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Abstract

We look at probability models for the problem of estimating normal means, when
the means are allowed to be equal. These models, which are called product partition
models, assign probabilities to random partitions of sets of objects. Here, the objects
correspond to the means. We show that when all the means are equal, the estimated
number of distinct means has an asymptotic Poisson distribution. Also, when there'
are two sets of equal means, if they are far enough apart, then the two sets can be
considered as two separate problems asymptotically. Finally, we look at simulations to

see if the above results hold for moderate sample sizes.
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1 Introduction

We will consider the normal means problem: X;|lp; ~ N(u;,1) for ¢ = 1,...,n. Let
X = (Xy,...,X,) and po = (p1,...,4n). We will look at probability models for the param-
eters pi,...,u, that allow for many of the p;’s to be equal. Such models have application
in clustering, mixture problems, and in the problem of multiple comparisons, where the pa-
rameters are divided into subsets such that the parameters within each subset cannot be
distinguished.

Although our formal models assume normality, our method will apply more generally,
generating clusters in a set of parameters. We expect similar results to hold under other

models for observations given parameters.



In Section 2, there is a general description of the probability models we will use. These
models, which are called product partition models, specify the probability of a random
partition p. We consider product partition models for the normal means problem in Section
3. In Section 4, we look at the case where all the means are equal: Xj,..., X, ~ N(0,1).
The number of blocks B, is the number of sets in the random partition p. We show that
B —1 has an asymptotic Poisson distribution, as n — 0o. In Section 5 we consider two sets
of equal means: Xi,...,X,/2 ~ N(0,1) and X(n/2)41,---,Xn ~ N(0n,1). We show that if
0., is large enough, we can regard this problem as two separate problems. Some simulation
results are given in Section 6.

For more details on simulations and on how the product partition method compares to

other methods, see Crowley (1992, 1993).

2 Product partition models

Hartigan (1990) developed the idea of product partition models. For a set of objects Sy =
{1,2,...,n}, a partition p = {57, 85s,...,S%} has the properties that S; N S; = 0 for ¢ # j
and U;S; = Sp. The probability of a partition p is defined by
k
P(p = {Sl,Sz,...,Sk}) = I(HC(SJ (1)
i=1
where the cohesions ¢(S) > 0 are the parameters of the product partition model and K is
chosen to make the probabilities sum to one over all possible partitions.

Corresponding to each object 7, we have an observation X;. Let Xg = {X; :¢ € S} have
conditional density ps(Xs), given that S € p. Given the random partition p, observations
for objects in different classes are independent, so we have

k
p(Xlp = {51,5%,...,5k}) = [ psi(Xs,). (2)
i=1

From equations (1) and (2), the posterior probability of a partition p is

k
P(p = {51, 8,...,8:}|X) = (K/v(X)) [T e(Si)ps.(Xs,),
=1
where v(X) is the marginal density of X. This is also a product partition model with

(posterior) cohesions ¢(S)ps(Xs).



3 Distributions for clustered parameters

We now look at product partition models for the normal means problem. For other applica-
tions, see Hartigan (1990) and Barry and Hartigan (1992, 1993). We have X;|u; ~ N(p;,1)
fori=1,...,n. Let the prior cohesions be ¢(S) = (ns—1)!/m{*s~1) where m is a parameter
and ng is the number of objects in set S. Large values of m lead to small ng. Let u° be
the common mean for the p;’s with ¢ € S, that is, u; = p5, i € S. Let u5 ~ N(po, 00%/ns),
where po and o3 are parameters.

Given the above choices of distributions, it follows that the joint distribution of p and
X, treating the parameters yo, 0% and m as fixed constants, is

P(p = {51, 52,...,5:},X) =d(X) Jz—(T}n—)mk (f[(ngr — 1)!) (14 02)~*/?

r=1

1 2 k _ _ 1 _
X exp (_ 0o - Z ns, (Xs, — X)2> exp (—5 1 f02 (X — #0)2) . (3)
0

where d(X)~! = (2r)"2 exp((1/2) %, (X; — X)?) and X5 = Y;cs Xi/ns. See Crowley
(1993) for details.

