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ABSTRACT

If an experimenter wants to determine the degree of a polynomial regression on the
basis of a sample of observations, Anderson (1962) showed that the following method is
optimal. Starting with the highest (specified) degree the procedure is to test in sequence
whether the coeflicients are 0. In this paper optimal designs for Anderson’s procedure are
determined explicitly. The optimal design maximizes the minimum power of a given set of
alternatives.

1. Introduction. A frequent problem in regression analysis is to determine how many
independent variables have to be included in the fitted regression function. In many cases

(e.g. polynomial regression) the underlying models are nested

£
(1.1) ho(z) = Zﬂ,-f,-(:c) £=0,...,n

and based on a sample of observations the experimenter has to identify the appropriate
model h¢(z). Anderson (1962) studied the following decision rule. For a given set of
levels (a4,...,as,) the procedure chooses the largest integer in {1,...,n}, for which the
F-test in the model h;(z) rejects the hypotheses Ho:d; = 0 (j = 1,...,n). It is well
known that Anderson’s method has several optimality properties (see Anderson (1962) or
Spruill (1990)). In the following Y3,...,Y;, denote m independent normally distributed
observations with common variance 6 > 0 and mean given by one of the models in (1.1),
that is
Y =2Z:0,+¢ for some £=0,...,n
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where V = (Y1,...,Ym),e ~ N(0,0%I4),0; = (do,...,92) and Z¢ = (fj(z:))i=o 7%,
(!I=0,...,n). For Anderson’s procedure the probability of the error of choosing too many
functions is independent of the matrix Z provided that Z has full rank (see Anderson
(1962)). If the model is he(z) = hg—1(z) + 9o fe(z) the distribution of the test statistic of

the F-test for the hypothesis Hy: 9, = 0 has the noncentrality parameter
2 _ 9%, 100 N=1, \=1
(1.2) 8¢ = —5(ex(ZeZe)™ er)

where e; = (0,...,0,1) € Ré1. Consequently, the probability of deciding in favor of
he—1(x) (when the model is in fact h¢(z)) is a decreasing function of §7 and a good choice
of a design zg,...,Zn will make the quantities in (1.2) as large as possible.

In a recent paper Spruill (1990) considered the case of polynomial regression on the
interval [—1,1] (which is the region where observations can be taken), the alternatives
Y1 = ... =9, = 1 and determined the optimal approximate design with respect to
a maximin criterion. It is the aim of this paper to extend these results to arbitrary
alternatives ¥; and intervals [a,b]. We obtain the surprising fact that the structure of the
optimal design changes completely when the observations can be taken in a different design
space or different alternatives are assumed. In Section 2 we describe some general aspects
of (approximate) design theory and introduce the optimality criterion. Section 3 gives a
short review of the theory of canonical moments which were introduced by Studden (1980,
1982a, b) in the context of design theory. These results are applied in Section 3 and 4
to obtain a complete solution of the optimal design problem which contains the result of
Spruill (1990) as a special case (i.e. [a,8] = [-1,1], 9, = 1, £ = 1,...,n). Finally some

asymptotic considerations and examples are presented in Section 5.

2. The optimality criterion. Let X denote a compact space with a sigma field contain-
ing all one point sets and at least » + 1 points. In the following we consider n + 1 linearly
independent, real valued and continuous regression functions fy(z),..., fn(z) (defined on
&X) and collect the first £+ 1 functions in a vector g¢(z) = (fo(z),..., fe(z)) (£ =0,...,n).
The model in (1.1) can now be written as hy(z) = 0,g¢(z). A (approximate) design ¢ is a

probability measure on X and the matrix

Mi(€) = /X 02(2)g(z)de(z)
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is called the information matrix for the model hy(z) (£ = 0,...,n). I ¢ puts masses =i
(¢ =1,...,s) at the points zy,...,z, the experimenter takes m uncorrelated observations,
m; at each z; (¢ = 1,...,s), and the inverse of the information matrix M(€) (in the model
h¢) is proportional to the covariance matrix of the least squares estimator for 6, that is
0%(Z¢Z4)™. According to the discussion following (1.2) we call an approximate design ¢

