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ABSTRACT

The sample mean and median are compared in a measurement error model with the
asymptotic relative efficiency as the basis for comparison. The model treats the observable
X; as X; = 0+ Z; +e;, where 0 is an unknown location, Z; has a fixed distribution F which
is unimodal and symmetric about zero and e; is independent of Z; and has a distribution G,
also unimodal and symmetric, but supported on a bounded interval [-m,m]. An explicit
formula is derived for the minimum relative efficiency over all such G of the mean with
respect to the median; the formula depends on F and m. As an application of the results,
it is proved that if an independent measurement error of magnitude at most 3.80 gets
added to a variate with F' = N(,02) distribution, then the mean is more efficient than
the median provided the measurement error has a unimodal symmetric distribution G,
regardless of the choice of G. For the logistic case, the same result is established if the
error is at most 1.105¢ in magnitude. ‘Our results apply to the large class of problems that
can be formulated as measurement error problems.

Key words: Mean, median, measurement error, asymptotic relative eﬂiciency, unimodal,
symmetric. ' '



1. Introduction. There is a large body of literature on asymptotic cc;mpa.rison of the
sample mean and the median as estimators of a location parameter. Many of these results
demonstrate that if the population is heavy tailed, then the median is a better choice than
the mean. For instance, while the sample median is only about 63% efficient in comparison
to the mean for a normal population, it is about 63% more efficient than the mean if the
populationis at distribution with three degrees of freedom. See Bickel (1965) and Lehmann
(1983) for lucid and readable accounts. The purpose of this article is to consider a very
practical and natural model within the domain of estimating a location parameter. The
type of model we consider says that the observable X; = 6 + U;, where 6 is an unknown
parameter and U;, ideally, should have a known distribution, say N(0,1). However, due to
the process generating the observations, an independent error of measurement e; is made,
so that U; = Z;+e;, where Z; ~ F (known) and e; has a distribution G, which may or may
not be completely known. Under such an error of measurement model, we compare the
mean and the median as estimators of the parameter §. We will use the usual concept of
asymptotic relative efficiency (ARE) as the basis for comparison. Formally, the following
structure is considered:

Xi=e+Zi+ei7

where Z; ~ F,e; ~ G, Z;, ¢; are independent; let F denote the family

F ={G: G is unimodal and symmetric about zero,
supported on [-m,m],m > 0 (specified)}. (1.1)

We let G belong to F, but otherwise let it be arbitrary. The ‘ideal’ sampling distribution F
is assumed to be unimodal and symmetric about zero as well, but F may have unbounded
support. We will assume F is absolutely continuous with density f, is otherwise arbitrary
subject to these restrictions, but is sp;,ciﬁed. The main result gives an explicit formula for
the minimum asymptotic relative efficiency of the mean with respect to the median. This
formula depends on F' and m, but not on G. Indeed, the minimum is over all G in the
family F. In particular, it will follow from this result as a corollary, that if an independent
error of measurement gets added to a N(8,52) variable, then the sample mean is more
efficient than the median if the error of measurement is at most 3.8 in magnitude, and has

a symmetric unimodal distribution in the interval [—3.87,3.80]. Notice that in contrast
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to usual results on robustness, this result says something positive about the sample mean.
The same phenomenon is proved for the logistic case if the error is at most 1.1050 in
magnitude. The error of measurement model we consider here seems to be very applicable
to many realistic situations. For a general account of the rich literature on such models,

see Fuller (1987).

2. Notation, Preliminaries. Since Z and e are independent, under 8 = 0 the observable
X is distributed as the convolution H = F x G when ¢ ~ G. Since F is absolutely
continuous, so is H. Let h(-) denote the density of H. We will derive a formula for

e = sup 4h%(0)a?(h), (2.1)
GEF

where 02(h) denotes the variance of H. If F does not have a finite variance, then e is

automatically infinite. It is clear that the reciprocal of e is the infimum of the efficiency -
of the mean with respect to the median. First we derive two simple formulas for A(0) and

o2(h). The following result of Khintchine (1938) will be needed.

Theorem 2.1 (Khintchine). Let e ~ G, where G is symmetric and unimodal about
zero, with possibly unbounded support. Then e can be represented as e£U. V, where
U~U[-1,1},V 20, and U,V are mdependent If supp (G) C [-m,m] for some m > 0,
then 0 < V < m with probability 1.

