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ABSTRACT

Consider the problem of estimating a p-variate normal mean using squared error loss.
We demonstrate that contrary to what one might expect,

a sup E{ ‘IiI(XIi } > 1 for p < 2, where the supremum is over all priors G symmetric

about 0, E(-) denotes marginal expectation corresponding to G and d(X) denotes
Bayes rule with respect to G.

b The above supremum is equal to 1 for all p > 3.
Thus Bayes estimates corresponding to symmetric priors can be expanders only in one

and two dimensions.
For p = 1,2, the numerical values of the supremum are obtained. We also prove that

sup E{ fl(Xli } = 1 for every p > 1 if one restricts to spherically symmetric priors. In

the process, some closed form formulas of independent interest are also obtained.

Key words: Multivariate normal, Bayes estimate, prior, symmetric, marginal, spherically
symmetric, supremum.



1. Introduction. Consider the problem of estimating the mean § of a p-variate N(4,I)
distribution. If § has a p-variate normal prior with mean (, then the Bayes estimate d(z) of
g for squared error loss is a shrinkage estimate in the sense ||d(z)|| < ||z|] for all . Similar
facts are true for some other common estimation problems, for example for estimating a
Binomial success probability using a conjugate Beta prior symmetric about 0.5. It is fair
to say that perhaps because of such natural examples, it is quite common to associate
Bayes estimates with shrinkage. This article shows that for the problem of estimating
a p-variate normal mean using a symmetric prior, Bayes estimates need not completely

shrink the unbiased estimate X in low dimensions. It is proved that Bayes estimates can

4(X) to be
1591
larger than 1 for appropriate symmetric priors in this problem, if p < 2. For p = 1 and

2, we establish the supremum of E ‘IlI(XI} over symmetric priors to be finite but larger

be expanders in the sense that it is possible for the marginal expectation E

than 1. We then prove that for each p > 3, the above supremum is exactly equal to 1.
In other words, symmetric prior Bayes estimates can be expanders, but only in less than
three dimensions. For each of p = 1,2, we also evaluate the value of the finite supremum,

subject to the accuracy of a numerical computation.

Spherically symmetric estimates are quite common in the normal problem; there is
a particularly huge literature on properties of spherically symmetric estimates of normal
means. See Strawderman (1974), Brandwein and Strawderman (1990), Brandwein (1979),
Bock (1985), Cellier et al (1989), among others. Spherically symmetric Bayes estimates,
however, can only arise from spherically symmetric priors for the mean vector §. It there-
fore seems quite natural to ask if E “ﬁ%ﬂ can exceed 1 for spherically symmetric priors
as well. Since the answer is in the affirmative for symmetric priors in two dimensions
as we describe above, it is at least somewhat surprising that we are able to prove that
E“]i—l(é%u < 1 for any spherically symmetric prior in dimension p = 2. The supremum,
however, equals exactly 1. In view of the preceding results for symmetric priors, the case
of 3 or more dimensions need not be considered separately for spherically symmetric pri-

ors. For the case p = 1, we also give a verifiable necessary and sufficient condition on a
d(X
129

symmetric prior G for E to exceed 1.

In our view, the combination of the facts: (i) the supremum over symmetric priors is

larger than 1 in low dimensions, (ii) there is a clear dimensionality effect and the supremum
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is 1 precisely from three dimensions, and (iii) with spherically symmetric priors with or
without unimodality, the situation reverses to complete shrinkage, is intriguing. These
results can be regarded as a new kind of Stein effect. We believe these results are true in
similar forms in some other problems. It is not our intention to stimulate much further
work on this issue. But we find the combination of the phenomena we establish to be quite

surprising. We also hope these results aid in a better understanding of Bayesian inference.

2. A Basic Lemma. The result in this section is simple and yet fundamental for the
main results on symmetric priors to follow. It is also completely general in the sense that

there is no role of normality in the result.

Lemma 2.1. Let X ~ p(z|0) and let § have the prior . Let d,(X) denote the posterior

mean of § corresponding to the prior y. Then the marginal expectation E { d“ ()I(I) l} isa

convex functional of u.

Proof: Clearly, E { d“()fl)l }

_ / IS p(z18)dr@l 1)

llzll -
from which the required convexity follows on using the two facts that integral is a linear

operator and || - || is convex, i.e., |[Az + (1 — MNyl|| < Allz]] + (1 = X)||yl|.