(maximin) optimal discriminating design if ¢ maximizes the function
(2.1) &) = min{Wy(e;M; " (€)ee)™ | £=1,...,n}

(see also Spruill (1990)). Note that this optimality criterion is a local criterion in the sense
that it depends on the alternatives ¥, of the corresponding hypotheses Ho: 9, =0 (£ =
1,...,n). Spruill (1990) used ¥; = ... =¥, = 1 and we will discuss a generalization of this
special choice in the following sections. An extremely useful tool for determining optimal
(approximate) designs are equivalence theorems which provide necessary and sufficient
conditions for a design to be optimal (see e.g. Pukelsheim (1993)). In order to derive
such a result for the optimality criterion (2.1) we define for a design ¢ with nonsingular
information matrix M,,(¢)

My ()
]‘7(6) = ‘.. [= Rn(n+3)/2xn(n+3)/2

Ma(§)
Iler
K = € Rn(n+3)/2xn

-1
v en

and
(e My (E)en) ™
Cx(¥) = (K'SI(6) ' K)™ = e Rre
Inen Mt (Een) ™
(note that all other entries in these matrices are zero and that an optimal discriminating
design must have nonsingular matrices M; (£),... y My (€)). If an information function j
is defined on the nonnegative definite n x n matrices by j(4) = Amin(4) (here Amin(4)

denotes the minimum eigenvalue of A) then it follows for the criterion (2.1) that

8(6) = j(Cx(M(£))  (det Ma(€) > 0).

3



By an application of the general equivalence theorem in Pukelsheim (1993, p. 175) it is
now straightforward to show the following equivalence theorem for the optimality criterion

defined in (2.1).

Theorem 2.1. Let £ denote a design such that M,(¢) is nonsingular and let A (6):=
{792, M (€)e; = maxj, 93¢, M, (€)ee}. The design £ is an optimal discriminating
design if and only if there exist nonnegative numbers a; (£ € N(£)) with Dotene @ =1
such that

M 2
tEN(f) l (6)61
for all z € X. Moreover, in (2.2) equality holds for all support points of every opt1ma.l

discriminating design.

Remark 2.2. Theorem 2.1 can easily be generalized by changing the e; to arbitrary
vectors ¢, € R“*! and not necessarily nested regression functions. In this cases the design
¢ has to satisfy c; € range (M,(¢)) (¢ =1,...,n) and the inverses in Theorem 2.1 have to
be replaced by general inverses (see Pukelsheim (1993, p. 283)).

3. Polynomial regression models. Let go(z) = (1,z,... ,z%)" denote the vector of
monomials up to the order £ and X = [a,b]. Thus the problem of Section 1 and 2 is to
determine the optimal design when Anderson’s procedure is applied for testing the degree
of a polynomial regression. For this purpose we need some basic facts about canonical
moments which were introduced in the context of design theory by Studden (1980, 1982a,
b) (see also Lau (1983) for more details). Let £ denote a probability measure on [a, b]
with moments ¢; = fab z'df(z). For a given set of moments Coy-..,Ci—1 let c;" denote
the maximum of the ith moment f: z*d¢(z) over the set of all probability measures {4 on
(@, b] having the given moments ¢y, ¢y, ..., ci_;. Similarly let ¢;” denote the corresponding

minimum. The ith canonical moment is defined by

ci—c;

pi = t=1,2,... .

+ —

Note that 0 < p; < 1 and that the canonical moments are left undefined whenever c + =c;.
If ¢ is the first index for which this equality holds, then 0 < p; < 1 ke =1,. —2,pi—1
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must have the value 0 or 1 and the design ¢ is supported at a finite number of points. In
this case { is the “lower” or “upper principal representation” of its corresponding moment
point (co,...,ci-1) (see Skibinsky (1986), Section 1). The optimality criterion (2.1) can

easily be expressed in terms of canonical moments (see e.g. Lau and Studden (1985)).

