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1. Introduction

Let m,...,mx be k > 3 given normal populations with unknown means 6,,...,60; € R
and a common known variance 0? > 0. Suppose we want to find that population with the
largest mean using a Bayes selection rule which is based on a known prior density 7(8)
for 0, and a given loss function L(8,%) for selecting i € {1,2,...,k} at 8 € R*. The loss
function adopted later on to derive specific results will be linear, i.e. L(8,7) = O — 6;,
i=1,...,k, 8 € R, where 6y = max{6,...,6r}. Assume now that we are in the
situation where k independent samples of sizes ny,...,nk, respectively, have been observed
already at a first stage, and where m additional observations are still allowed to be taken
at a future second stage. The problem of interest treated below is how to allocate these m
observations in an optimum way among the k populations, given all the information, prior
and first stage observations, gathered so far. It should be pointed out that the special case
of ny = ... = ni = 0 represents the analogous problem of how to allocate m observations
at a first stage. Thus, the results derived below will provide also optimum sampling plans

for stage 1.

Looking ahead one stage using the expected posterior Bayes risk, given all observations
collected so far, does not only lead the way to an optimum allocation of observations in the
future. It also provides in a snapshot a relative measure of how much better the decision
can be expected to be after further sampling has been performed following this optimum
allocation. If costs of sampling at the second stage would be incorporated in the loss,
which is not done here, an optimum stopping rule could be implemented, too. In many
empirical studies in marketing research (e.g. direct marketing), medical research (e.g.
clinical trials, cf. Whitehead (1991)), and social research (e.g. survey sampling), there are
interim analyses performed at certain stages to decide if sampling should be continued,

and if so, how to allocate observations.

Under the assumption of k¥ independent normal priors and either a linear loss or a
0-1 loss, a solution to the problem has been obtained previously by Gupta and Miescke
(1993) for the case of k¥ = 2, which turns out to be already rather involved. It allocates
observations in such a way that the posterior gets as close as possible to being decreasing

in transposition (DT). Moreover, somewhat surprising, it does not depend at all on the



observations gathered at the first stage. This fact implies that one can allocate, in an
optimum way, one new observation at a time, until all m have been drawn, thereby arriving
at the same allocation as in the former approach. For k¥ > 3 populations, this is no longer
true! As it will be shown below, the values observed at the first stage are in fact relevant

for the allocation of further observations.

In a fully sequential approach, the optimum allocation could be constructed, at least
in principle, by finding first the Bayesian terminal selection rules based on all possible
m allocations and then use backward induction to optimize successively the allocations
before. Although the former are not hard to find, the latter appears to be infeasible to
carry out in practice. Therefore, the procedure proposed here is to optimally allocate one
observation at a time, pretending that it is the last to be drawn, and then iterate this
process until m observations have been taken. Allocating more than one observation at a
time, on the other hand, appears to be less appealing since with each new observation more
is learnt about the unknown parameters, which improves the basis for further decisions.

Look ahead procedures in various settings are described and discussed in Berger (1985).

Selecting the population with the largest (overall) sample mean is usually called the
natural selection rule, since it is the uniformly best permutation invariant selection proce-
dure, in the frequentist sense, for a general class of loss functions, provided that the sample
sizes are equal. However, for unequal sample sizes, the natural selection rule loses much
of its quality, although it still remains intuitively appealing. Therefore, optimum sample
size allocations for this rule have been considered in the frequentist approach by Bechhofer
(1969), Dudewicz and Dalal (1975), and Bechhofer, Hayter, and Tamhane (1991). On the
other hand, Bayes rules with normal priors turn out to have complicated forms which can-
not be represented in closed form, except for those situations where the posterior is (DT),
as it has been shown in Gupta and Miescke (1988). Bayes rules for similar but more in-
volved models have been studied by Berger and Deely (1988) and Fong and Berger (1993).
For the present setting, it was recommended in Gupta and Miescke (1988) to plan the
experiment’s sampling allocation in such a way as to make the posterior (DT). This is cor-
roborated by the optimum allocation for k = 2. However, for more than two populations,
it will be shown below that there is some tradeoff needed between this recommendation

and the values observed at the first stage.



