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Abstract

Structures such as independence of random variables in probability densities and hazard
proportionality in covariate dependent hazard functions have important interpretations in sta-
tistical analysis. Such structures can Be characterized by term eliminations from an ANOVA
decomposition in log density or log hazard. Nonparametric estimation of these functions with
an ANOVA decomposition built in can be achieved by using tensor product splines in a pe-
nalized likelihood approach. In this article, an algorithm with automatic multiple smoothing
parameters is described to implement this approach, and examples are presented to illustrate
some applications of the technique. For density estimation, an exotic feature is the possibility
of assessing/enforcing independence when data are truncated to a non rectangular domain. For
hazard estimation, models more general than but reducible to proportional hazard models are
available, and model terms are estimated simultaneously via penalized full likelihood.

KEY WORDS: ANOVA decomposition; Density estimation; Hazard estimation; Penalized

likelihood; Performance-oriented iteration; Tensor product spline.

1 Introduction

Data and models are two sources of information in a statistical analysis. Data carry noise but are

“unbiased”, whereas models, or constraints, help to reduce noise but are responsible for “biases”.
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Parametric restrictive models and constraint-free nonparametric analyses (e.g., the empirical dis-
tribution for densities and the Kaplan-Meier estimator for hazards) represent two extremes on the
spectrum of bias-variance tradeoff. Smooth function models with soft constraints come in between
the two extremes. Among the many smoothing methods available, penalized likelihood method
pioneered by Good and Gaskins (1971) allows convenient structural model construction, and hence
is rather powerful in handling multivariate problems.

Let 7 be a function of interest, smooth models can be specified via M, = {n: J(5) < p}, where
J(n) is a quadratic roughness functional with a low dimensional null space J;. An example of J(7)
on an interval, say [0, 1],is [ #%. When p = 0, Mp = J, defines a parametric model. As p increases,
M, allows more and more flexible fits. To fit the model in M, one usually resort to the maximum
likelihood method. The estimate in {7 : J(n) < p} usually falls on the sphere {7 : J(7) = p}, and
Lagrange’s method turns the problem into a penalized likelihood problem

min L(n) + (\/2)J(n), (L1)

where L(7) is usually the minus log likelihood of the data. The Lagrange multiplier A is called the
smoothing parameter, which controls the tradeoff between the goodness-of-fit and the smoothness
of 7.

A few generic examples of penalized likelihood estimation follow.

Example 1.1 Response Data Regression. AssumeY |X ~ exp{(yn(z)—-b(n(z)))/a(¢)+c(y,$)}, an
ezponential family density with a modeling parameter 5 and a possibly unknown nuisance parameter
@. Observing independent data (X;,Y;), t = 1,--+,n, the method estimates 1 via minimizing
1 & A

- g{Ym(Xi) = b(n(X:))} + 5 J(n)- (1.2)
Example 1.2 Density Estimation. Observing i.i.d. samples X;, i = 1,--+,n, from a probabil-
ity density f(z) supported on a finite domain X, the method estimates f by €/ [, €7, where 7
minimizes

- %Xn:{n(Xs) —log /X e"} + %J (m)- (1:3)

=1

A side condition, say [, n = 0, shall be imposed on 7 for a 1-1 transform f — e/ [, €.



Example 1.3 Hazard Estimation. Let T be the life time of an item with a survival function
S(t,u) = P(T > tlu), possibly dependent on a covariate u, and a hazard function ety) =
—dlog S(t,u)/dt. Let Z be the truncation time and C be the censoring time, independent of T
and of each other. Observing (Z;, X, 6;,U;), i = 1,--+,n, where X = min(T,C), § = Iir<cy}, and
Z < X, the method estimates the log hazard 1 via minimizing

- X ) - [ ) + 350, s

Normal data regression, an important special case of Example 1.1, is by far the most intensively
studied in the literature; a nice synthesis can be found in Wahba (1990). The formulation (1.2) for
regression with general exponential fa,miI'y data was proposed by O’Sullivan, Yandell and Raynor
(1986); see also Silverman (1978). The formulation (1.3) appearing in Gu and Qiu (1993) evolved
from Good and Gaskins (1971), Leonard (1978), and Silverman (1982). The formulation (1.4) of
Gu (1992b) bears influence from the work of O’Sullivan (1988a, b) and Zucker and Karr (1990),
among others.