Definition. If V ~ p, we will call 4 the mixing distribution corresponding to G.

Lemma 2.1. Let 0? = [ 22dF(2). Then,

Jo vidp
- a

208\ — o2
o“(h)=0°+ 3

where u is the mixing distribution corresponding to G.
Proof: Obvious. '

Lemma 2.2.

=3 [ T auto)

where p is as in Lemma 2.1.



Proof: Since h is the density of the convolution H = F* @G, and F' is symmetric, it follows
h0) = [ Fe)G(e)

= %/;m /1 f(uv)dudp(v)

=% /0 " f(t)dtd"(”) = /0 TEE =10,

v

Lemma 2.3. For given F and G, the ARE of the median with respect to the mean equals

e(F,C) = ( /0 " %dy(v))z (02 v /0 " 'vzd,u(v)) , 2.2)

where p is the mixing distribution corresponding to G.
Proof: Immediate from Lemma 2.1 and Lemma 2.2.

Discussion. The supremum of the ARE therefore equals the supremum of the expression
in (2.2) over all possible distributions x on [0, m]. We will prove that under an assumption
on the density f of F, the supremum is attained at a distribution supported on the set
{0,m}. The probability p assigned to the point m depends on m and F. The value of p
will be obtained by careful calculus. The reduction to distributions supported on {0,m}
will require some moment theory and some analysis. The assumption needed on f is the
following:
Assumption A: f is twice differentiable and ﬂzﬂ is nondecreasing for z > 0.

We will first show that Assumption A is frequently satisfied. In particular, the N(0,o?)

density satisfies it.

Theorem 2.2. Let f be any normal scale mixture density

where v is a probability measure on R*. Then f satisfies Assumption A.

Proof: In fact, f is infinitely differentiable. Also, by familiar use of the Dominated

2
e 2.7 dy(a?),

convergence theorem,

f’(Z) / 5 e de(O.Z),

from which the result follows 1mmed1ately.



We now introduce some notation for future use: I" will denote the mixing distribution

corresponding to the symmetric unimodal law F; also, define
G(z) = af dl’(z)

R(z) = [ $40()
¢(Z) 2F(z) 1
02)=6) |
Note that by virtue of Assumption A, G(z) is twice differentiable. Furthermore, it is known
that g(z) = —zf'(2) (see Dharmadhikari and Joag-Dev (1988)).

iy

(2.3)

3. Main results. The first theorem in this section achieves the stated reduction to two
point distributions supported on {0,m}. For this result, we will only need Assumption A
on the density f. The second theorem builds up on the first and gives a completely explicit
formula for the supremum of e(F,G), defined in (2.2). For this theorem, we will need to
make another assumption on the density f, again frequently satisfied, and in particular
satisfied by any N(0,0?) density. We will state this assumption when we need it.
Theorem 3.1. Assume F' is symmetric and unimodal and that Assumption A holds.
Then,

sup e(F,G)
GeF ’

" 0zpe [("2 + gmz) {P%‘_—l +(1-p)- 2f(0)}2]

0<p<1
For the proof of Theorem 3.1, we will need the following lemma.
Lemma 3.2. If Assumption A holds, then ¥ ¢(o is nondecreasing for z > 0.

Proof: Clearly, the assertion holds if

d1(z) = z¢'(z) — 2¢(2) + 2¢[0] >0 Vz >0
& dy(z) = 229'(2) — 229(2) +2¢(0)2 >0 V2>0 (3.1)

(8.1) will be proved by showing that

i dy(0)=0
ii%@z&} (32)

Towards this end, first observe the following elementary facts:
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a y(z) = &2 + R(z) (3.3)
b v’(z) exists, is everywhere finite, and equals ¥'(2) = —%(5’-2; furthermore %'(0+) = 0
¢ 9"(z) exists, is everywhere finite, and equals ¢"(2) = —’é;l + 2—%52; furthermore,
Jig, #97) =0
d Under Assumption A, i(z;l is nonincreasing,.
Of these, a follows on writing F' as a mixture of symmetric uniform CDF’s with
I’ as the mixing distribution; b follows on using the fact that R(z) is differentiable with
R'(2) = —g%zl and then an application of L’'Hospital’s rule gives ¢/(0+) = 0; ¢ is immediate
from b and another application of L’Hospital’s rule; d is a consequence of the previously
stated fact g(2) = —zf'(2).