2. General Framework and Notation

For convenience and to facilitate comparisons with Gupta and Miescke (1993), the
same notation used there will also be adopted here. After a standard reduction of the data
by sufficiency, the model assumptions can be summarized as follows: At 8 = (6;,...,6;) €
R*, X; ~ N(6;,p;!) with p;! = 0?/n;, and Y; ~ N(8;,¢;}) with ¢;! = 0?/m;, are the
sample means from the samples of population w; at stage 1 and stage 2, respectively,
i = 1,...,k, which altogether are assumed to be independent. A priori, the parameters
0 =(0,...,0y) are considered to be random and follow a given prior distribution which
will be later assumed to satisfy ©; ~ N(p;,v; 1), i =1,...,k, and are independent. Let
the loss function for selections at stage 1 and stage 2 be denoted by L(8,s), 8 € R¥, s =
1,...,k, which will be later assumed to be linear. Costs of sampling are not incorporated
in the loss to simplify the presentation of basic ideas. The stopping rule is considered here

to be deterministic: the sampling process stops after m observations are taken.

Having observed X = z € R¥ at stage 1, every Bayes selection rule d}(z) satisfies

E{L(8,di(2))|X =z} = min E{L(8,i)|X =z}. (1)

Likewise, after Y = y € R¥ has been observed at stage 2, every Bayes rule satisfies

B{L®,di(e, )X =2, Y =y} = min BL@)X=2zY=y} ()

There will be no need to consider randomized Bayes selection rules in the following since

minimaxity and invariance concepts will not be used.

Many results for Bayes selection rules can be found in the literature. An overview is
provided by Gupta and Panchapakesan (1979, 1991). Only recently, however, attention
has been given also to non-symmetric models. The binomial case has been treated by
Abughalous and Miescke (1989), whereas the normal case is studied and discussed in
Gupta and Miescke (1988), and more involved models are treated in Berger and Deely
(1988) and in Fong and Berger (1993). Rather than studying the properties of the Bayes
selection rules d} and d in details, let us assume here that they have been derived already,
are ready to be used, and that all that is left to do is to allocate sample sizes in an optimum

manner.



Let us first consider fixed total sample size allocation problems. Before entering each
of the two stages, similar allocation problems of this type arise, which are closely related.
Before entering stage 1, by looking ahead one stage, we would like to minimize the expected
posterior risk subject to ny + ... 4+ nx = n, where n is the total number of observations

allowed to be taken at stage 1. This leads to the following criterion for ny,...,nk

min, B(_min, B{L(©,)IX)) )

Likewise, at the end of stage 1, the criterion for my,...,m; with a total number of m

observations allowed at stage 2 is the following

nmin,  E{ min B{L(Q,i)|X = z,Y}|X = z}. @)
my1+...4mp=m =1,

As explained in Gupta and Miescke (1993), one can get solutions of (3) from those of
(4) by setting n; = ... = nx = 0 and then relabel m; by n;, 1 = 1,...,k, and m by n.

Thus, we need to consider only criterion (4) in the sequel, since it is more general.

In the following, let us assume independent normal priors, i.e. ©; ~ N(u;, v "),
¢ =1,...,k, which are independent. To evaluate the inner conditional expectation of (4),

note that the conditional distribution of O, given X =z and Y = y is:

Given X =z andY =y, ©,...,0; are independent with (5)

@iNN(a.-m(.w_Hqiy;, 1 ), i=1...k
a; + q; a; + ¢q;

where a; = pi + vi and ui(g) = (V,'u,' +p,'$,')/(l/,' +p,'), t=1,...,k.