Note that there is no dimensional restriction on z in Examples 1.1 and 1.2 so in general the
problem could be a multivariate one. Example 1.3 is by definition multivariate unless the covariate
domain reduces to a singleton. Structures based on a certain ANOVA decomposition of multivariate
functions often help to enhance the interpretability of the estimates and to partly ease the curse of
dimensionality in estimation. As a simple example, consider a bivariate z = (¢, %) in Examples 1.1
and 1.2. An ANOVA decomposition of function of z is defined as 7(z) = g4 + g; + 9, + 9: 4, Where
gg is the constant, g, and g, are functions of only one variable called the main effects, and g; ,, is
the interaction; the decomposition can be made unique by imposing appropriate side conditions on
9ts 9u» and g, ,. For regression, setting gt"u = 0 results in the so-called additive models; for density
estimation, g, , = 0 implies mutual independence of ¢ and u. The structure fits hazard estimation
naturally, where forcing g, , = 0 yields proportional hazard models.

The ANOVA decomposition can be built into penalized likelihood estimation via a certain
structural construction of J known as tensor-product spline technique, of which an exposition
can be found in Gu and Wahba (1992). The purpose of this article is to explore the numerical
feasibility of automatic estimation of densities and hazards with ANOVA-based structures built in.

Algorithms for calculating the estimates with an automatic A but a completely specified J have



been developed in previous work (Gu 1993a, b). With an ANOVA decomposition built in, say
1= )_p gp Where 3 is a generic index, however, J is usually of the form 2 051 Jg(gﬂ), where J (gﬁ)
measure the roughness of function components g5, and the weights 3, an extra set of smoothing
parameters, should naturally also be selected adaptively. After a brief review of existing results, I
shall discuss a feasible automatic multiple smoothing parameter algorithm for calculating density
and hazard estimates of (1.3) and (1.4), and with the help of the algorithm, I shall illustrate some

new options of nonparametric multivariate data analysis made possible by the technique.

2 Formulation and Preliminaries

In this section, I shall discuss a few basic technical facts to tighten up the setup of the prob-
lem, present in some detail a specific formulation to be used in later sections, and review some
background theoretical and algorithmic results.

Of the statistical models implied by (1.1), L(7) represents the stochastic part and AJ(7) the
systematic part. The minimization of (1.1) is implicitly over a function space H C {n: J(1) < o}.
J(n) forms a natural square (semi) norm in A, and supplemented by a norm in J;, makes H a
Hilbert space. Evaluation 7(z) appears in the L(n) part of (1.3) and (1.4). To make the functional
L(n)+(A/2)J(n) continuous in 7, it is necessary that evaluation is continuous in H. A Hilbert space
in which evaluation is continuous is called a reproducing kernel Hilbert space (RKHS) possessing
a reproducing kernel (RK) R(z,y), a positive definite bivariate function satisfying (7(-), R(z,-)) =
n(z) (the reproducing property). A mathematical theory of RKHS can be found in Aronszajn
(1950); see also Wahba (1990, Chapter 1). The inner-product (-,-) (hence norm) and the RK R
define each other uniquely. Given a norm in J,, Hy = H © J; is an RKHS with a square norm J
and an RK, say, Rj, and the systematic part of the model implied by (1.1) is effectively determined
by Ji, Ry, and the smoothing parameter A.

I shall now specify the construction of an RKHS with an ANOVA decomposition built in on
[0,1]%. Side conditions in the ANOVA decomposition will affect the construction, and in the
examples of this article I shall set [g,dt = [g,du = [g,,dt = [g,,du = 0. Starting from any
positive definite function R(z,y) on a domain X', an inner-product can be defined in {R(z,-),z € X'}

to make it an RKHS with R(z,y) as its RK (cf. Aronszajn 1950), hence it suffices to construct