®(¢) = min{ﬂ%ﬁ%}%le =1,... ,n}

£
= min { 9(b— a)* [ | gzj-2m2j102jcap2j | £=1,...,m
j=1

(3.1)

(here ¢j =1—pj,j 21,0 = 1). A probability measure £ is symmetric about the point
(a + b)/2 if and only if all canonical moments of odd order satisfy py;—; = 1/2.

The following result shows that every symmetric design maximizes a (weighted) geometric
mean of the ratios det Mj(£)/ det My—1(£) and can be proved by similar arguments as in
Dette (1991).

Theorem 3.1. Let {* denote a design with canonical moments (3,p5,1 N 31 Phn2s
3,1) and define

_ AE=rJ
3.2 ﬂ*:(l——zi) 2 p=1.....n.
( ) £ p;l H sz ] ’

Then the design ¢ maximizes the weighted geometric mean
ﬁ ( det M;(¢) )
j=1 det M; j—1 (f )

among all design on the interval [a, b].

K ¢ has canonical moments (p;, p2, ps, pa, Ps,...) then its reflection ¢’ about the point
(a + b)/2 has canonical moments (91,P2,93,P4,35,-..) (see e.g. Lau and Studden (1985),
p. 387). Consequently we obtain from (3.1) ®(¢) = ®(¢') and it follows by standard
arguments of optimal design theory that the optimal discriminating design is symmetric
about the point (a + b)/2.

Theorem 3.2. The optimal discriminating design ¢* has canonical moments 1 3.p3,%,p5,1 3

-sP3n—2, 3,1 where the canonical moments of even order are defined forj=1,...,n-1
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recursively by (p3, =1)

) R, (b—a\¥ 1
(3.3) Pz(n—j)=max{1‘$—2:(T) H (‘12iP2i) 1a§ .

t=n—j+1

Proof: Consider the design £* with canonical moments (3,73, s, 2 Pn_as 1,1) and

let -
9 _. (b—a\ Y sy . . |
vii= 1--+2 92:P2; (G=1,...,n-1).
2 \ 2

i=n—j+1

If 7; > 3, then it is easy to see (observing (3.1)) that

g2 _detMa s(€%) _ o, det My(€")
"l det Mp—j_1(€*) T ™det M_1(£*)

On the other hand, if v; < 1, then Pa(n—j) = B(n—j) = 3 and it follows that (1—~;)"! < 2

which implies )
2 det Ma(€*) det Maja(€7) _ Gia—s)
19?1_]- det Mp—1(£*) det My_j(€*) ~ 1—+;

Consequently the set M(£*) defined in Theorem 2.1 is given by (70:=1)

<1l

(3.4 M) ={i € fim} 190y 2 38

By Theorem 3.1 the design ¢* maximizes the weighted geometric mean
I-"I ( det M,(¢) )"t’
=1 det M[-]_({)

where the weights (7 are defined in (3.2). If all weights satisfy Bt 20(l=1,...,n) then
Theorem 2.1 in Dette (1993) shows that this property is equivalent to the condition

n . e M—l * )2
=1 etMl (E )el
for all z € [a,8]. If £ ¢ N(£*), then we have yp,—s < 2, by (3.3) p, = 1 and by (3.2)
this implies 7 = 0. On the other hand, if y,_; > 3, it follows from p%, > 1 that 8F > 0.
Therefore Theorem 2.1 in Dette (1993) can be applied and (3.5) may be rewritten as

Z ,3; (eth_l(f*)gl(x))z <1

LEN(£*) My (€ )ee

6



for all z € [a,b]. The assertion follows now from Theorem 2.1. n

The weights and the support points of the optimal discriminating design £* corre-
sponding to the terminating sequence of canonical moments can be calculated by standard

techniques (see Lau (1988)). Define o = (b —a)/2,7 = (a + b)/2,

by -1
ag b -1
al an _
Koty L T)=
bn—l -1
a, b,
(all other entries in the matrix are 0) and
| —alq} X a2 %k %
(3 6) P (m) p—l K g q2n—'2p2n s o q2p4
. n T —T T—T e T—T x—1)"
(3 7) Q (.’B) =K _a2p;n—4q;n—2 —azp;qz
: n—1 z—7 T—T ... T—T T—T

(Po(z) = Qo(z) = 1, Pi(z) = Q1(z) = z — 1), then the following result holds (see e.g. Lau
(1988)).