4 Asymptotic distribution of the number of blocks
when all the means are equal

Consider the case where all y;’s are equal. The number of blocks, B, is the number of sets
in the random partition p. The estimation of means will be more accurate, the fewer the
numbers of blocks. However, if we choose the prior parameters to force the number of blocks
too small, the estimation will work poorly when in fact the means are different. In order
to evaluate the effect of prior parameters, we need to examine first the distribution of the

number of blocks when all the means are equal. We prove the following theorem:

Theorem 1 Let X,,..., X, be sampled from a N(0,1) distribution. Let the partition p be
distributed according to a product partition model with the distributions specified in Section 3

and prior parameters pg, o2 and m = A/ In(n). Then, if 02 < 0.5, B — 1 has an asymptotic



Poisson distribution with mean A, in the sense that

P(B—1=kX) _ /\’“
PB—1=0X)

in probability, as n — oo for each fized k.

This theorem does not say that there is exactly one block. It puts some probability on
having more than one block. This probability depends on A which in turn depends on m.
Clearly, when all the means are equal, we want m to be small. However, we don’t want to
choose m small in general, that is, when the means are not all equal. But we can callibrate
m with the one block case by deciding how much probability we are prepared to put on more
than one block in order to reduce losses when the means are not all equal.

Consider the partition p = {Sj,...,S:}. In the results that follow, assume k a fixed
integer and define the sets of partitions:

k
T = {S1,...,5| > ns,=n,ng; >0,j=1,...,k}

r=1
T?* = {S,..., S number of elements in S; is ns;,ns; fixed, j =1,...,k}
k
N = {nsl,...,nskl Z ns, =n, ngs; >0,7 = 1,...,]9}.

r=1
We will need to consider pairs of partitions: p = {S1,...,Sk} and p* = {S7,...,55}. Let
n = {ng,,...,ns, } and n* = {nsl—, . ,ns;}. Define 5,5+ to be the number of X;’s with ¢ in
both S, and S}, r=1,...,k, I =1,...,k. Let u=02/(1 + 03). Then,

P(B = k|X) _ %ZpETI P(p = {51, 52,...,5},X)
P(B = 1X) P(p = {So}. X) '

Substituting (3) in the above we get

where

(O 1) o (o 2, ).

We will show that W, /EW, — 1 in probability, as n — oo, using the following lemmas.

W= ¥

peT?



Lemma 2 Let X;,..., X, be sampled from a N(0,1) distribution. Then, if u <1,

E (exp (% z; ns, (Xs, _7)2)) = (1= )02,

where ng, >0 forr=1,...,k and ¥-F_, ns, = n.

Proof From analysis of variance theory we have ¢, ns, (Xs, — 7)2 ~ x2%_,. The result
follows from the formula for the moment generating function of a x% with k£ — 1 degrees of

freedom. O

Lemma 3 Let X1,..., X, be sampled from a N(0,1) distribution. Then, as u — 0,
u & S — k ~ 2
Cov exp(§ Y ns, (Xs, — X)" ) ,exp Zns; (Xsp — X)
r=1 =1

2 E ok 42,
z%(ZZ—Si—l)W(uf"),

r=1 I=1

N

where ng, > 0 forr =1,...,k, Zfﬂ ns, =n, ng >0 forl=1,...,k andZ{“=1 nss =mn.

Proof Rewriting the exponential function as a series, we obtain

The series expansion and equality of moments is justified for u small enough. We now find
an expression for Cov((Xs, — 7)2, (_X—S{‘ - ,—X_)z) As X5, — X and YS; — X are bivariate
normal random variables with E(Xs, — X) = E(Xs; — X) = 0, we have

Corr ((Ys, - —X)Z, (_X—g; - —X_)2) = (Corr(ysr - X, X —Y))z.
Using this fact, we obtain

CO’U ((Ysr - Y)z, (75{* - 7)2)

= (C’OT’T‘(YSr — 7, Ys; - Y))2 \/;ar ((75, - 7)2> Var ((Ysr - Y)Z)

)



