectors
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(0,...,0,73) and (...,0,%;,0 ...,0,r;). Consequently, in a neighbourhood of the
origin in IR, for each coordinate y; (1 <7 < d — 1) of the process W, y;/r, grows
proportionally to the corresponding slope parameter a;. We will rely on this “linearity
argument” when defining the vertex process W” below (see Definition 4.1), and
later on, when determining the range of the parameter space that brings relevant
contribution to {W,( a): a € IR*1}.

For all that follows, we restrict attention to the region A N B,,. Now there obvi-
ously are thousands of ways to arrange in order the points of the process {W( a) :
a € IR%'}. Beware that the reduction to the one-dimensional parameter space
brings along the loss of information contained in (d — 2) parameters. When trying
to determine the jump measure, we are faced with the problem that it makes a big
and crucial difference whether one of the thrown away coordinates (or even more
than one) is relatively small or big, especially, whenever the first coordinate is small.
Also, this makes clear that we must content with an upper bound. Fortunately, if we
are careful enough, we can rule out the situation where any of the remaining (d—-2)
parameter values is bigger than the first, and therefore, we will obtain a reasonable
upper bound for the jump measure.

Our construction roughly runs as follows. We will project the points {W( a) €
B, : a € IR*'} to the hyperplane JR** x {0} to eliminate curvature, and then,
scan through the projected region in a specified direction by an object whose sides
all have curvature zero. Each time one of the projected vertex points is hit by this
object, we decide to see the point. This happens precisely once for each projected
point.

The projection of B, onto the hyperplane IR"! x {0} is homeomorphic to a
(d —1)-ball By of radius X’ centered at the origin and preserves distances. This can
be seen from the fact that the major contribution of the distance between two vertex
points stems from the distance computed only from the first (d — 1) coordinates and
by looking at the polar coordinates of the d-sphere of radius r, centered at the origin:

Ty = rysinfy-...-sinfy_4

Ty = resinfy-...-sinfy_5cosfy_q

T; = r2sinfy-...-sinfi_;cos ;i1
ZTg-1 = Tosinbycosly

Tq = Trgco0sby,

10



where 0 < 0; <7 (2 < j<d-1)and -7 < 6; < 7. For sufficiently small
01|, say, < X'/ry, we have sinf; ~ 6; and cosf, =~ 1, the error term being of
order no larger than 87 < (X'/ry)?. Consequently, {(z1,...,24_1) € R* : §; =
0c, 0. < X'[ry, 0 < 0; < 7,¥V2 < j < d—1} is equal to the (d — 1)-sphere of
radius ry6; centered at the origin, up to error terms no larger than (X'/ry)? and
{(z1,...,2a-1) € R*1 10, < X'/ry, 0 < 0; <7,V2<j<d— 1} is approximately
equal to the ball By in JR*™! of radius ry(X'/r;) centered at the origin.

In short, the above “projection argument” tells us that the change of each of the
coordinates under the projection is “negligible” under our point of view. Henceforth,
we can project all points of the process W that lie in B, to IR¥* x {0} such that its
local jump behaviour is preserved. Moreover, the projected vertices are approximately
untformly distributed on B] by the rotational invariance. In particular, there is no
prefered direction for the points to fall. We may choose an arbitrary direction and,

while walking through B} diametrically, count the number of jumps of the process
W in B].

The last order of business is to define in which order we see the projected vertices
in By. Near at hand would be to scan through BT by a hyperplane in JR%~!, which
is not far from the geometrical object we have in mind.

Define the following half-closed convex sets in JR*!

C(0) = {(wa,uz,...,u41) € R*™:10<uy,0<uy <uy, V2< k<d—1}

C*(0) = {(v1,uzy-..,us1) € R¥ iy = vg,up = v, 2<k<d-1,
where (v1,v,...,v4-1) € C(0)}

C(0) = C(0)uC*0)

C(a) = €(0)+ (a,0,...,0) (24)

For a subset A C R’ and x € R’ let dist(z, A) = min{|z — y|,y € A}, and let
C°(a) denote the complement of C(a) in JR?"!. After this rather long passage of
motivation, we finally are in a position to give a suitable version of a local vertex
process.

Definition 4.1 Let Z,,Z,,..., denote a realization of the Poisson point process
€n|B,, and, for each 1 < i, let Z? = 7er_1x{o}(Z-) be the projection of Z; onto
Rt x {0}. Furthermore, let Z; = Z! x V;, Vi. Finally, for each ¢ € IR, let V™(c)
be the point Zj; of Zy, Z3,. .. such that V™(c) C C%(c) and dist(V™(c), C(c)) is min-
imal. If there are several of such points, then we take the one with the smallest first
coordinate. This happens with probability zero for fized c.