Corollary 2.2. Consider the problem of estimating a p-variate normal mean using squared
error loss. Let d(X) = d,(X) denote the Bayes rule for a symmetric prior g. Then the
supremum of E { ‘|1|X|| } over all symmetric priors equals the supremum of E { ¢|1|XII }

over all two point symmetric priors.

3. Symmetric Priors. In this section, we will prove the results stated in Section 1 for
symmetric priors. For this, we will first derive an explicit formula for E {uf—l(}f(%u} when
d(X) is a Bayes rule with respect to a two point symmetric prior supported on +y. We will
establish the supremum of this quantity over g to be 1 for p > 3 and a finite number larger
than 1 for p = 1,2. An approximate numerical value of the supremum will be provided
for the cases p = 1,2. The derivation for p > 2 is formally different from the univariate
case. We start with the case p > 2. It will henceforth be assumed that we are considering
estimation of p-variate normal means using squared error loss. It will also be assumed

that d(X) denotes Bayes rule and F,F, respectively denote the class of all symmetric -
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and two point symmetric priors. It will also be understood that E(-) stands for marginal

expectation.

Theorem 3.1. Let G, denote the two point symmetric prior supported at +y. Then, for

p=2
MEOIY _ _TG) o we o (p o pt1 8 [l
{51} = et 45m (51255 150). o
~ 2

where 3 F} denotes the generalized hypergeometric series pFg with p=¢=2.

Proof: The proof consists of the following steps.

Step 1. It follows from the definition of d(z) that
le=2(==#)"(z=8) _ g=3(+n)'(+p))

(@)l = llgll - e~ 3w (z=n) 4 o—3(z+p)'(z+p)
Therefore,
Hd(X)II} llulle™ % / a
E{ = et — ¢H' ey 3.2
i =2 o) T | 42
Step 2. Transforming to spherical coordinates r,u,us,...,up_1 where 0 < r < co denotes

l|lz|]| and —F < u < ¥ denotes the angle between g and z, (see Anderson (1984), page
279-280) (3.2) gives

[ 2 . . -2
= Kl|g||e"L2E/ / e~ T P2 |erllmllsine _ e"”“”‘"""lc’és u dudr

0 —x/2
Z_zF F]
where K = 22—(2); note that K = V(p) where
7I'I‘(p - 1) 1 w/2 ’
f f rP—lcosP— 2ududr 2. (27r)p/2
0 —x/2

V(p) is the volume of the unit sphere. See page 246 in Billingsley (1986))

o0 1l'/2

= 2K ||lle= 2 / / e~ 7 P2 rllullsin _ —rllullsinu| B2, g .

1

= 2K||g||e‘p_2ﬁ /I rilulle _ e—rllulltl(l - t2) rP—2 ‘Tdtdr

!

= 2K ||ulle~ 7" (e'“"”t - e—rll"”t) (1-)5 1 P=2¢=F didr

o\.g 0\8 =
o\.._ ) o



oo 1
, o0 2W+1pH2k—1
— 4K ||yl / Z”L‘”(Zk;_’ = % ( / (] _ g2)55 )dr (3.3)
0 k=0 ‘

0
where the iterated integration and an interchange of summation and integration are justi-
fied by Fubini and the Monotone convergence theorem respectively. Now on using the fact

that

1 —
J 2 T(k+23)

(see Gradshteyn and Ryzhik (1980), page 294, item 3.251) and another interchange of

integration and summation, (3.3) reduces to

o0
OO _ gy §5 L K2 (i 2
foR s i N z : » d
U} = o™ Y e e+ o35 A

(3.4)
(where B =2KT (p___; 1))
Making the change of variable % = z in (3.4), one gets
d(X - [lglP*HIT(k + 1)25+5- lI"(k +%
p (MO _ g, “Z ' D )
|1 X1] (2k + 1)IT(k + 232)
Step 3. The reduction now is to use Legendre’s duplication formula
223:—1
I'(2z) = FzF(z+ ) - (3.6
(22) = —7= (=) (3.6)
(see Dettman (1965), page 199) with =z = k + 1. Note that (3.6) gives
I'(k+1