Substituting for the correlation and the variances, this becomes

tg, s 1 2
(’nsrnsr - ;1,-) 2 1 B l 22 1 _ l 2
(& -1) _1__1) ns, n nsy n
ng, n nsi- n

o tss 1Y)
’n.srnsl- n

Substituting the above expression in (5), we obtain the required result. O

Lemma 4 Let Xi,..., X, be sampled from a N(0,1) distribution. Let

k k
S ns, (Xs, — X)' =X A1 X and ) ns; (Xsp — X) =X'A; X,
=1

r=1
where ng, > 0 forr =1,...,k, Sk ns, =n, nss > 0forl=1,...,k and Y8, ngs = n.
Then, if 0 < u < 0.3,

@) Conexp (3 3 s (s~ 7)o (3 5 iy O =)

2(k—1)

= J[ (- u&-)—l/2 —(1- u)_(k—l)
i=1

where A1 + A2 = 012 D12 C,12’ D12 = diag(&l, e ,62(k_1), 0, e ,0) and Clg is orthogonal.
The 6;’s satisfy the following:

(b) 0<é<2
2(k—-1)
© 3 &=2(k-1)
=1
2(k-1) k&
@ ¥ 52_222 +2k—4
i=1 r=1 =1 'S NS}

Proof Using Lemma 2 and writing the sums as quadratic forms, we obtain

Cov (eXP ( Z ns, (Xs, — X) ) ,€Xp (g— é nsy (Xs; —7)2))

r=1

= I, —uA, —uAy - (1- u)” 1), (6)



As A; + A, is a real, symmetric matrix, A; + Az = C12 D12 C',, where Cy2 is orthogonal
12 g

and Dy; = diag(61,...,6n) is diagonal. Hence,

(IC,I[Tn — w Aq — u Ag||Cral) ™/

I—1/2

lIn—’U,Al—’U,A.g

lIn —Uu D12|—1/2.

At most 2(k — 1) of the é;’s differ from zero. This is because Ay and A, have rank k£ — 1
so A; + A, has rank at most 2(k — 1). Without loss of generality, assume that Dy =

diag(é1,. .., 02(k-1),0,. - ,0). We now have
2(k—1)

L —uA; —uldg| 2= T (1- u;) M2,

i=1

Substituting in equation (6) gives (a).
Let Z=C},X = (Z,...,Zn). We have

2(k-1)

X' (A; + A2) X = (€}, X)' D13 (C1p X) = Z' D12 Z = 3 &7
=1

Also,
0<X (A1 +A)X<22'2=2) 7

=1

k n
0<X' A X=Yng (X5, -X) <Y X]=XX=7'%
r=1 =1

0 <X'A;X <Z'Z. From the facts above, it follows that

as

and, similarly,

2(k-1) n
0< S §22<Y 27} forall Z.

=1 =1

Fori=1,...,2(k — 1), setting Z; =1 and Z; =0forj=1,...,n,J = i, we obtain (b)

We rewrite the quantities in (6) as exponential functions.

1 2k=1)
exp | 5 Y, —ln(l-ué)

=1

- o (55 % 0)

i=1

l—1/2

IIn—uAl—qu



where ¢g(j) = E?ikl_n § = trace(D{2). Also,

1-u)® Y = exp(—(k—1)In(1—u))

o
= exp 1)y =
Substituting for the quantities in equation (6), we obtain

Jj=1
u & — —.2
Cov (exp( Zns, (Xs, —X)),exp (5 Znsl- (Xs;—X) ))
=1

r=1

= exp (; i —g(J)) — exp ((k— 1) i UTJ) :

=1 J j=1

m'%

Expanding the exponential functions as series, the covariance is equal to

Collecting terms, we obtain

u(g—(;—)—(k—l))#‘;(9—(22—)+9%L—(k—1)—(k—1)2)+0(u3)- (7)

From Lemma 3, we have another expression for the covariance. Comparing coefficents of u

g(—ZZ—)+g—(jT)i—(k-1)—(k_1)2=Z sy
r=1 1

-1

and u? in (7) and Lemma 3, we obtain g(1) = 2(k —1) and
ko k

ns

T

1 nsy

Substituting for g gives (c) and (d). O

Lemma 5

k t§ sr n! n! —1)?
> r (Sras 1) - e e

pET? p*eT? \r=1 I=1 ns, nS," r=1 ns,! H1=1 nsl-.