Then, for each ¢ € IR, define the “local vertex process” W™(c) = (V™(c), Vi).

11



(The superscript 7 is supposed to indicate that we locally project the vertices that
are close to the path.) It is clear that the process {W"(a) : @ € IR} is Markovian and
right-continuous. Our “path” is sausage-like and has positive (d—1)-dimensional vol-
ume measure. Remark that the values of the original vertex process are not changed.
It is easy to see that we count the right number of jumps in BT when scanning
through BZ by C(a), i.e. when a runs through [—X’ /r2, X'/r2], after having enlarged
the region BT by the neglected region C' (0)° U BT appropriately.

Note. The above definition of the vertex process W7 is understood to make sense
only for a sufficiently small slope parameter. Otherwise, with a probability approach-
ing 1, the convex hull vertices will come from A% \ B,.

5 Jump Measure

This section is concerned with the derivation of an estimate for the local jump mea-
sure of the vertex process W™ (and whence, of W) and with establishing two ex-
pressions in terms of supermartingales that will provide upper bounds for the first
two moments of the number of points in B,. Throughout this section, we will always
employ the paraboloid approximation and assume, if not stated otherwise, that the
time parameter a € IR of the vertex process is small enough that W™ (a) is in B, with
high probability. We shall count all convex hull vertices within a (d — 1)-dimensional
“tubular neighbourhood” that envelopes our path. Then the jump measure mimics a
(d — 1)-dimensional measure. By the rotational invariance of the distribution of the
sample points, for the path we may choose any direction tangential to the surface of
the d-ball of radius r; centered at (0,...,0,7;), in particular, the path that projects
down to an interval of the z;-axis. We only need keep track of the length of the path
to compute the volume of the tube.

Denote the common density of the vectors Z, Z,,... by f(-). For each a > 0 and
b > 0 with a < b, define the o-algebra

Fop =0{W7(c):a < c<b}. (25)
Define the sector

So = {(u1,u2,...,uq4) € R%:ug > (uf -l—u% +...+ ufl_l)/2r2},

and let Co = Co(So) be the set of continuous functions g : S — IR with compact
support contained in So. Furthermore, for each a; > 0 and (1, 23, ..., 24-1,y) € So,
let the linear operator L,, : Co — Cy be defined by

Xo—x

Lagl(@r,z2,-,y) = n@X)EDVI=T [y (26)

12



'f(xl+u7$2a"'7'7"d—177‘2_y_ Vd_lalu)
: [9(1'1 + u, zq,. .. y Td—1,Y + V d— ]-alu)
—g(z1, 20, .., 24-1,y)]du,

where Xo is the “bigger” intersection of the approx1mat1ng paraboloid v = (u?+u? +
.+ uj_,)/2r; with the line of slope (as,0,...,0) through (1, z,...,y).

Proposition 5.1 For each g € Cy and by > 0, the process

¥o(te) = 9" () = [ (LW (de by > br)

is a supermartingale with respect to the filiration {Fy, 4, : by > b;}.

Proof. It suffices to show that for each a; > 0 and w = (21,22, ...,24_1,y) € By,

3 1 K T

lim = E{g(W(as + b)) - g(w)|W™(@) = w} < [y )(w). )
Since relation (27) is crucial for our conclusions about the jump behaviour of the
vertex process, the arguments will be developed in detail. For each (z1,z2,...,y) €
B,,, define

Av = {(u1,...,ua) € R : auy + (y — az1) < wg < (a+ h)us + (y — azy),
lujl < X', 2<5<d—1}.

The probability of finding more than one point of the Poisson point process &, in Ay
is o(h). Hence, for g € Cy,

E{g(W™(a1 + k) - g(w)lW"(a1) = w}
= n [ J@)}g) - gw)}dv -+ ofk)

< nhvd f /oo Uy
¢ X/]d —2
d-1
“f(z1+ur, 22 Fugy ..o Tay F Uy, T — Y — Zaiui)
=1
{g(W" (a1 + h)) — g(w)}durdus - ... - dug—; + o(h)
<

nhvd — 1/ /oo Uy
[_XI’XI]d—2 0
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flEr w22y Ta1, T — y — Vd — Laguy)
{9(W™(a1 + b)) — g(w)}durduy - ... - dug_y + o(h)

nh(2X")4 /g =1 / T
0

“flz1+u, 2o, a1, 72 — y — Vd — lagu)
{g(W™(a1 + R)) — g(w)}du + o(k)

= nh(2X)*2VI=1 / Cu
0

flzi+u,ze,...,2q-1,70 —y —Vd — laju)
{9(z1 + v, 22,.. ., 24-0,y + Vd — Lagu) — g(w)}du + o(h)

Xo-x
= nh(2X')*? d—l/ T
0

: f(wl +u,$2,...,$d_1,7'2 Yy —-v d_ ]-alu)
Ag(z1 +u,20,. ., 241,y + Vd — Lagu) — g(w)}du + ofh).