(2k+1)! — 2%HT(k +3)
Use of (3.7) in (3.5) results in

IId(X)II} R T(k+2)
Ex xS = g ; 3.8
{ AT e m e pre gy @9

(3.8) immediately gives

MO _ By, e (* TG+ 2)
(U} = el Z(f) G Ey 69
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Step 4. On expa,nding explicitly the infinite series in (3.9) as To+ Ty + T2 +. . . and writing
it as Tp(1 + L+ —2 +...), and on now using the definition of the constant 3, (3.9) results

in

(45) -5 (W) gz +1)

dCONN _ (lelfPe 2
E{ ||(zc|| }= s |t (%;-';f—lz+(%)(%)<%)<ﬂ?+1)+
_ T 2 _#u p+1 3 ||l
- gl am (J 2 1 1T (410

(see Gradshteyn and Ryzhik (1980), page 1045 for the definition of 3 F%). This finishes the
proof of Theorem 3.1.

Corollary 3.2. supE {”ﬁ%ﬁu}

2I(2 . +1 3
- e e om (B2 ) 1
2 Z

Proof: Use Corollary 2.2, Theorem 3.1, and identify H%I-E as .

Next, we will first treat the case p = 2; this case is technically different from the case
p=3.

4(X) =
Theorem 3.3. SI;_pE{ Xl } < oo for p = 2.

Proof: For this, clearly it is enough to prove that ze™*2F3(1,1,3,3,2) is uniformly

bounded for z > 0. This follows from the definition

) =1 Z (@ )
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where .

Xx(2+1)x.. x(3+k—1)

)
)2'(%11)2” ( +k—12)2

k k k
< .o <
= k+1( (g+k—1) —k+1f°ra‘uk)
1
_k+1

*. forz >0,
33
2F2 (1717 §1 §,.’E>
r z* 28
<14+24+=+=+.
_1+2+3'+4!+

proving the required result.

Discussion. In spite of Theorem 3.3, the only possible way to evaluate the value of the
finite supremum of E {“‘Ii_l(),,}z(_l%u} for p = 2 seems to be a numerical maximization of (3.11)
for p = 2. This is because in contrast to the case p > 3 we will treat shortly, for p = 2 the
maxma of (3.11) is an internal maxima. In our experience, the computational reliability
when dealing with an infinite series is less than the reliability for computing integrals on
bounded sets. We therefore give below an equivalent integral representation of (3.11). The

proof follows on using the following representations.

Lemma 3.4.

1
2Fa(Ba2,+0,09) = ) [P A0 M Ranprot,  (312)
0
and .
r
1Fi(a,c,2) = W)I‘((z—):a /e”s“_l(l —8)°7% s, (3.13)
0
ifc>a>0.

For (3.12), see Luke (1975), page 161, and for (3.13), see page 284 of the same reference.
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Theorem 3.5. For p = 2,

”d(X)“} 1 // ezst—z(s+1)
o> sup E{ == — _ .qupz- ent et b
Ger { X J T w5

= 1.06691 (approx1mately).

We will next demonstrate that for p > 3, the supremum we seek is equal to 1. We will
achieve most of what is required to prove this in the form of a Lemma.

Lemma 3.6. For every p > 3, the function xe™*,F3 ( 1, 2= 2,x) is monotone nonde-
creasing in z, for ¢ > 0.

Proof: Write L3
ze_’ng( 1 i ,:v)

2’7’2
oFy (2,1,241 3 5) (3.14)
= — 12 2 -(1—-¢7%)

k4
Since 1 — e~*

Fo(2,1,24t 38 ¢ . .
2Fa(§ 2 ) > 0 is monotone nondecreasing.

is nonnegative and increasing, it will suffice to show that the ratio

For this, write
oo

n (515 > X

here a; = %%)L) % and by = k_+157 It is then very easy to venfy that if p > 3, then
the coefficients {ax}, {bx} satisfy

and

= (B4 k) (k+2)

Gk

b +1 =
Bar (B2 4 k)(k+3)

2> 1 for all &,

i.e., $& is nondecreasing in k. A standard monotone likelihood ratio argument then implies
the ratio under consideration is nondecreasing.