To evaluate the outer conditional expectation in (4), the conditional distribution of

Y, given X = z, has to be used, which is:

Given X =z, Y3,...,Y; are independent with (6)

Y'iNN(ﬂi(g:_),a;-}-qi), i=1,...,k

The posterior distribution of ©,...,0; at stage 2, as given by (5), is (DT) if and
only if
a1 +q=az+q =...=ar + g;. (7
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It was recommended by Gupta and Miescke (1988) to plan the experiment in such a
way that (7) is satisfied, because of two reasons. First, the Bayes rule is then of a very
simple closed form, and second, the posterior information about the k unknown parameters
is then equally and fairly balanced. The solutions of criterion (4) for k¥ = 2 under linear
and 0-1 loss, as shown in Gupta and Miescke (1993), turn out to be the same: Choose
my and mgy subject to my + my = m in such a way that one gets as close as possible to
the (DT) configuration (7). Since this common solution does not depend at all on the
observations X = z at stage 1, the solution has been found also to the analogous problem
where one observation at a time, pretending it is the last to be observed, has to be allocated
successively. Using the latter m times leads to the same result as performing the former
in one single step. Both procedures are in the case of £ = 2 identical with the optimum
truncated sequential allocation rule which employs Bayes terminal selections and optimum
allocations determined by backward induction. As will be seen later, this is no longer true

for the case of k > 3.

Taking into account that for ¥ > 3, optimum future sampling allocations do depend
on the past observations, it seems more appropriate to break down the allocation of m
observations into more than one step. Several sampling allocation schemes are reasonable.
To represent them in a convenient way, let us introduce some useful notation. For ¢ < m,
let R; denote the fixed sample size ¢t allocation determined by (4) with m replaced by
t there. Furthermore, let R;; allocate any one, but only one, observation to one of the
[ <t populations suggested by R;. Finally, let B, stand for the optimum allocation of one
observation, determined by known future actions. The procedure which allocates the last
m—1 observations using criterion (4), with m replaced by m—1 there, and allocates the first
observation through backward optimization, can thus be represented by (B1,Rmm—1). In a
similar manner, (B1, Rm—-1,1, Rm-2) allocates the last m—2 observation using criterion (4),
with m replaces by m — 2 there, allocates the second observation to one of the populations
suggested by R,,_; after the first observation has been drawn, and finally allocates the
first observation by backward optimization. It should be pointed out that R; and R:
are stand-alone procedures, whereas B; is only meaningful in connection with completely

specified actions in the future.



The best sampling allocation of m observations is determined by an optimum alloca-
tion of the m — th observation, and backward induction. This is (B4, By,...,B1,R1), with
m — 1 repetitions of B;. For comparisons of other allocation schemes, let $ < (=) 7 mean
that procedure 7 has a smaller (the same) overall Bayes risk than procedure S. Using
the basic fact that in the present situation every relevant (conditional) expectation of a
maximum is larger than the maximum of the respective (conditional) expectations, the
chains of preferences presented below in the two lemmas can be verified easily. Therefore,

their proofs are omitted for brevity.

Lemma 1.

(Rm) = (Rm,I”R'm—l) < (BlaRm—l) < (Blvkm—l,lyRm—Z) < (8)
~ (B1,B1,Rm_2) < ... =< (31,31,... ,Bl,Rl).

Since backward optimization, i.e. using B;, appears to be infeasible, one may be

inclined to capitalize on one of the following sampling allocation rules:

Lemma 2.

(Rm) ~ (Rm,l, Rm_1) ~ (Rm,l,Rm-—-l,l,Rm—Z) ~<...=< (9)
< (Rm,1,Rm-1,1,--.,R2,1,R1).

There is one problem that arises when one attempts to use procedure R;; : it is not
clear from which one of the ! < ¢ populations, suggested by R;, should the next observation
be drawn in an optimum fashion. The natural alternative is to consider using one of the

following simpler allocation rules:
(R1,Rm-1) , (R1,R1,Rm-2) , --- , (R1,R4,...,R1). (10)

Also here some conflict arises which, however, appears to be less serious. Whenever an
R, is replaced by an Ry, it remains unclear whether the latter picks one population from

those available for R;; from R, i.e. whether R; is a version of Ri.

In the next section, sampling rules R; and R,, will be studied in more detail under
the linear loss function. The results for R,, can also be applied to R; for ¢t < m in an

obvious manner.