The raisoning in the above chain of equalities and inequalities runs as follows. In
deriving the above conditional expectation, we need know, first, the path that we
follow, and second, the value of the density f at the new point W7 (a1+h). Remember
that when defining the process W™, we are thinking of following a path along the
r1-axis and of seeing the convex hull vertices in the neighbourhood BT of the path
in a certain unambiguously defined order, which is determined by the shape of C (+),
l.e. at time a1, we see W"(a;). By the rotational invariance, we can choose any path,
in particular, the path along the first coordinate axis.

Instead of moving to the new point (which would be a deviation of our path)
we project W™(ay + k) = (W1, Va,..., Vio1, Vi) to (Wi, z9,...,2q4- 1,%) where V; is
such that f(Vl,Vz, oy Vig,me — Vd) = f(Vl,wz, 3 Ld—1,T2 — Vd) th — y is the
vertical distance at the point W7 (a;, + k) between the hyperplanes H(,, 11p,..0) and
H(a, 0,..0) through (z1,2,...,y). Although we do not know the vector (as, . . ad_l),
because we reduced the parameter space to the one-dimensional parameter space of
the process W7, we have a; < a; (see Definition 4.1), and therefore, we can find
an estimate for V; in the following way. Assume that V; = y + Zz-—l a;u;. Observe
that we are looking for an upper bound for the density f, and thus, for an upper
bound for f_ll a;u; for each a = (ay,a,,.. ad 1) such that ZZ -~ a2 < (X'[re)?
and for each u= (ul,u2, ,Ug—1) such that yily? < (X")%. Now by Definition
4.1, S8 au; < ay Ez_l Us, and

: < ! B
sup Zu,_\/d 151?5321}51%’

(ul ..... ud_l )

S ul<xi2
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Since uj grows proportionally to a;, max; u; = u;. Consequently, we have Y971 a;u; <
vd — 1 ayu;. Finally, to obtain the first inequality, we also notice that, when turning
the supporting hyperplane H(,, ¢, o) infinitesimally by changing the slope from a; to
a1 + h and jumping by u;, we increase the d-th coordinate by less than hu;v/d — 1;
to get the second, it as well remains to be seen that in order that the norm of the
vector (z3 + u1,Z2,...,T4-1,T2 — y — Y31 aqu;) be small, Y1 a;u; must be positive
and large, which 1mphes that Y4 uz(2:1¢2 +u;) is nonnegatlve Moreover, for the last
equality, we observe that integration of the first coordinate above Xj is negligible by
Lemma 4.1. Since g has compact support, the remainder term is o(h), uniformly in
ay, for |a;| < X'/ry and w € So. Furthermore, we used the uniform continuity of f
and g on Sy and the fact that the line of slope a; through w cuts the paraboloid in
Xo . Now repeated conditioning arguments prove our Proposition.

O

We now define the random counting measure n(a,b; - ) by

n(a,b;B)= " > 1(W"(c) - W"(c—)), (28)

WT(c)#WT(cm)
aLeLh

for b > a > 0 and B € B¢ (the family of Borel sets in IR?). Clearly, for 0 < a < b <
X'/r,, the identity

n(a,b; B) = > 18(W(c,0,...,0) — W(c—,0,...,0)), (29)

W(c,0,...,0)#W(c—,0,...,0)
a<cLb

holds since the reformulation of the vertex process in Definition 4.1 does not affect
the values of the vertex process W. Moreover, let 7, denote the number of jumps of
W™ in the time interval [0, q] :

n(0, a; R%). (30)

Denote the jump measure of the process W™ in w € R? at time a > 0 by
M (W™ (a), w; B) (31)
for B € B¢, which can be interpreted as the probability that the process W™ jumps
from w to w+ B at time a. Unfortunately, as explained before, we do not know any-
thing about M,(W™(a),-;-). However, the infinitesimal generator of W™ is dominated

by the infinitesimal generator L, of an unknown jump process W, with known jump
measure M(-; - ). The process W, is uniquely determined by its jump measure given

15



in (32) below. The operator L, can be written with respect to the jump measure
M(-;+) in the following way

Legl(w) = [ low +2) = gw)] M(w;dz). (32)

To state the Proposition and Lemma below, we need introduce

n(a,bB)= Y, 1p(Wilc) — Wi(c—)), (33)

Wa(e)#Wa(c—)
a<Lc<b

for b > a > 0 and B € B?, where W, is the process with jump measure defined in
(32), correspondingly,

Mea = 74(0, a5 R?), (34)
and the o-algebra
Frap=0{Wi(c) :a < c< b} (35)

The next result, due to Stroock ([11], Theorem 1.3), is important to our analysis.