Proposition 3.3. The optimal discrimination design ¢* is supported at the zeros zg,...,Zn

of the polynomial (z — a)(z — b)Q@n—1(z) with masses

N Pn(z;)
o) = TG o

7=0,...,n.

Example 3.4. Let a = —b = —1, and n = 2 (quadratic regression), by Theorem 3.2 the
optimal discriminating design has canonical moments (of even order) ps = 1 and p; =
max{1l — %%, 1}. Therefore, if [9;] is small in proportion to |J;] (i.e. [91] < |92|/v/2), the
optimal design £ puts masses 1 — 2—'3,%, ,—':%, 1- %% at the points —1,0,1. This corresponds
to the intuitive fact, that one only needs a few observations at zero in order to distinguish
between a linear or quadratic regression on [—1,1] when it is known that the extremum
of the quadratic function is attained in a neighbourhood of 0. On the other hand, if
|9;] is small compared to |9;] (i.e. |¥1] > |92]/v/2), the optimal discriminating design

&5 has p3 = % and masses %, %,% at —1,0,1. In this case the minimum of the quadratic
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polynomial is attained outside of the interval [—1, 1] and the linear and quadratic function
have a similar form inside of [-1,1]. In order to distinguish between these models one has
to take the best design for testing the highest coefficient of the quadratic regression which
is given by £} (see also Kiefer and Wolfowitz (1959)).

4. Explicit solutions. Throughout this and the following section we will assume that
the unknown parameters in the criterion (2.1) satisfy 9, = 9¢ (£ = 1,...,n) for some
¥ > 0. A similar assumption was made by Spruill (1990) who considered the problem
on the interval [—1,1] and the case ¥ = 1. For this case the criterion (2.1) reduces to
(observing (3.1) and the fact that the optimal discriminating design is symmetric, which

-1 - _
means pzj—1 = 5,J = 1,...,n)

B(¢) = min{(z?(b - a))zf(ﬁ%ﬁli_’% = ln}

(4.1)

£
= min{p”quj_ngj Ie: 1,...,n}

j=1

where p = 9(b—a)/2. An optimal design with respect to the criterion (4.1) maximizes the
noncentrality parameters of the corresponding F-distributions assuming that the alterna-
tives 94 of the hypotheses Hy: 9, = 0 are of the form ¥, = 9¢ (£ =1,...,n) for some 9 > 0.
The following result gives the canonical moments of the optimal design with respect to this
criterion. Here and throughout this paper U,(z) will denote the Chebyshev polynomial of
the second kind (see e.g. Rivlin (1990), p. 7).

Theorem 4.1. The optimal discriminating design (with respect to the criterion (4.1)) has

: 1 1 1 .x 1 1 % 1
canonical moments (5,5,...,§,p2k, 3ve+121P2n—2 5,1) where

Un—j+1(%)
4.2 po= 2R ionn—1,...k
“2) =)
and
Up—it1(£ ..
(4.3) k=min{j_<_n| -’)—[j—%>% for z=],...,n}
n—i 2
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Proof. Let ¢, =1 and consider the sequence

p2
(4.4) gj=1—-— (j=n-1,...,1).

€j+1
It is straightforward to show that ¢; < €41 whenever €,,...,€;41 > 0 and obviously
en = 1 = U1(£)/pUo(£) (see Rivlin (1990), p. 39). In the following we show that ¢;
is given by (4.2) for all j = 1,...,n. To this end we use the recursive relation for the

Chebyshev polynomials of the second kind
Un+1($) = 2.’1}Un($) - Un_l(:v) (Uo(z) = 1, U_1(.’11) = 0)

and obtain by induction (j + 1 — j)

B P2 pUn—j-1(£) _ Un-j+1(§)
Un—j(%) PUn—j(£)

By Theorem 3.2 the canonical moments of even order of the optimal discriminating design

(4.5) g;=1

j=1,...,n.
(with respect to the criterion (4.1)) are given by

i=j+1

n—1
* —2(n—j * ok \— 1
(4.6) ppj = max {1 — p 2= H (g5:m5) ™", 5} .