3. Main Results For Linear Loss

In this section we assume that the loss in linear, i.e. L(6,7) = 6 — 6;, i = 1,...,k,
0 € R*, where 63) = max{#s,...,60;}. Criterion (4) reduces then to minimize as a function

of my,...,mg, subject to my + ...+ mg = m, the look ahead expected posterior risk
B{OlX =z} - B{ max B{O{X =z, Y}X = z}. (1)

For k > 2 and the independent normal priors introduced in section 2, this reduces further
by using first (5) and then (6) to maximize as a function of m;,...,m, subject to m; +

...+ my = m, the look ahead expected gain

E{ max aipi(z) + ¢:;Y; X=z}=E (:‘—nllaxk [y.-(z) n (_‘.-’i_))i N,-D , (12)

i=1,...,k a; 4 q; ai(ai + qi

where Nj,..., N; are independent standard normal generic random variables.

To study the properties E(maz;=i,...x[ai + b;N;]) as a function of a; € R and b; > 0,

t=1,...,k, it proves useful to introduce the following auxiliary function T, given by
T(w) = w @(w)+p(w) = / ®(u) du , w €R, (13)

where @ and ¢ denote the standard normal c.d.f. and density, respectively. This function
has been introduced and studied previously in Miescke (1979), but only for the case where
b,...,b are equal. T is positive, strictly increasing, and convex. Moreover, it has the
following basic properties, which can be verified easily: T(w) > w , for w > 0; T(w) =
T(-w)+w , for w € R; 4 T(w/y) is increasing in vy € R for w € R ; T(w) =
E(maz[Ny,w]) , for w € R. To simplify notation, let M; = mazi=1,.. rla; + b;N;] with
a; €ERand b; >0, i=1,...,k, in the following.

Lemma 3.
() E(T(M1)) = (82 +1)/2 T(ay /(82 + 1)/2).
(il) E(Mz)  =a1+ (8 +83)"/% T((az — a1)/ (8} + B3)'/2).
(iii) E(Mk) =ar + bkE(T((Mk_l — ak)/bk) > ar + ka((E(Mk_l) - ak)/bk).
(iv) E(M;) i3 increasing ina; € Rand b; >0, i=1,... k.

8



Proof: (i) Let a; = a and b; = b for brevity. Then one can see that

E(T(My)) = a/R ®(a + b2) p(z) dz + b/R ®(a+ b2) z p(z) dz
+ [ pla+52) o(a) d:

—a 8(a/(B + DV2) + (1 +1) /R oa+b2) (2) dz.

Using integration by parts, the second integral could be brought into the form of the third.
Combining now the two y-functions into one exponential function, standard calculations

show that (i) holds.

(iii) From the representation My = ax + bx E(maz[Ng,(Mx—1 — ax)/b]) and the iden-
tity T(w) = E(maz[N1,w]), one can see that the conditional expectation of My , given
Ni,...,Ni—1,is equal to ax + by T((Mg—1 — ar)/br). The inequality follows from Jensen’s
inequality applied to the convex function T.

(ii) This is seen by applying (i) to the equation in (iii) with &k = 2.

(iv) The monotonicity with respect to ay,...,a is obviously correct. As to by, ..., b ,
consider without loss of generality bx. We know that v T(w/7) is increasing in  for every

w € R. An application of this fact to the equation in (iii) completes the proof.

Remark 1. The equation and the inequality in (iii) of the lemma can be used iteratively
to get lower bounds on E(Mj) in terms of E(M;) for r = 2,...,k— 1. E(M,) has a closed

form representation given by (ii) in the lemma.

The remainder of this section is devoted to a detailed study of the properties of the
allocation rule R;, and finally to some discussion of optimum allocations for stage 1. R,
is found by maximizing (12), subject to one of the values ¢i,...,gx being equal to q and
all others being equal to 0, where ¢ = 1/62. All of the results derived below are given
in terms of ¢, and it should be pointed out that they also hold true for any ¢ = h/o?
with 1 < h < m, i.e. for the analogous allocation rule which optimizes allocation of A
observations to exactly one population, where h € {1,...,m}. For this case, criterion (12)
simplifies to a closed form as given in the following lemma, which will serve as the main

tool to set up a useful algorithm for finding the desired optimum sampling allocation.