Proof To show this, assign n objects at random to the cells of a k£ X k table, subject to
there being ns, > 0 objects in the r** row and ns; > 0 objects in the I** column. Note that
forr =1,...,kand [ = 1,...,k, when ns, and ns: are fixed, ts,s; has a hypergeometric
distribution, that is,
ol el |
P(ts,s» =j) = —F——»Jj=1,..., min (ns,,nsp).
("sl‘)
So we have E(ts,s:) = ns, nsy/n and Var(ts,sy) = (ns, nsy/n) (1—(ns,/n)) (n—nsp)/(n—1).

Hence,

E (Eki > s 1) _ (k= (8)

n—1

The probabilities of getting any particular p and p*, when ns,,r =1,...,k and ngy,l =

1,...,k are fixed, are [[*_, ns,!/n! and [T, ns;!/n! respectively. It follows that
k 2 k t
s, 1 ns, Hz =1 ns* 5.8}
p(Ey o).y y I >3-
r=1 =1 5 p€T? p*eT? r=1 =1 nS*

Because the probabilities of getting any particular p and p* do not depend on p and p*, we

can rewrite the above as

zz(iz

pET? preT?2 \r=1 I=1

n! n! k t%, s
et e[ ).

ns. r=1 nSr' ].-.[l =1 ns‘

Substituting for (8), we obtain the required result. O

Lemma 6 For fized k,

a(n, k) =) ok [In(n)]*?, as n — oo,

nenN ng ...ns,

where a, ~ b, represents a,/b, — 1 as n — oco.

Proof We use induction on k to prove the result. Trivially, a(n,1) = 1 ~ 1[In(n)]*"".
Assume that a(n, k) ~ k [In(n)]*"". We have

a(n,k+1)=z——n"_a

ns, ... nSk+1



where the summation is over {ng,,.. nskHI 1 ns, = n,ns; > 0, j=1,...,k+1}.
Splitting up the summation, this becomes

n—k

n n— ’n,sk+1
2 > :
NSpqr =1 L (n - nSk+1) ng ...Ns;
.. k .
where the summation is over {ns,,...,ns| Xizy ns; = 0 — g, ns; > 0,7 = 1,...,k},

which we can rewrite as Y.7=f (n/(j (n — j)) a(n — j, k). By assumption,

- n—k
2_: a(n—j,k) ~ ;k[lnn—])]kl(‘-’lr-i-nl_j)
"% k(ln(n —])]k 1 onk k [In(n -—j)]k'l.

-3 +Y

j=1 J j=1 n—j

Note that when j is near n the assumed approximant & {In(n — j )]k—1 will not hold, but the

size of such terms is bounded by a constant times In(n). The first term

"k k[ln(n — 7)) n-k+1 k[ln(n — y)]* !
SRR e L

n—k+1
~ k[ln(n — )] /1 %

= k[ln(n— 1) " In(n — k +1)
~ k[in(n)]"

and the second term

§ Rl = o kg

j=1 n—j n—y

= [In(n — 1)} - [In(k - 1)]*
~ [In(n)]".

Hence, a(n, k + 1) ~ (k + 1) [In(n)]*, as required. O

Lemma 7 Let X,,...,X, be sampled from a N(0,1) distribution. Let

k k
Y ns, (Xs, - X)' = X' A1 X andy ns: (Xsr — X)' = X' Az X,

r=1 =1

10



where ng, > 0 forr =1,...,k, YF_, ns, =n, ngy >0 forl=1,...,k and F ngs =n
and let

r=1(ns, —1)!

W Z ( 1 )

peT? )

k
exp (% Y ns, (Xs, — X)2) .
Then, if 65 < 0.5,

Var(W,) — 0 as n — oo.

Proof

( 7= (ns, — )') (Hf=1(n5;‘ - 1)!)
(n—1)! (n—1)!