If p <1, then we have p3; = -;— ( =1,...,n—1) and k = n because it follows from (4.3),
(4.4) and (4.5) that en—y = Us(£)/pU1(§) =1 — p~2 < 0. In this case the assertion of
Theorem 4.1 is obviously correct. On the other hand, if p > 2, then we obtain from (4.6)
that p}, o =1—p~2 > % and by an induction argument p;; > % j=1,...,n). In this
case we have from (4.6)

n—1

-1
(4.7) p3j=1—p2n79 ( IT QE.-pE;> j=n-1,...,1

i=j+1

and it can easily be seen that (4.7) and (4.4) define the same sequences. The assertion
now follows from the representation (4.5) (note that we obtain k = 1 in (4.3)). Finally, if
1 < p < 2 and there exists an index k such that

n—1 -1
1—p'2(""‘)( II quPZ;) <

i=k+1

N =

9



then p}, = 1 and we obtain

n—1 -1 n—1 -1 1
1 p~2nmktD (H q&p&-) =1-p72"H) ( II '12:192:) 472 <3

i=k i=k+1

which also implies p3,_, = -;— Consequently the sequence of canonical moments of the opti-
mal discriminating design is of the form (3,..., %, P4, 55+ » 31 P4n—2> -;-, 1) where p};,.. .,
P3n_3 > 1 can be calculated recursively by (4.4) (or equivalently by (4.7)). The assertion

of the theorem now follows from (4.5) which shows that k is defined by (4.3). |

Remark 4.2. The proof of Theorem 4.1 shows that there are three different cases for the
sequence of the optimal discriminating design E*

a) p < 1: £* has canonical moments %, 1). This case was originally considered

a2’

by Spruill (1990) (b = —a = 1,9 = 1) and the set N(¢*) of Theorem 3.1 is given by

N(E) = {n}.

b) 1 < p < 2: In this case there exists an index 1 < k¥ < n (depending on n and p)
such that £* has canonical moments (3,...,1,p},,%,...,3,p5,._,,3,1) where p3; > 1
(j =k,...,n —1), is defined recursively by (p}, = 1)

-2

(4.8) ph;=1--L j=n—1,...,k

P2j+2
and explicitly given by (4.2). It is straightforward to show that for sufficiently large
n this index always satisfies k¥ > 1 (this is a consequence of the fact that for p < 2 the
équation 1—p~2/z = z has no fixpoint and that the case k = 1 implies % S P3; < Pljta
for all  =1,...,n —1). For this choice we have
{k,...,n} if 2Un—k42(£) < pUn—k41(%)
N(E) =
{k—-1,k,...,n} if 2Un—p42(£) = pUp—r+1(£)
c) p 2 2: ¢* has canonical moments (3,p},3,...,3,P3,_2,3,1) where the canonical
moments of even order p3; > % are defined recursively by (4.8) forall j =1,...,n—1

(or equivalently by (4.2)). In this case we have N(£*) = {1,...,n}.

In the following we will identify the support points and the weights of the optimal
discriminating design £* in Theorem 4.1. At first we will consider the case p > 2 which

turn out to be essential for the general case.
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Theorem 4.3. Let p > 2, then the support points zy,...,z, of the optimal discriminating

design £* are given by z; = 2; + %i (j =0,...,n) where 2q,...,2, are the zeros of the

Unts () Vet (§) = Vet (5) Uir (§)

and the weights at these points are

polynomial

QU (32 n-1(8)
Ul 1 (B2 Uaa(£) = ULy (B2 U (£)

¢({z;}) = j=0,...,n.
Proof: The support points and weights of the optimal discriminating design £* are given
in Proposition 3.3. It is easy to see that the polynomials Q,(z) and P,(z) are functions of

z— ﬂz'—'l and we may assume without loss of generality that the design space is the interval