Lemma 4. Forg;,=gq, and forqg; =0, j #1i, we have

E{s max sps(z) + gYs X =z} = pi(z) +0:T(Aif0i), (14)

=1,...,k as+ qs

1

where o; = (m) * o and A; = mazjgip(z) — pi(z))

Proof: Under the assumptions above, the right hand side of (12) can be written as

pi(z) + oiE(maz[N;, Ai/ai]). The rest follows from the identity T(w) = E(maz[N;, w]).

In the sequel, let upj(z) < ppj(z) < ... < pr(z) denote the ordered posterior means
from stage 1. Let (;) be the population which is associated with uf;(z), and let ag;y, o(;),
and A(;) be defined analogously. Furthermore, let RO(z), in short R() , denote the rule

which assigns, at X = z , the next allocation to population 7(;y , ¢ = 1,...,k.

First, let us consider the two populations m(z_;) and 7(;) , since they turn out to play
a very special role in this situation: these are the only two population between which a
preference in terms of the order relation ” < ” can be established which does not depend

on p1(z),...,puk(z). This fact is established in the following theorem.

Theorem 1.

ag-1) >(=,<) aw if and only if RED < (=,%) RH)

Proof: Consider the look ahead expected gain, given X = z , of rule R(*) | which is
based on one more observation from population 7(x). Let it be denoted by gx(z). Starting

with its representation given by (14), we can see that it satisfies

gr(z) = py () + oy T(Awy/ox)) = pir-11(2) + o) T(Ak-1) /(%)) (15)

where the second equation follows from Ay = pr—-1) — px) = —A@-1) , and from the
identity T(w) = T(—w) + w. On the other hand, the look ahead expected gain gx_1(z) of

rule R(*~1) ig seen to be

gk—1(z) = ppr—1) + 0 k—1) T(A(k-1)/ o (k-1))- (16)
The rest follows from the fact that ¢T(A /o) is increasing in o for every A € R.

10



Let R(™) (z) be the better of the two rules R(*~1) and R(®) at X = z , as determined by
theorem 1, and let a(,) = min[ax_1), o(x)] and 0(x) = maz|o(x_1),0(x)] be the parameters
associated with that population 7(,), say, which is chosen by R™)(z). This rule has the
look ahead expected gain

9x(z) = ppr—11 + o T((Hx) — pr-11)/0) » (17)

which has to be compared now with the maximum look ahead expected gain of the rules

RO ..., R*=2) je. with the maximum of

gt(g) = ﬂ[t] + O'(t)T(([t[k] — ﬂ[t])/o'(t)) ’ t= 1, seay k—2. (18)

Comparing any two rules R() and R with 1 < < J < k — 2 will necessarily involve

i (z) , ppsp(z) 5 and ppgy(z). This situation is summarized in the next theorem.
Theorem 2. For 1<i<j<k—2 the following holds.
(a) If ag 2 o@;G), e if ouy S 03 then RO <R |
(b) If oG <oy, end og) <(=,>)0ij then RO <(=,»)RWD |
where 0;; is determined by
i + oG Ty — midloGy) = ma + 05Ty — mia)/ois) - (19)

Moreover, the threshold o5 for o(;y satisfies

Kk — Ki)
o <0 < ——2 gra . 20
) J e p——— 7 ( )

Proof: Let ¢ and j satisfy the assumptions of the theorem. Note, that in particular we
have pq < pgj) < ppr—1) < ppwg-

(a) Suppose that a(;) > a(;). Then the following can be shown to hold true:

9i(z) = may + o T(({er — pal + [ — pal/og))
< i+ (e — s + o T — pii)/oy)
= p5) + o T((km — #51) o))
< up oG T((um — p))/ o) = gi(@).

11



The first inequality follows from the fact that

utv
®(z)dz<v, for v>0 and u€R.

T(u +v) — T(u) = /

u

The second inequality follows from o(;y < o(;) and from the fact that ¢7(A /o) is increasing
in 0. This completes the proof of (a).

(b) Suppose now that a(;y < ayj) , and consider the following difference as a function of

0'(,') .
9i(z) — 9i() = [p + o) T((wr = p)/oGy)] = g + o T((vw — pa)/ow)] 5 (21)

which is positive (negative) if o(;) tends to o(;) (infinity) , and it is decreasing in o;) .