Var(Wo)= Y. Y

p€T! p*eT!
U -~ =2 U k - ==\2
xCov | exp §Zn5,(Xsr—X) ,€Xp 'Q-Z:ns;(Xs;—X) . (9)
r=1 =1

We need a bound for the covariance term. From Lemma 4 (a),

k k
Cov (exp (;— z ns, (Xs, _7)2) ,eXp (% Z ns (751- - 'X)?))
r=1 =1
2(k~1)

= H (1- uéi)—l/2 —(1- u)—(lc-—l).

i=1
Recall that u = 62/(02 + 1). If we let v = u/(1 — u) = 6 and ¢; = §; — 1, this is equal to
2(k-1)
(v+ 1)1 ( H1 (1—ve) V2= 1) . (10)
As0 <v<0.5and 0 <§; <2, by Lemma 4 (b), we have that |ve;| < 0.5. Using the fact
that —In(1 —y) < y + 2 for |y| < 0.5 (which follows from Apostol, pp 181, Exercises 17(b)
and 18(b)), we have —In(1 —ve;) < ve; + v?e?. Hence,

2(k—1) | 2k-1)
11 (1—1)6,~)_1/2 = exp (5 > —ln(l—vei))

i=1 =1

< exp (5 ; (ve,—+v2e?)) .
Substituting this expression in equation (10), we have

Cov(exp( Zns, Xs, — X) ),exp( Zns- s —X)))

r=1

o 206=1) o2 HE=D)
< (w+1)"" |exp 3 > e,-—}-? Y. &) -1 (11)

=1 =1

11



From Lemma 4 (c), we have

2(k-1) 2(k—1) 2(k-1)
Yoa= Y (6i-1)= ) &-2(k-1)=0. (12)
=1 i=1 i=1

Also, by Lemma 4 (c),

2(k-1) 2(k-1) 2(k-1)

Z =Y (6-1)° E 62 —-2(k-1),

=1

which, by Lemma 4 (d), is equal to

2 (if: fhs —1). (13)

Substituting for 3";=; 261 ¢ in (11), using (12) and using the fact that exp(y) < 14y exp(y),
for all y > 0 (Apostol, pp 359, Exercise 33), we have

k

Cov (exp( Z ns, (Xs, — X) ) ,€Xp (g > ns{‘ —)2)>

=1

v? 2(k—~1) v? 2(k~
< (v+1)* (5 ) )exp(g Z )

=1 7=1

This expression is less than or equal to

. v 2(k-1)
(v+1) -1 (? Z ef) exp (v2 (k— 1)) ,

=1

as |¢;| < 1. Substituting for z;?i’;“) €2, using (13), gives

Cov (exP (% Xk: ns, (Xs, — X) ) ,€Xp ( Z nss (Xsr — 7)2))

r=1

<v?(v+1)F1 (Z >, st _ 1) exp (v2 (k- 1)) .

Substituting this bound for the covariance term in the expression for Var(W,) in (9), we

obtain

1(ns, —1
Var(h) <o+ 1) e (- 1) B 3 = g

pET? p*eT!?
|| (’ng*-—l k k t - S*
X( = En 1 ) (ZZ Sr S, )

r=1 =1 S, NS}

12



Summing first over p € T?, then over n € N, which is equivalent to summing over p € T,

the above is equal to

v? (v + 1)* exp (vz (k- 1)) >

(ITey (nsy — 1))
T - 1)

s (S5 )

pET? p*eT?

By Lemma 5, this is equal to

) " (ns, —1)!
v? (v +1)F exp( )nXEI:VnXE:N( n_Sl) )

« (Hf:l(nS,* - 1)!) n! nl (k—1)°

(n=1)! I ns! I ng! n—1

=v?(v+ 1)1""1 exp (02 (k— 1)) (I:L___ll) a(n, k)2,

Rewriting, we have

Var(W,) < v?(v+1)*" exp (02 (k — 1)) (k—1)>k*
In(n) 2k=1) a(n, k) \?
X ((n B 1)1/2(k—1)) ( k'l'n'“('n' )'k'_-'i) -

k
(n k)l—rlasn—-H)o

k1n(n)

Because, by Lemma, 6,

and
In(n)
(TL _ 1)1/2(k—l)

—0asn — oo,

the result follows. O

Proof of Theorem 1 Rewrite (4) as

P(B=kX)

W,
—mk1(1 — (k—l)/2
P(B = 1|X) (1-v)

k! " EW,’

First, consider W,,/ EW,,. From Chebyshev's inequality and Lemma 7, we have

EWI;Z —> 1 in probability, as n — oo, if |[EW,| > 1.