—b=e b=a] that is 7 = &} = 0. By Lemma 2.10 in Studden (1982b) the design £ with
2 02 2

. 1~ 1 1 1
canonical moments (3, P2, 5,---53,P2n—2,3,1) and

i Ui+1(§) _ Ui=1(%)
4.9 =1l —ph_n=1— = A 22
Y 2O 7 ()

G=1,...,n-1)

has the same support points as {* (here we used (4.3) and the recursive relation for the
Chebyshev polynomials of the second kind (see e.g. Rivlin (1990), p. 40)). An expansion
of the determinent in (3.7) yields that the support points of £ are given by zeros of the
polynomial (22 — 62)Q,—1(z) where 0 = (b — a)/2 and Q¢(z) is defined recursively by

Qet1(z) = 2Qe(z) — 0*Pasdoes2Qe-1(z)
(4.10)

Ur-1(£)Ves2(%) ~

=) = e (y) @

£(=0,...,n—2), Qg(z) =1,Q1(z) = z. Using the recursive relation for the polynomials
Ue(z) it now follows by an induction argument and formula (22.7.27) in Abramowitz and
Stegun (1964) that

Urs2(5)Ue(§) = Ue(F)Wera(§5) _ Uera(F)Ve($) — Ue(F)Ves2($)

(4.11) Qe(2) = 9 ((z9)2 — p2)Ue(2) - 9+2(22 — a2)Ue(£)

and the assertion about the support points is an immediate consequence of Proposition 3.3
(note that p = Jo). For the second part we remark that the polynomial Qn—1(z) in (3.7)

11



(corresponding to the canonical moments of ¢*) satisfies Qn—1(2) = Qn—_1(z). Because
p 2> 2 we have N(£*) = {1,...,n} and obtain from (4.1) and the discussion in the proof
of Theorem 4.1

(4.12) QGePaers = p 2 = o 2972 (£=1,...,n—1).
This implies, for the polynomials P;(z) defined in (3.6), that
Prii(z) = aPy(z) — 97 2Ppy(z) (£=0,1,...,n—1)
(Po(zj =1, P(z) = z) and it is easy to see that these polynomials are given by
Py(z) = 19—‘U[(329).

The assertion about the weights now follows directly from Proposition 3.3 and (4.11). W

Theorem 4.4. Let p > 0 and k be defined by (4.3), then the support points zy,...,z,
of the optimal discriminating design are given by z; = z; + ﬂzi ( =0,...,n) where

Zg,...,2n are the zeros of the polynomial

Hpyi(z) = Ury (-”-’pf) {Un_k+2 (-"’2—”) Un—k (g) —Un—k (%) Un—t+2 (g)}
0 (32) s () 0ers () - s () s ()

while the weights are given by

Un— k1 () Vi-1 (22 1($) = Un—s( 52 )Vi—2(%2)n—p11(£)

o1 % n+1(%)|o=2;

£({z;}) =

Proof. As in the proof of Theorem we assume without loss of generality that the design

b—a b—a
2 7 2

space is given by the interval [—

] and consider the reversed sequence (%, P2, -%, ceey
%,ﬁzn_z, %, 1) where §2; =1 = Py(n—j) (7 =1,...,n—1). The corresponding design £ has
the same support points as {* and from the definition of k¥ in (4.3) and Remark 4.2 we

12



have f2; =1 (j =n—k+1,...,n—1). Thus it follows from (3.7) that (¢ = (b — a)/2)

k—2
A _ T o2 o\? . . L.
@n-a(z) =K —(5) ---—(-2—) ~0’ Pa(n-0)fa(n-k+1) - —O P2l
z z ... & z ... z T
k—2
_K o2 o2 K(—Uzﬁz(n—k—nﬁz(n—k) cer —0%Pads
-(3) -G) X, e e s
z z z
E—3
2~ ~ T o2 o\2
— 0 Po(n—-k)d2(n—k+1) K — (_) - (_)
(n—k)492( ) ) 5
z T ...... z z
% K —02 Pa(n—k—2)T2(n—k—1) 02 p2da
z z ... T T

where the last line follows from Sylvesters identity. Observing the reasoning (4.10) and
(4.11) in the proof of Theorem 4.3 we see that the second factors in both terms are given
by (4.11) for £ = n — k and £ = n — k — 1, respectively. By the same reasoning as at the

end of the proof of Theorem 4.3 the first factors satisfy the recurrence relation
~ ~ P S
Pipi(2) = 2Bi(2) - (5) Pia(2)