Proposition 5.2 (Stroock) For each bounded Borel measurable function ¢ : IR® —
IR that vanishes in a neighbourhood of the origin, for each a > 0 and 6 € IR?, the
process

exp{<z0 W (b) — (a)>+/ z)n«(a, b; dz)

_/b de [ {e< 10,2 > +g(z) _ l}M(W*(c);dz)} ’ b>a

is @ martingale with respect to the filtration {F*,5: b > a}, where W, is the process
with jump measure defined in (82), < z,y > denotes the inner product on R, and

where 1 = /—1.

We do not reproduce Stroock’s proof here. The uniform boundedness of the ran-
dom measure M (W, (-;)) is used, which follows by virtue of Proposition 5.1, by (26)
and (32). The above martingale is helpful at tackling the asymptotic moments of
certain convex hull functionals. As a consequence of Proposition 5.2, we find

16



Lemma 5.3 Forb>0

{nes — /ObM(W*(c); R%dc : b> 0} (36)
and

s~ [ et 1) MOV(0); B0 de < 5> 0) (37)

are Fg,— martingales.

Proof. Write J(A) for the martingale in Proposition 5.2 when § = 0, a = 0 and
g = A. Then once differencing J(A) with respect to A and setting A = 0 lead to the
first assertion (36), by (30).

The second claim is a consequence of the properties of the Poisson point process
(and can also be found in [6], Lemma 2.6). It is convenient to define the quantity
Nwab = Mub — Mg, f0r @ < b. We have

E {7736+h — 1% Ifg,b} = E {nfb,b+h + 205w bb4 1 lf::o,b}
= E{(1+2n.) (R M(W.(b); R) + Ra) | 75}, (38)

where we use the relation E[n.sp4n|Fg,] ~ b M(W.(b); IR?) (see (36)), and we have
|Rn| = o(h), for b > 0, as k | 0, by relying on the properties of the underlying Poisson
point process. In fact, for 0 < h < 1,

h M(Wa(b); BY) exp{~h M(W.(0); B} < E{n2,,|Wa(8)}
< B M(W.(6); ) + b [M(W.(8); R

An easy exercise now finishes the proof. O

Corollary 5.4 Forb> 0

n — /ObM(W*(c); RYde : b>0) (39)
and

m - /0"(2170+1) M(W.(c); RY)de : b> 0} (40)

are Fop — supermartingales.

Proof. Since the integrals in (39) and (40), respectively, essentially depend on the
jump measure, in light of Lemma 5.1 and (32), we can conclude that, for each @ > 0,
w € B, and B € B¢,

MW(WW(G’), w; B) S M(W*(a)a w; B)
Whence (39) and (40) follow. 17



Before bringing this section to an end, we wish to transform the local jump
measure M(W,(a) : -) such that it is independent of the time parameter a, i.e. that
it is the jump measure of a stationary local process. Assume W, (a) = (X1(a), X2(a),
..., X4(a)). Let us transform the process {W,(a)} into the process {T.(a) = (R:(a),
Ry(a), ..., Ra(a))} by the following substitution

Rl(a) = X]_(a) — ars d—1 (41)
Ri(a) = Xi(a) 2<k<d-1)
Ri(a) = Xy(a)—avd—1X1(a)+ a’ry(d —1)/2.
Let K4(y) be the fraction of the surface area of a unit d-sphere cut off by a hyperplane
at distance y > 0 and

Gae) = [ Kalo/y)ldFa(w). (42)

Following Dwyer ([3], Section 1 and 3) and setting d = 2, we obtain under the
conditions in (10), for sufficiently large z,

Ga(z) ~ (2m) 712 /v(2) Fr(z), (43)

G (z) = (e ~ —(2m) 2 Fr(2) (21/(2)). (44)

Then the local infinitesimal generator becomes, for each continuously differentiable
real-valued function g with compact support, defined on Sy,

;o1
}111_1’1(1) EE{Q(T*(G + h)) - g(-Tl,CEz, .- wwd) | T*(a) = ('7717'7"2’ cee )‘T’d)} (45)
V2r2Ta—a1

< —n(2X)4DVT T / "
0
- Gy(I(z1 + uy z2y .. .72 — 24)|)

(e +u,z0,. .., 24) — g(@1, 225 - - ., Ta)]du

0
—T'2Vd—].a— (.’Bl,...,:l?d)
T
0
—$1Vd—1a—g($1,...,$d).
T4

18



The process T, jumps “horizontally”. Its deterministic part runs through curves
parallel to the paraboloid v = Y"%=] u?/2r,. The transformation may be imagined as
a rotation and a shift of the coordinate system, or perhaps simplier, just as a rotation

of the convex hull around the point (0,0,...,r;) while the coordinate system is fixed.