Therefore, 0;; is determined as claimed in part (b) of the theorem.

Finally, we have to show that the threshold o;; for oy;) is located in the range given
at the end of the theorem. As mentioned above, if o(;) tends to o(;) then (21) is positive,
ant thus oi; > 0(;). On the other hand, if o;) = o(;) (k) — )/ (pE — prj)) then (21)
reduces to
K — M

' oGy T((kwy — i)/ oGy) »
HiK — P ) (%] L1/93)

9i(z) — 9i(z) = ppj) — ppp —

which is negative, since T(w) > w for w € R. This completes the proof of the theorem.

Let R(®) (z) be the best of the rules R fort=1,...,k—2at X =z , as determined
by theorem 2, which has to be compared now with R*)(z). Let Q(e); O(e), and ppq) be
the parameters associated with that population chosen by R(*)(z). This rule has the look
ahead expected gain

ge(z) = ppe) + o) T((11) — Bia)/o(s)) - (22)
This has to be compared now with (17). The result is summarized in the following

Corollary. The comparison of the look ahead ezpected gains of procedures R(*) and R(*)
18 the same as (a) and (b) in theorem 2, with (i), (§), 0ij, ppy), and ;) replaced by (o), (x),

Oexs Kfo]s GNd U[k—1], TESPECtively.

12



Remark 2. To apply allocation rule R; at X = z, a quick and simple algorithm is
to just find the maximum of (15), (16), and (18), and then to take the next observation
from that population which has yielded the maximum. The results presented in the two

theorems and in the corollary are not needed for this purpose.

Remark 3. The importance of the two theorems and the corollary is the insight which
they provide into how and why the k populations are ordered with respect to ” < ”.
Interpreting a; = v; + n;/o? as the total of prior plus first stage sampling information
gathered from population #; , ¢ = 1,...,k, we can see that the allocation rule R; favors
populations which have, at stage 1, larger yields p; and smaller sampling informations
a; , ¢+ =1,...,k. One exception, treated by theorem 1, is that for the two populations
with the largest yields px;) and p[x), that one with the smaller of the two values ax_1)
and a(y) is preferred. Besides this exception, however, both goals cannot always be met
simultaneously: there is a tradeoff between the two goals which is provided by theorem 2

and by the corollary.

To conclude this study, it is natural to consider also the optimization of sampling
allocations for stage 1. As mentioned below of (4), the results derived in this section are
more general and apply also to this case. All that has to be doneistoset ny =ngs =...=
ng = 0 and then relabel m; by n;, for : = 1,...,k, and m by n. The relevant parameters
reduce then to a; = v; and pi(z) = pi, ¢ = 1,...,k, and the results for allocation rule R;

derived above hold analogously.

One special case, however, deserves further consideration: the case of i.1.d. priors, i.e.
where ©; ~ N(p, v 1), i = 1,...,k, and are independent. In this situation, (14) reduces
to u + 0;/v/2m, and thus rule R; allocates one observation to that population 7; which
has the smallest a;, i =1,..., k.

Suppose that an allocation of m observations can be made in such a way that v, +
nifo? =...= vt +ni/o? holds, i.e. that the posterior at stage 1 is (DT). Then allocating
n times iteratively one observation to that population with the smallest a-value, without
updating the prior, would lead to this configuration. Iterating rule R; n times, i.e. us-
ing the rule (R1,R1,...,R1) of (10), would of course lead to other configurations, since

each newly allocated observation would provide additional information which is utilized.

13



However, one might speculate whether the fixed sample size n allocation rule R, would

use the (DT)-configuration. This question can be settled with the method of Lagrangian

multipliers. For k£ = 2 populations it turns out to be true: a fact which has been shown

already in Gupta and Miescke (1993) with a different method. For k = 3 , on the other

hand, it can be seen that the (DT)-configuration is not a solution for R, to the problem

at hand. In conclusion, we can see that dealing with k¥ > 3 populations is much more

challenging than treating only ¥ = 2 populations, a contrast which is typical for ranking

and selection problems.
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