(P-1(z) =0, Py(x) = 1) and are given by ()5 1Uk-1(%) and (§)*~2Ur—2(Z) respectively.
Thus it follows from (4.2) and f3; =1 — pj,,_,) that

2 _ {2\ Y\ . 0 Un—k-1(%) zd\ .,
Qunte) = (3)" [1es () @2oa - 557250 00 () @ht-s0)
where Q;(z) is defined by (4.11). This yields

and proves the assertion for the support points. For the calculation of the weights of the

design £* we obtain for the polynomial P,(z) in (3.6) by a similar reasoning
a\k-1 ,lgk—n-l
2 zv zv
ro- 4 (o (5) s () et ) -

(4.14) Un—t (%) ) )
Un—k (%) Uk—2 (ip—) Un—k+1 (g)}

13




and Theorem 4.4 follows by a further application of Proposition 3.3. [

Remark 4.5. Spruill (1990) considered the case [a,b] = [-1,1],9 = 1 which yields
p =1,k = n. For this case the polynomial Hy41(z) in Theorem 4.4 is given by

U,,_l(:z:)(a:2 -1)

and it is not too hard to show that the weights at the support points z; = — cos (% 7 ) =
0,...,n) are proportional to 1:2:...:2:1 (see Spruill (1990)). Another case of interest is
p = 2 because at this point the sequence in (4.4) changes from a divergent sequence into
a convergent sequence (j — —oo). Observing (4.2) and Uy, (1) = n + 1 we obtain

* n_]+2

p2j=m (]=1,...,n)

(p3;—1 = 3) and Theorem 2.5 of Dette (1992) yields that in this case the optimal discrim-
inating design £* has masses proportional to 2:3:...:3:2 at the zeros of the polynomial
(22 = 1)UL (z).

5. Asymptotic distributions. In this section we consider the same setting as in Section
4 when the degree n of the polynomial is large. By Theorem 4.1 and (4.4) the canonical

moments (of even order) of the optimal discriminating design £* are given by

1<j<k-1

N =

PZ;‘ =
p—z

*
D2jt2

(5.1) ph=1- E<j<n-1

where k is defined in (4.3). If p < 2, then it follows from the discussion in Remark 4.2
that for sufficiently large n there exists an index jy such that pj; = % foral: < n-—
jo. Consequently the optimal discriminating design converges (weakly) to the probability
measure with canonical moments p; = % forallz € N. If p > 2, then Remark 4.2 shows that
p3; > 3 for all j € N. The sequence (5.1) is decreasing (i.e. p3;_, < p3;) and consequently,
as n tends to infinity, the canonical moments of the optimal design {* converge to the

distribution for which
D2; =2

N =

D2j—1 =
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for all j € N where z > % is the fixpoint of the equation z =1 — 9—;—2, that is

1 1
(5.2) z = § + 5\/ 1-—- 4p_2.

Theorem 5.1.
a) If p < 2, then the optimal discriminating design {* converges weakly to the arc-sin
distribution with density

1 1
- fa<z<b
f($)={”\/($-a)(b-$) Ses

0 otherwise

b) If p > 2, then the optimal discriminating design £* converges weakly to the distribution
with density