Lemma 5.5 As n — oo,
Elm] < b-E[M(T.(0); RY)], (46)

b a

Eln}] < Ebnl+2 [ da [ BIM*(T.0) ) M(Tu(a ~ o) BY) | de,  (47)
0

where T, is the process transformed above from W, described in (32) and M*( - ; )

is the “backward jump measure” of T,.

Proof. In view of Lemma 5.3 and (45) with g = 1 it remains to verify the second
claim (47). Consider the time reversed process {(—Ri(a—c), Ry(a—c), . .., Ri(a—c)) :
¢ > 0}. The process {(—Ri(c), Ra(c),...,Ri(c)) : ¢ < 0} is recovered from the
process {T.(c) = (Ri(c), R2(c),. .., Ra(c)) : ¢ > 0} by interchanging the sign of the
first coordinate and by moving backwards in time. The new process has the same
distribution as the original process T,. Let M*(;-) denote the jump measure of the
time reversed process. Now (47) follows from the stationarity of 7, and Corollary
5.4. O

As yet, we have not made use of the special form of the density G). Note that
another choice of the function g in Proposition 5.2 would lead to results concerning
other convex hull functionals like obtained in Hueter [7] for the perimeter and the
area of the planar convex hull.

6 Proofs of Theorem 1.1 and 1.2

For the. proof of the central limit theorem for N,, two lemmata will be needed.
Assume that we already know how to “walk over the whole surface” of the convex
hull, i.e. how to visit each element of a “partition of the surface” exactly once. The
path need not be connected, since in proving the CLT, we can deal with a sequence
of random variables, indexed by a countable, possibly unordered set. It is sufficient
to know the “degree of dependence” of each of the elements from one fixed element,
which is measured by the “mixing coefficient” as will become clear shortly. Since
the number of jumps within each element of the partition are identical random
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variables by the rotational invariance, if the elements have equal size, we can build
a stationary sequence of random variables. Again by the spherical symmetry of the
distribution there must exist a (local) transformation of W™ into another local jump
process which is stationary. Call this process T". We shall show that the process
{T™(a) : a € IR} is strongly mizing and the dependence decreases exponentially fast
to zero with increasing “distance”, for sufficiently large n.

In showing that the whole stationary sequence has the strong mixing property,
the basic idea is to attach to each element a value that expresses the degree of
dependence from a certain reference point. First we define the mixing coefficient for
each element along the path that we follow when increasing only the first coordinate
of the slope parameter of the supporting hyperplane, i.e. for all elements visited
by {T"(a) : @ € IR}. Then, in terms of mixing coefficients, each of the remaining
elements is equivalent to one element already furnished with a mixing coefficient. It
is easily seen that the summation of all mixing coefficients, raised to a certain power,
converges (This is one of the conditions that need be satisfied for the CLT).

Lemma 6.1 Let Fo = o{T"(c) : ¢ < 0}, Foy = a{T™(c) : ¢ > a}, and let A € F,
and B € F,1. Then, for some constants 0 < ¢, ¢" < oo,

[P(AN B) — P(A)P(B)| < 7a(a) (48)

where
m(a) < 4dexp{nGy(ro + €,/2 — a*c' ry/16) (49)

- (2X")%26%r2c"} — 0, asn — oo.

Proof. Let T7(a) = (Si(a),S2(a),...,S4(a)), for each a > 0. Assume that at
time a > 0 the boundary of the convex hull is approximated by the paraboloid
zg = ((z1—rea7)? + (4] 2))/2r; for some constant 1 < v < v/d — 1. We will show
that the left-hand side of (48) is bounded above by four times the probability that a
certain region between the approximating paraboloid at the origin and a hyperplane
contains no points of the Poisson point process &,.