Therefore, we have now proved the following theorem.
Theorem 3.7. For every p > 3,

|14(X)I| 2r(%) z p,p+l3
5" { X1 = vereny S R (b ge) B1)

We will now demonstrate that (3.15) equals 1 for each p > 3.
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8. > 4(X) } =1.
Theorem 3.8. For each p > 3, cs;lé;;_E { X
Proof: By virtue of Theorem 3.7, it is enough to show that

(21252, 3.0) - YIER)

lim ze %, F 5 137 2T (2)

Z—00

Since 1 —e™* — 1 as ¢ — oo, it will suffice to show that

l1m 2F2( 17 ;1727‘3) — \/7_('11(’%)
£mr0a =1 oT'(Z)

z

(3.16)

However, using the notations of Lemma 3.6,

2F2( 7 217211")

et ~—1
z

lim

r—roo

ak
= lim —
k—oo bk

(Be(k +1)!
T ke (20, (R, (3.17)
_ i DEEICG) | T+ k)- (k+1)!
~ kmeo T(R) TER+EIG +E)
VIR TG A B+
T(E) ke (B 4 KL + )

Since
I‘(B + k)(k+1)!

m 3 =
k—oo T(EEL 4 k)12 + k)
by Stirling’s formula, the theorem follows from (3.17).

It remains to settle the case p = 1 now. First we give an analog of Theorem 3.1 for
p=1
Theorem 3.9. Let G, denote the two point symmetric prior supported at +u. Then,

E{J-C%} = e (/ﬂ e%dt) : (3.18)

0

Proof: The derivation mostly follows the lines of Theorem 3.1, but we do not make
transformations to spherical coordinates now (because we are in one dimension). We will
omit the derivation; it is straightforward. The facts that (3.18) remains bounded but has -

a maximum larger than 1 need to be demonstrated, though. The next result does this.
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Theorem 3.10. 1 < sup E{ dl()f) } < oo for p = 1; its numerical value equals 1.28475

GeF
(approximately).
Proof: To prove that the supremum is finite, simply consider the function
»
pfet’ 2t
0
9(W) = —— 5 (3.19)

Two applications of L'Hospital’s rule show that g(x) — 1 as g — oo; since g(0) =0 and ¢
is continuous, it follows ¢ is bounded and therefore so is E {Jiil%ll} by virtue of Theorem
3.9.

To prove that the supremum is larger than 1, we will prove g(2) > 1. This is easily

2
9(2) = %/etz/zdt

2
/(1+ + )dt>111>1

0

done since

The numerical value 1.28475 is obtained on numerical maximization of (3.18) over x > 0.

Even though we have used only two point priors for the technical purpose of obtaining
the suprema in all dimensions, we like to point out that absolutely continuous priors can
be used as well to arrive at each phenomenon described in this article. For the case p =1,
the following result provides a necessary and sufficient condition on a symmetric prior G

for the corresponding value of E {%ﬂ} to exceed 1.

Theorem 3.11. For p = 1, let G be any symmetric prior for §. Then E'Jil%)l > 1if and

only if
7 2 : 2 1
/ =7 / eT dz | dG(6) > 3 (3.20)
0 0

Remark. This is a condition that is apparently easily verifiable for any given G. Two
point distributions supported on +6 with 6 > 1.32 satisfy (3.20) and so does any symmetric
G supported on R —(—1.32,1.32). Since normal distributions can be used to approximate
point masses (in the sense of weak convergence), it follows from Helly’s theorem that
mixtures of (two) normal distributions can also be used to obtain (3.20). The broad

message is that many types of symmetric priors result in E {EI%I} >1for p=1,2.
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Proof of Theorem 3.11: The proof of this theorem is exactly the same as that of
Theorem 3.9 and will be omitted. In fact, knowing the statement of Theorem 3.11 makes

the assertion of Theorem 3.9 transparent.

4. Spherically Symmetric Priors. In view of the results we obtained in Section 3,
it is not unreasonable to expect that Bayes estimates may be expanders for spherically
symmetric priors as well in two dimensions. For the sake of completeness, we will prove in
this section that this is not the case, i.e., for any spherically symmetric prior in dimension
p=2FE {”%I(?)‘(nm} < 1. The case p = 1, of course, is already treated in Section 3. Once it
is known that the supremum cannot exceed 1 with spherically symmetric priors, it is easy
to see that the failure to approach two point distributions via spherically symmetric ones
is the reason behind this phenomenon.