2(b—a) /116972 — (2z — (a + b)|?
(5= a) + /(b — ) — 169-2][(b — a)* — (2 — (a+ )Y
if |z — (a+8)/2] < 219~
0 otherwise

f(z) =

Proof. By the discussion at the beginning of this Section we have to identify the (unique)
probability measure 7 corresponding to the sequence of canonical moments 2, z,. .., where
z 2> 1. Let 0 = (b—a)/2, 7 = (a + b)/2 then it follows (see e.g. Dette (1992) p. 245) that

the Stieltjes transform of 7 is given by the continued fraction expansion

b
(w) = /a dn(t) _ 1

w—t w-—71-—022G(w)

where

Glw) = 1 |_a2z(1—z)|_.“ _ 1

lw—7 | w—r w—71—0%2(1 - 2)G(w)

Solving with respect to G(w) yields

w—7T—/(w—7)%—402(1 — 2)z
Glw) = @azz(l)— 2) ( :
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and consequently we obtain by straightforward calculation

1(0-2z)(w—1)— V(w—17)? —4022(1 — 2)
2z (w—17)2—0? )

d(w) =—

;From the inversion formula for Stieltjes transforms (see e.g. Perron (1954)) it follows that

n has the density

1 4022(1—2)—(z —7)?
2nz o — (z —71)?

-% Im(8(z)) =

where |z — 7| < 40%2(1—2). If p > 2 then 4022(1 — z) = 4972 (which follows from 4.12)),
7 = (a + b)/2 and using (5.2) the density of 7 can be written as

2b—a) /16072 — (2z — (a + b))?
7 [b—a)+ - af —169[(— o) — (%% — (a + D))
(Jz = (a+b)/2| < 2|9|7!). Similarly we have for p < 2 that z = 1 and the limiting density

f(z) =

is given by . .
z)=~— a<zc<b).
f(=z) T —a) (a<z<b)

Example 5.2. It might be of interest how the designs behave in a situation where they
are not optimal (e.g. Spruill’s design on the interval [—b, ]). To this end consider the case
a=—b9 =1,p=>band n =23 (cubic regression). If b < v/2, then the design determined
by Spruill (1990) is the optimal discriminating design, that is

(31D

6
and the canonical moments (of even order) of {; are p; = py = % and pg = 1 (this follows
from Theorem 4.1 and 4.3). If V2 < b < /3 we obtain from the results of Section 4 that

the optimal discriminating design is given by

b _1 ! b
£ = V2 V2
2= 1b%-1 b2 b2 1 b2-1
2

1 1
2621 2 2b2-1 2 52-1 2 2b2-1

W= no o
o=

with canonical moments (of even order) p; = },ps = 1—572,ps = 1. Note that the interior

support points are independent of b € [v/2,4/3]. Finally if b > /3 the optimal design is

b2—2 b2—2
—b =] b
£3 = 2 2 2
1 1-— b2 1 b 1 b 1 1— b
2 bT—2b242 2 b4—-2h24+2 2 b%-2b242 2 b4—2b242
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with canonical moment (of even order) p; = ::—j, ps =1—072% ps = 1. (this follows from

Theorem 4.3 or 4.4). For the values of the optimality criterion (4.1) at these point we

obtain .
b < V2
(&)= ¥ ifv2<b<2
¥ oif2<b

b2 (12 :

Y -1) if1<b<+/3
(&) =13 2
(&) {"7 if 5> V3

b2 —2
®(¢s) = b? 2 —1

Table 5.3 gives some efficiencies for different values of the parameter . Note that the
designs &; and ¢3 are not defined if b is too small (i.e. b < 1 for ¢ and b < /2 for €3). This
is caused by the fact that the designs have to satisfy N(¢;) = {2,3} and V(&) = {1, 2,3}

which is impossible if b is too small. We conclude with the statement that the performance

for all b > /2.

of the different designs will depend heavily on the length of the interval.

design/b | v2 | 15 1.6 1.7 V3 | 2 3 | 10 | oo |
& 1 | 09 [ 0.8205 | 0.7646 | 0.75 | 0.75 | 0.5714 | 0.5051 | 0.5
&2 1 1 1 1 1 | 0.75 | 05714 | 0.5051 | 0.5
& 0 | 0.64 | 0.9204 | 0.9966 | 1 1 1 1 1

Table 5.1: Efficiencies of the designs {1, 2 and &3 for different intervals [—b, b
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