13



Then consider EW,,. Replace the summation over p € T? in W, by summing first over

p € T?, then over n € N. Taking expected values and using Lemma 2, we obtain

(Hf=1(nsr - 1)!) Y (- u)~ 012

CEVEE -

= (1- u)_(k_l)/2 a(n, k). (14)

EW, = ¥

nenN

Note that this quantity is greater than or equal to one. Substituting for EW,, using (14) and

for m = A/In(n), we obtain

PB=kX) M1 ank) W,
P(B=1X) ~— (k=1 kln(n)*' EW,
A1 .
"= in probability, as n — oo,
because
ﬂi})ﬁ — 1 as n — 0o, by Lemma 6,
kln(n)
and
Wn —1i bability, as n — if |[EW,| >1
EW. in probability, 00, 1 nl = 1.

We have shown that

P(B—1=k—1X) M1
PB-1=0X) _ (k-1

in probability, as n — oo,

as required. O

5 Separation into two problems when there are two
sets of equal means

We will consider the case where we have two sets of equal g;’s. Assume that n is even.
Let Xj,..., X, 2 be sampled from a N(0,1) distribution and X(n/2)41,...,X, be sampled
from a N(0,,1) distribution. We will show that if 8, is large enough, we can regard the
above as two separate problems, one involving H; = {1,...,n/2} and the other involving

H; = {(n/2) +1,...,n}. This will follow from the fact that partitions with sets containing

14



objects from both Hy and H, are probabilistically negligible, which we prove in the following

theorem:

Theorem 8 Let Xy,...,Xn2 be sampled from a N(0,1) distribution and X(n/2)415- -+ Xn
be sampled from a N(0,,1) distribution. Let the partition p be distributed according to a
product partition model with the distributions specified in Section 3 and prior parameters po,
o2 and m = \/In(n), where 0 < A < 1. Let 0 < 63 < 0.5 and 0, = (A + 2\/2_4-—6)\/{@,
where € > 0 and A% > 4 (0 + 1)/0d. Define

C, = {p contains at least one component intersecting both Hi and Ha}.

Then
P (Cn|X) — 0 in probability, as n — oo.

So if we have two sets of equal means a distance 6, apart, we can regard this as two
separate problems. We can then apply the result of Theorem 1 to each problem (note
that the conditions on the prior parameters here also satisfy the conditions on the prior
parameters in Theorem 1). If we choose m to be small, this will put high probability on
one block for each of the separate problems, that is, a high probability of two blocks for the
overall problem (which is the true number of blocks). We can extend the above to k > 2
sets a distance , apart. Regarding this as k separate problems and applying Theorem 1 to
each, this will give high probability to the true number of blocks k. This suggests that the
product partition model will work well when the sets are well separated.

The proof of Theorem 8 will be omitted.

6 Simulations

We did some simulations to check if the results of Theorem 1 hold for moderate values of
n. We let A = mIn(n) = 1. We looked at various values of 02, some which satisfied the
condition on o2 in the theorem and others which did not. The program used is similar to
the Markov sampling program discussed in Crowley (1993), except that here m and o3 are

fixed. We generated 50 different samples of Xi,..., X,. Corresponding to each sample of

15



Xi1,...,X,, there were 100 Markov samples. The first 10 Markov samples were ignored. We
estimated the probability that B = k by the proportion, 7, of partitions with k& blocks.

We estimate A by A = Y%, k7 — 1. We also compute pi, the probability that B = k if
B — 1 has a Poisson distribution with expected value ), and pg, the probability that B = k
if B — 1 has a Poisson distribution with expected value A.

For cases which satisfy the condition on ¢ in Theorem 1, we find that the simulation
results are consistent with the results in the theorem, that is, 7 is close to pr. Note that
7 is usually slightly closer to p; than to py. For cases not satisfying the condition on o3 in
Theorem 1, we find that B — 1 still seems to have a Poisson distribution but with expected
value ) instead of A. This would suggest that there is a corresponding theorem for larger
values of 62 but the methods used to prove Theorem 1 could not be applied.