Returning now to (3.2), 1 is evident and ii follows because

d(2) = 24"(z) - 29(z) + 2$(0)  (calculus)

- —g(2)+ 2G£Z) - sz:') — 2R(z) + 24(0) (from 3.3))

=2.-/:° %ﬂdt—2/:° @dt—g(z) (from (2.3))
=2-/0 g—-(tQ-dt—g(z)

=2-/zt-2g—)-dt—g(z)

22.%’)- / "4t — g(2) (from (3.3))

=0.

The proof of Lemma 3.2 is now complete. |
Theorem 3.3. Let P denote the class of all probability distributions on the interval
[0,m]. Then, sup [ dp subject to [ z2du = c (specified) is attained at a distribution
Mo supported (‘)‘E’;}he two point set {0, m}; furthermore, this is true for any c in the interval
0<c<m?
Proof: Consider the quadratic

Q(z) = az® +1b,

with

e o
b= (0)



It follows from Lemma 3.2 that

9 —#40) (I YO _ a0z <m

m

and therefore,
¥(2) < az® + b, for 0 < z < m, with equality at z =0, m.

Consequently, fom vdu < ac+ b for any p such that j;)m 2%dpu = c. If po is now chosen such
that it is supported on {0,m} and [;" 22dug = ¢® (such a probability measure po clearly
exists), then evidently the equality fom 1dpo = ac + b holds and Theorem 3.3 follows.

Proof of Theorem 3.1: Immediate from Theorem 3.3 on identifying p as po{m},1 —p
as fo{0}, and on using formula (2.2) for e(F, G).

Discussion. Theorem 3.1 reveals the use of moment methods for reducing an original
infinite dimensional problem to a problem of maximizing a cubic polynomial in the interval
[0,1]. Even without any further mathematics, this is an easy numerical exercise in any
given situation. However, we will actually show that the maximum value of the cubic in
Theorem 3.1 can be obtained in closed form under an additional assumption on the density
f. The closed form formula will require careful analytic arguments, but is. worth obtaining
because of its clean nature. The additional assumption we now make on f is the following:
Assumption B: Let f(z) = p(z?),z > 0. Assume z?p(z) — 0 as £ — oo and that there

is at most one root z¢ of the equation

_p'(:z;) _ 2z -5
p(z) (z—-1)(z—4)

for z > 4; moreover, if such a root o exists, then 4p(0) — (23 — 5z0 + 4)p(z0) > 0.

(3.5)

Remark: Assumption B does not seem to be related to any property like monotone
likelihood ratio of f. However, it is satisfied if f is a normal or a Double exponential
density, and in other common situations. In the N(0,1) case, the only solution of (3.5) for
x> 4is 29 = 7, and 4p(0) — (22 — 520 + 4)p(z0) = 1.3789 > 0.

The following theorem gives a closed form formula for s:;;r e(F, G) if Assumption B

G
also holds. Some notation is needed.



Define
a = o(m) = 2f(0) - 2R
B =2f(0) (3.6)
2 £(0 _2F1m!—1
E=¢(m)=3- e 2n2_f(0)
Theorem 3.4. Assume F is symmetric and unimodal and that Assumptions A and B
o0

hold. Assume 0? = [ z2dF(z) =1. Then, sup ¢(F,G) = E;(l+ §31) if (3.5) has a root
-0 GeF

for £ > 4 and is ¥%(m)- (1 + mTz) otherwise. For a general 02 # 1, the assertion holds with

mo in place of m.

Proof: We will describe the main steps and skip the more mechanical details.

Step 1. On expansion, the cubic
2
P, 2 2F(m)—1 .
(1 2m) { P22 4 - p2500)
= p® -m2a® + p? - [3a? — 2afm?| + p- [#°m® — 6af] + 34° (3.7)

Step 2. The derivative at p = 0 of the cubic (3.7) equals f?m? —6a/p; a.lgébra, elementary
calculus, and the fact that f(m) < f(0) gives f2m? — 6af > 0, implying the cubic (3.7)
has a nonnegative slope at p = 0.