In fact, the point 77 (a) arises when the convex hull is supported by the hyperplane
{(u1,u2,...,uq) € R? : ug = auy + (S4(a) — aSi(a))} and there is no point of the
Poisson point process £, in the region K, between the paraboloid and the hyperplane,
namely, in the region

d—1
K, = {(u1,ug,...,uq) € R*: ((ug — roay)? + O ud))/2ry < uy
1=2

< auy + (Sa(a) — aSi(a)), |uj| < X' foreach 2<i<d-1}.
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Consequently, if for any @ > 0 T7(0) and 7™ (a) are such that the two regions Ko
and K, are disjoint, the events A € F, and B € F,, are based on disjoint sets of
the underlying Poisson point process, and thus, are independent of each other. More
precisely, if 54(0) and Sy(a) are smaller than ay?r;/8 then K and K, are disjoint.
Let E denote the event {S3(0) < a®y%ry/8, Sq4(a) < a®*y?ry/8}. Then, by the Markov
property of the process {T"(a) : a € IR},

P(AN B|E) = P(A]S4(0) < a®4%ry/8) P(B|Sa(a) < a®yr,/8).

Now, the bigger the distance of the point T™(a) to the z;-axis the smaller the depen-
dence from the point 7"(0). Thus, we do not decrease the dependence when choosing
T"(a) on the z;-axis from all possible values of 77 (a) in accordance to Definition 4.1.
Suppose so. Then P(S4(a) > a4%ry/8) = P(S4(0) > a?y%r;/8) by the stationarity

of T™. Therefore, by applying some rather crude estimates, we get

|P(AN B) — P(A)P(B)| < P(E°)+2P(54(0) > a’vry/8)
< 4P(S54(0) > a®y*ry/8), (50)

where E° denotes the complementary event to E. However, {S;(0) > a?y2r, /8} if
and only if the region Kj contains no points of the Poisson point process ¢,. We are
going to give a lower bound for the probability P(Ky), by using the intermediate
value theorem and the fact that the tail of the distribution decreases exponentially
fast.

Let Ay denote the Lebesgue measure in IR?. Then, for some 0 < § < 1/2,

= ——G’2(r0 -+ Sn/2 - (1 - 6)&2’)’27’2/8) Ad(Ko) (51)
> —Gy(ro+en/2 — a®y?r2/16) Mg (Ky)

—Gy(ro + €a/2 — a®y’r2/16) (2X")*2aB3r 2"

P(Ko)

4

for a constant 0 < ¢ < co. Hence,

P(S4(0) > a*y%ry/8) exp{—nP(Kp)}

< exp{nGy(ro + €a/2 — a®4%r3/16) (2X")*~2a®y3r2c"}.
Since by (44), for large z, Gjy(z) ~ —(2r)Y/2Fg(z)/(z\/v(z)) and v(u) — 0, as

u — oo, the right-hand side of the last inequality decreases to zero exponentially
fast in a iff a > 2(2e,/r3)Y/2/7. O

Recall that n, denotes the number of jumps of the process {W"(c) : 0 < ¢ < a},
and thus, of {T7(c): 0 < ¢ < a} (see (30)).
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Lemma 6.2 For each a > 0 the moment generating function
M(X) = Eexp{An,}

is finite for all values 0 < X < oo.

Proof. The proof makes an easy exercise. We give a sketch here. With probability
one there exists some 0 < b, < oo such that P({T™(a) : @ > b,} = 0) — 1 as
n — oo because F is absolutely continuous. 7, can not be bigger than c'a/b, times

the number of points of the Poisson point process &, in A%, where ¢’ is a positive

finite constant. This number of points has a Poisson distribution with parameter
nP(A})c'a/b,. Furthermore, P(A}) < Fg(r;). Hence, nP(A%) < 71, where v, is
defined in (14) (71 is a function of n of order o(n)). Consequently, we have

Eexp{Ma} < exp{(e*~1)nac/bn}

for every 0 < A < oo. O

Proposition 6.3 Let n; be the number of jumps of the process {T™(c) : 0 < ¢ < b}.
Assume Zy,Zs,... is a sequence of i.i.d. random vectors, each with distribution F,
where F' is an ezponentially-tailed, spherically symmetric distribution such that the
smoothness conditions in (10) hold.

(i) Then as n — oo, for sufficiently small b > 0,

E(m) ~ bé, (52)
and

V(L’f‘('l]b) ~ bé]_ + b2 62,, (53)

where & < 2973 d = 1(X')/(V2my[v(ro)ro) and & < &y(d — 1) (2X")*

(27 v(ro)rd)~" and c, is some positive finite constant.

(ii) my converges, appropriately normalized, to a standard normally distributed ran-
dom variable, i.e.