The values of pg, pr and 7 for k =1,...,9 when n = 20 are given in Tables 1 and 2 for
o2 = .25 and 5 respectively. The three quantities are approximately zero when k is greater
than 9. For more simulation results, see Crowley (1993).

We also ran some simulations to see how the probability that p contains at least one
component intersecting both H; and H, when A = 1/2 varied with n, 8, and o2. The event
that p contains at least one component intersecting both H; and H; will be called a crossover.
The program used is practically the same as the program used above. Again, we generated
50 different samples of X3,..., X, and there were 100 Markov samples (of which the first
10 were not used) corresponding to each Xj,...,X,. We looked at two values of o2 that
satisfy the condition on ¢ in Theorem 8, that is, of = .25,.5 and also at o2 = 4, 8,12, 24.
The proportion of crossovers for n = 20,50, 100, the above values of 62 and 6, = 3,6,9 is
given in Table 3. This proportion increases with n and decreases with ¢2. For 6, = 3, the
proportion of crossovers is greater than 0.9 for all values of n, ¢ and 8,. Even for 8, = 6,
this proportion is still quite high, ranging from greater than .79 when o3 = .25 to greater
than .05 when o2 = 24. For 0, =9, the proportion of crossovers is less than .02 for a2 > .5
and greater than .06 for o2 = .25.

The condition 62 < 0.5 is only needed in Theorem 8 so that Theorem 1 can be applied.
Hence, if Theorem 1 held even when 62 > 0.5, then so would Theorem 8. This is consistent

with the results of the simulations.
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Table 1
Distribution of number of blocks for 20 observations when A = 1, A = 1.04 and ol =.25.

i ! Pr ° pr 2
0.3287 0.3522 0.3679
0.3896 0.3675 0.3679
0.2053 0.1918 0.1839
0.0644 0.0667 0.0613
0.0102 0.0174 0.0153
0.0016 0.0036 0.0031
0.0002 0.0006 0.0005
0.0000 0.0001 0.0001
0.0000 0.0000 0.0000

O 00 IO Otk Wi~ wE

! #, = proportion of partitions where B = k.

% by, = poisson probability that B=k,if B—1 ~ P(S\)
3 pr = poisson probability that B = k, if B—1 ~ P(})
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Table 2
Distribution of number of blocks for 20 observations when A = 1, A = .88 and og = 5.

e ! Pr ° pr °
0.3844 0.4165 0.3679
0.4040 0.3648 0.3679
0.1682 0.1597 0.1839
0.0384 0.0466 0.0613
0.0044 0.0102 0.0133
0.0004 0.0018 0.0031
0.0000 0.0003 0.0005
0.0000 0.0000 0.0001
0.0000 0.0000 0.0000

© 0 3 O Ot = QO N k| =

! 7, = proportion of partitions where B = k. )
? pr = poisson probability that B = k, if B — 1 ~ P(}).
% pr = poisson probability that B = k, if B —1 ~ P(}).
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Table 3
The proportion of partitions containing at least one component intersecting
both H; and H; for A = 1/2 and different values of 63, ,, and n.

n
o2 6, 20 5 100
0.25 3 1.0000 1.0000 1.0000
6 0.7991 0.9404 0.9962
9 0.0689 0.0942 0.1538

0.5 3 0.9989 1.0000 1.0000
6 0.3653 0.5547 0.7787
9 0.0060 0.0080 0.0111

4 3 09513 0.9976 1.0000
6 0.0718 0.1244 0.2193
9 0.0002 0.0002 0.0002

8 3 09320 0.9940 1.0000
6 0.0589 0.1087 0.1922
9 0.0002 0.0002 0.0004

123 0.9258 0.9938 1.0000
6 0.0616 0.0989 0.1847
9 0.0002 0.0002 0.0002

24 3 0.9267 0.9920 0.9998
6 0.0569 0.1016 0.1787
9 0.0000 0.0002 0.0000
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