Step 3. To identify other possible values of p at which the derivative is 0, we set
3a?m? - p? + 2[3a? — 2m?af]p + m?* B — 6af = 0; (3.8)

on algebra, the roots of (3.8) are

29 _6a .
and p=Tf3e =40 -1

of which 'g > 1; hence the only possible root of (3.8) in (0,1] is 3% - 2.

Step 4. From Step 2, it follows that 5% — -2, > 0. Again, on algebra and calculus,
- mr Sl |
(m* — 5m? + 4) f(m) < 4f(0), (3.10)
failing which the derivative has no zero in (0,1). In this case, Step 1 therefore implies that

the cubic is nondecreasing in the entire interval [0, 1]; hence the maximum is at p = 1. This

gives the second assertion in the Theorem already. On the other hand, if the inequality
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(3.10) holds, then the derivative has a zero in (0, 1] and because of Step 1, this therefore
is the unique maxima of the cubic.

Step 5. This step shows that Assumption B precisely implies (3.10) for any m > 0. On
using the definition of p, i.e., f(z) = p(z?), inequality (3.10) is equivalent to

r(y) = 4p(0) — (v* — 5y + 4)p(y) 2 0. (3.11)

It is easy to verify that r(0) = 0 and r'(y) > 0 for y < 1; thus for y < 1, (3.11) holds. For
y between 1 and 4, it is clear that r(y) > 4p(0) 2 0; finally, Assumption B insures that
r(y) — 4p(0) > 0 as y — oo. Thus (3.11) can be violated only if there is a finite minima
of r(y) at which r(y) < 0. Assumption B makes this exactly impossible. Thus (3.10) holds
for all m and from Step 4 we therefore know that the second root p = -ﬁ- - ——g is the
maxima of our cubic in the interval [0, 1].

Step 6. Substitution of p = -i — -2, in Theorem 3.1 gives sup e(F,G) = (1 + 5—)

on rearrangement of terms and algebra.

4. Two examples. In this final section, the results of Section 3 are applied to the specific
cases F = N(0,1) and F = L(0,1), where L(0,1) stands for the standard logistic density

-

L(O, 1)(.’23) = (]Tf-;':)i, —00 < T < 00, (41)

Recall that the ARE of the median in comparison to the mean is 3 in the normal and -"1% in

the logistic case. One would therefore expect that up to a certain value of m, sup e(F,G)
GeF

continues to be less than or equal to 1. We will identify this threshold value in each of the

two cases.

Example 1. Let F be the N(0,1) distribution. The threshold value of m such that
sup e(F,G) =1 is easily obtained from Theorem 3.4 as follows: first by ignoring the fact

GeF
that £ depends on m, solve the equation

ff (1 + -5-3—1-)3 -1 (4.2)

The solution is ¢ = .2791473. Now use the definition of £ in (3.6) to solve { = .2791473
in the variable m. The solution is m = 3.7939 (approximately). This is interesting. This

says that if an independent measurement error gets added to a N(0,0?) variate, then the
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mean is more efficient than the median if the error is at most 3.80 in magnitude and has
a symmetric unimodal distribution, regardless of what this distribution exactly is.
The following table gives the infimum of the efficiency of the mean in comparison to

the median for selected values of m:

Table 1

m R 1 1.5 2 3 3.8 4 5
inf ARE 1.56988 1.56033 1.52419 1.44994 1.20980 .99852 .94925 .73637

This says that for measurement errors up to 40 in magnitude, the mean comes out well in

comparison to the median, provided of course our other model assumptions are valid.

Example 2. Let F be the logistic density defined in (4.1). The solution to (4.2) in this

case is ¢ = .4456611 and the threshold value of m such that sup e(F, G) < 1lism = 1.105.
GeF

Notice the expected reduction in this threshold value in comparison to the normal case.

Table 2 below is the analog of Table 1 for this example:

Table 2

m .25 5 .75 1 1.105 1.5
inf ARE 1.04787 1.04002 1.02703 1.00909 1 .95967

Thus, in the logistic case, if the measurement error is up to roughly 1.5¢ in magnitude,
then the mean comes out quite well in comparison to the median provided our other model

assumptions are valid.

5. Summary. The measurement error model we describe here is quite natural and seems
to be relevant in practical cases. The finding in the normal example is particularly positive
for the sample mean. The minimax problem for this structure, as studied in other cases

in Huber (1973) and others, appears to be an interesting and worthwhile problem.
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