(s — E1b) /(&1 + &%) 25 N(0,1), (54)

where ¢, and &; are as in (i) above and N'(0,1) denotes the standard normal
distribution. '
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Proof. ad(i) Remember Gy(z) ~ —(27)"Y?Fg(z)/(z\/v(z)). Let Tu(0) = (21,

.., Zq). From (45) we derive
ML) BY) = —n(2X)e-Dya=T [
G2(||($1 +u,Z3y...,T2 — xd)") u
< —n2%3(X") 4 d —1GY(ro)
~ n243(X"4/d — 1 F(ro)/ (V27 roy/v(ro))

where we take advantage of the fact that G, (u) ~ G”2(ro) for u € (r1,72), as n — oo,
which is a consequence of the slow variation of the functions L and v, and thus,
of L(-)y/v(L(-)), and the fact that integration above X', and therefore, outside the
region A% is negligible. Recall that nFg(ro) = 1. Now apply Lemma 5.5.

27‘21‘d 1:1

Moreover, also by Lemma 5.5 and the intermediate value theorem, for any suffi-
ciently small b > 0,

Elny] < Elny] + 8 E[M*(T2(0); B) M(T.(a); RY)]

for some a’ € (0, b). It is clear that both measures M*(T.(0); IR%) and M(T.(a'); R?)]
are of order O((X")?/(ro1/v(ro))) by the same arguments again. Since X' # o(1)

and the order O(1/(roy/¥(r0))) is the order of a lower bound for M(T.(0); R?) (for

otherwise it is not hard to see that E[N,] = o(e(n)~(*1)/2) must hold, which is a
contradiction to the known results), the upper bound for the variance in (i) follows.

ad(ii) Partition the surface of the d-sphere of radius, say, r¢ into “equal” ele-
ments, i.e. such that each element S; is a congruent copy of a specific element Sy
of the partition (Each element is a homeomorphic image of a nonempty bounded
subset in IR%"!). Let P; be the smallest “cone”, with its top vertex at the center of
the sphere that contains S;, and let M; be the number of points of the process T™
in P;. Then the M; are identically distributed random variables by the rotational
invariance, and the distribution of M; only depends on the size of So. Suppose that
So has surface area equal to the volume area of [0,1] x [-X’, X']*2.

Furthermore, assume that the M; are indexed such that our path crosses them
in strictly increasing order, i.e. first My, then M;, M5 and so forth. The sequence
My, My, . .. satisfies the mixing condition of Lemma 6.1 for A € o(Miy, M,,. .., M;)
and B € o(Mj4; : | > m) with mixing coefficient 7,(h(m)) for some positive real-
valued function k. Note that EMF is finite for each & > 1 by Lemma 6.2. Thus, the
conditions for a central limit theorem for the sequence M, My, ... are satisfied (see
e.g. Ibragimov and Linnik [8], Theorem 18.5.3). As g = Y%, M; and 5 — 7 only
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depends on the difference k — [ again by the rotational invariance, (i) now proves the
limit in (54). O

Proof of Theorem 1.1. The number N, of convex hull vertices corresponds to the
number of points in the set {W,( a): | a| < rocd} where ¢  is such that the (d — 1)-
ball of radius rocg has volume area equal to r3~'x4. We will show that with high

probability the number of points in the set {T7(a) : a € [—ndr0(2X’\/V(ro))—(d“z)/2,
kqro (2X'\/v(ro))~(@2)/2} is equal to the number of points in the set {W.(a) :
| all < roca}.

For the next part of the proof some more notation is called for. Let B, be the
(d — 1)-ball of radius roc, centered at the origin. Define

M = Karo(2X'\/v(ro)) "2

and the interval I, = [-m,/2, m./2]. Remember 5, to be the sample point process,
and &, the Poisson point process on IR* with intensity measure n [ dF. In Lemma
3.1 also the point processes 7, and £, were considered. Let W), W,,, and W be the
vertex processes based on the processes Mg s fin and &,, respectlvely Next define

the following counters

N, = #{W,(a): ac B,}
N, = #{W.(a): ae B.}

N, = #{W,(a): a€ B}

L, = #{W(a): aeB,}

L7 = #{T™(a):a€ L}.
Since the processes W™ and W have the same local jump measure as described,
for instance, by the relation (29), LT has the same distribution as L, whenever the
range of thelr parameter space corresponds to each other. This argument will be
given shortly. By Lemma 3.1, lim,_,., P(N, # L ») = 0. Furthermore, N! and N,
have the same distribution and by (11) limp—e P(N}, # Ny) = 0. Therefore,

lim P(LT # N,) = 0.

n=-+00

Hence, it suffices to show that
(L7 = an)/Bn =5 N(0,1),
for suitably chosen norming constants o, and 8, because then

(Nn - an)/ﬁn i’ N(O’ 1)
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follows.