For the rest of this section, u will denote ||z|| and ¢ = u? will denote ||z||?. Also I,(z)

will denote the Bessel I, function defined as

bt 1 2\ v+2k
L(z) = ; ET(k +v +1) (5) (4.1)

Theorem 4.1. Let § have a spherically symmetric prior distribution G. Then E { lli(XI: }
<lforp=2. i
We will prove Theorem 4.1 by breaking it up in a series of Lemmas. For ease of writing

the proof, we will present the proof for the case when @ has a density g(]|6]}).

Lemma 4.2. The marginal density f(z) of z is a function of ¢ alone and is given by
o0

f(z) = m(t) = ke=% [ L(rv/Dre~TdG(r), (4.2)

o,

where k > 0 is a constant.

Proof: By definition,
f(z) / e~ 3(5=0'(==00g (||| )dg

x e [ e¥7e= %" g(||9][)dd

k(3

o0
—zls -2
xe 2/ /e'”@”c““du e Trg(r)dr
0

™
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(by using spherical coordinates)

7(/1 erua.:nzd) 2oy
z | e T rg(r)dr

— 2

4 v1—=z

/Io(r\/_)e = rg(r)dr, (4.3)

z'z
2

. 1

2

xe
et

where (4.3) follows on using the integral formula

Io(x) = -

ZZ

\/l—z2

(Gradshteyn and Ryzhik (1980), page 958).

Lemma 4.3. The Bayes estimate d(z) is given by

wo=2(o1:288)

Proof: This follows immediately on using the well known formula

v(z)
(=)
(see Brown and Hwang (1982)) and then using f(z) = m(t).

dlz) =z + 5%

Lemma 4.4. d(;) =1+ 2—7(—?
Proof: In view of Lemma 4.3, we have to only prove that |1 + 2—"1::—(%” =1+ 2#;)2, ie.,

1+2 m((tt)) > 0 (this just says the Bayes estimate is a nonnegative multiple of z). To prove

this, first observe that

m!(£) o« --e-% / L(rvE)re=4" g(r)dr

nl“

+5 \/ Il(r\/_ e g(r)dr, (4.4)
with the same constant of proportlona.hty k as in (4.2); note that in the above we have
used the fact £1o(z) = I;(z). From (4.4), we immediately have

'(t) fIl(r\/_)r e~ T g(r)dr
142 () >0, (4.5)
( \/_ro(r\/_)re 7 g(r)dr '
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since I,(2) 2 0 for 2 > 0, =0, 1.

Lemma 4.5. E{ ‘Ii(Xli } > 1iff [ m'(u?)udu > 0.
> 0

Proof: Clearly, by virtue of Lemma 4.4, E{ ¢|l Xﬁ } >1iff E {mml(;?} > 0, from which

the result follows on transformation to spherical coordinates.

Lemma 4.6. [ m'(u?)udu
0

8

X

r2 T ul
re_Tg(r)/{rIl(ru)e_T}dudr
0

2 o2
re—Tg(r)/{Io(ru)e—Tu} dudr
0

"t ~—8 °—

Proof: This is immediate from (4.4) and a separate application of Fubini’s theorem to

each of the two terms in (4.4).

Lemma 4.7, For each r > 0,
o0 uz (o o) uz
/rIl(ru)e_Tdu < /Io(ru)e_Tudu
0 0 .

Proof: Since & (Io(ru)) = rI(ru), integration by parts gives

/ rli(ru)e” * du
0 (4.6)

w? 2

o0
>}
= Io(ru)e™ 7 | +/Io(ru)ue—"Tdu
0
0

The Lemma follows on noting Io(ru)e"“T2 | = -1.
0

Proof of Theorem 4.1: Combine Lemma 4.5, 4.6 and 4.7.

Corollary 4.8. Let F, denote the family of spherically symmetric priors for p = 2. Then

sup E{J-l-‘liT(}:)z(ﬁu} =1.

GEF,

Proof: Use Theorem 4.1 and the fact that E{ 'Ii(XI? } = 1—_’;—21_; for G = N(Q,7%I) and

T2 1
m—) as 7 — O0.
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5. Summary. The results we describe can be regarded as a new manifestation of Stein
effect. The surprise in the results obtained hopefully contribute to better scientific under-

standing of Bayesian inference.

Acknowledgement. Our original proof for Theorem 3.3 was replaced by the current
proof given by Brani Vidakovic. Bill Studden provided formula (3.18). Larry Brown and

Bill Strawderman made some insightful comments. We are indebted to all of them.
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