The verification of the limiting law for L7, i.e. of a central limit theorem for
the stationary mixing sequence Mi, My,..., uses a “blocking system”. Since this
technique is quite standard and a careful writing down of every argument would bring
along even more additional notation than was necessary in the preceding paragraph
of the proof, this step is left to the reader. Roughly, the idea is to cover the parameter
space B, by strips along a regular square grid such that the number of points of the
process W falling on those strips are asymptotically negligible compared to the total
number of points of the process {W( a) : a € B,}. However, we wish to assure that
the paraboloid approximation does no harm to our computations. By Lemma 4.1, it
is easily verified that the error is of order no larger than

O(nFr(r2)),
which is equal to O(1/7;) with 42 — oo by (14).

In view of Proposition 6.3, in order to complete the proof we must count the
number of “rectangles” in B, implied by the partition { S, S,,.. .S’kn} of the surface
of the convex hull with appropriate k,. On each rectangle such that the length of the
side parallel to the z;-axis is equal to b, the expectation of the number of points of
W is equal to ¢;b and the variance is equal to é b+ &b%, where & and &, are given
in Proposition 6.3. The b that we need choose corresponds to X’.

The “width” w, of the path the walker follows is determined such that the ex-
pected number of points of W on the path intersected with a d-cube of side length
w, is bounded away from zero, as n — oco. That w, = (2X")rov(r)'/? can be seen
in the following way.

There are two cases to distinguish between. Either it must be the case that the
expected jump measure E[M(T,(0); IR?)] is independent of the dimension, namely, if
X' = O(1), then we may resort to the relation 2rro/E[N,] = 21ro/(2y/Tv(ro)~*/?)

= roy/mv(ro), which is valid in two dimensions (see [2]), in order to determine the

correct order for the side length w,, i.e. w, = coroy/v(ro) for some positive finite
constant co, or it must be the case that the order of E[M(T.,(0); IR?)] depends on the

dimension d. X’ = O(1) corresponds to the case roy/v(ro) # 00, because then on an
interval of sufficient large, but constant length, with high probability, the number of
convex hull vertices is bounded away from zero, as n — oo, whereas in the second
case, Toy/v(rg) — oo, which means that, for sure, X' — oo in order that, with
high probability, there is at least one point of the Poisson point process ¢, in the
region where the paraboloid approximation is applied. Consequently, in the second
case, since with each dimension the expected jump measure increases by a factor X,

the side length w, = 2X'roy/v(ro) is of the right order by again using the relation
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2nro/ E[N,). For either case, we have found w, = 2X'roy/v(ro) (Set o = 2X' in the
first case).

It remains to find the length of the path. As the number of convex hull vertices in
the elements P;, defined in the proof of Proposition 6.3, only depends on the size of
S;, but not on its shape, we patch together the homeomorphic preimages of all the S;
such that we wind up with a large rectangle in JR~! that has one side length equal
to rokq and the (d — 2) remaining sides, each of length equal to ro. Consequently, the
path has length equal to m,. Hence,

L7 = nnm.. (55)

Now either X’ = O(1) is large enough because on each interval of length ,, such that
I, — oo there are infinitely many, in fact, O(l,/(roy/v(ro))) many expected convex

hull vertices if roy/v(ro) /4 00 or X' = O(rgy/v(ro)) suffices because on each interval

of length of order O(l,roy/v(ro)) such that I, — oo there are O(1,), thus, infinitely
many expected convex hull vertices, whenever the width of the path w,, is of the right
order. Note that X’ corresponds to the value of b in Proposition 6.3 that we need
choose. For the variance of N,, an additional factor X’ must be taken into account
because in (53) the quadratic term is dominating the linear term whenever X’ — oo.
This concludes our proof. o

Proof of Theorem 1.2. The verification runs along the same line used in the
proof of Theorem 1.1 with the pleasant difference that an explicit upper bound for
the jump measure M(T.(-); IR?) can be computed. Let T.(0) = (z1,z3,...,zq). From
(45) together with Gy(z) ~ (27)~Y/2exp(—|z|?/2), for sufficiently large z, it is easily
deduced that

M((r,. 2 ) < nVd=T XY exp(—1(r — 0)/2)
T ny i uexp(- e+ w2
~ /AT (X exp(=|(ra - o) /2)/V/7.

Rather tedious calculations involving the densities of the vertex process (which can
be found in [7]) yield

BIM(T.(0); B)] < Vd = 1(2X')*(m)~/%
Note that ro = L(n) = v(ry)~'/? = v/2Inn. Consequently,
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E[N,] < karof 2X’\/ )~@=2 E[M(T.(0); R%)]
~ lnd(2lnn)(d V2 /x.
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