an RK on the domain. The approach of Aronszajn (1950) for RK construction on a product
domain starts with the construction of RK’s on marginal domains. On the marginal domain [0, 1],
a commonly used roughness measure is J = [#? with J; = {1,(- — .5)}. The function space
{g : [ §% < 0o} can be written as a tensor sum H. & H» & H,, where H, = {1} has an RK R, = 1,
Hr = {(-— .5)} has an RK R,(t,8) = (t — .5)(s—.5),and H, = {g: [§%2 < 00, [g = [§ = 0}
has an RK R,(t,s) = ka(t)k2(s) — ka(|t — s|) dual to the norm J(g) = [ §?, where k, = B, /v!
and B, are the vth Bernoulli polynomials (cf. Craven and Wahba 1979). A univariate ANOVA
decomposition is in place where H, carries constant and H, @ H, carries the “treatment effect”
satisfying the side condition [ g = 0. The product of a positive definite function on 7" and a positive
definite function on U is a positive definite function on 7 X U (cf. Aronszajn 1950), so an RK on
a product domain can most conveniently be constructed by simply taking the product of marginal
RK’s, and the resulting RKHS is called the tensor product of the corresponding marginal RKHS’s.
From the three term tensor sum decomposition of the marginal RKHS above, one naturally obtains
a tensor product RKHS with nine tensor sum terms H = ®pccr,,j2Hp, Where for example H, ,
is generated from the RK R, ,((t,u),(s,v)) = Rs(t,s)Rs(u,v). An ANOVA decomposition is in
place where H, . carries the constant, Hr © M, carries the ¢ main effect, H. » @ H., carries the
u main effect, and Hyx @ Hys ® Hsw @ Hs,s carries the interaction. Let the roughness penalty be
J=34 0ﬁ'lJp where Jg are the square norm in Hg. Setting 03 = 0 eliminates Hg from the model
space and setting fg = oo puts Hg in J1. Hy = @gse(0,00)Hp and By = 3 s<o0 8RB Moy Hepn,s
Hr,c, and Hy » are of finite dimension and are often included in J;. The other terms can only
~ appear in Hy. For density estimation, the constant H,. should be eliminated to maintain a 1-1
logistic density transform f < €7/ [e”. Formulas of Jg in this construction can be found in Gu
and Wahba (1992) but are not needed for computation.

When L(n) depends on 7 only through evaluations 7(X;) as in the regression problem of Exam-
ple 1.1, the solution of (1.1) is in a data-adaptive finite dimensional subspace H, = J & {Rs(X;,-)}
(cf. Wahba 1990). The restriction to a finite dimensional space makes the numerical calculation
of the estimates possible. For density estimation, the minimizer 7} of (1.3) in H generally does not
have a finite dimensional expression. Nevertheless, an asymptotic analysis in Gu and Qiu (1993)
shows that there is no loss of asymptotic efficiency when the model space is restricted to H,, in the

sense that the minimizer 7, of (1.3) in H,, shares the same asymptotic convergence rates as #, so



in practice one may calculate 7, to estimate 7.

Write & = Ry(X;,-) and J1 = {¢,}*,. A function 5 € M, has an expression 7 = "%, ¢;& +
M

v=1d,¢,. Fixing smoothing parameters, 7, can be calculated by minimizing

- -11;1T(Qc + 5d) + log/exp(ch +¢Td) + %cTQc, (2.1)

where £ and ¢ are vectors of functions and ¢ and d are vectors of coefficients, ¢ is n X n with
(i, ))th entry Ry (X;, X;) = J(&, ;) where J(-,-) indicates the inner-product in Hz, and § is nx M
with (i,v)th entry ¢,(X;). Let py(h) = [he/ [e" and Vy(h,g) = py(hg) — pn(h)pn(g). From an

estimate 7 = £7& + ¢” d, the one-step Newton update for minimizing (2.1) satisfies

Vee+AQ Veg c ) | Qi/n—petVey (2.2)

Vog  Vas d ST1/n— py+ Vn

where pe = pr(€)s g = 1i(0)s Ve = Va(&:€T), Voo = Vi, 07), Vas = Ve, 87, Vem =
Vi(€,7), and V5 = Vi(@, 7); details can be found in Gu (1993a).

With varying smoothing parameters, (2.2) defines a class of estimates, and one may try to
choose a better performing one from the class as the update. A performance-oriented iteration
simultaneously updating A and 7 was developed in Gu (1993a), where the performance is measured
by a computable proxy (cf. 3.1) of the symmetrized Kullback-Leibler between the true density and
the estimate, SKL(7,70) = o (10 — 9) + pn(n — m0). The arguments and formulas in Gu (1993a,
Section 3) remain valid when fg hidden in R;j are also to be updated, but the single smoothing
parameter algorithm of Gu (1993a, Section 4) is no longer sufficient. We shall discuss a multiple
smoothing parameter algorithm in the next section.

Parallel results hold for hazard estimation. Let N = } N_; 6+ and T5, 2 = 1,---, N, be the
observed failure times, where ¢* runs over all observations but ¢ only runs over observed failures.
The minimizer #, of (1.4) in H, = Ji U {Rs((T},U;),-)} share the same asymptotic convergence
rates as # in H (cf. Gu 1992b). #, = TN, ;Rs((T;, U5), ) + XM, dé, () = ¢Tc + ¢Td can be
computed via minimizing

l 7 15 T TN, AT
-1 (Qc + Sd) + - .--E__.:l /TY,-- exp(§ec + ¢id) + 3¢ Qc, (2.3)
where @ is N X N with (i,)th entry &(T3,U;) = Ry((Ti, U3), (T, Uj)), S is N x M with (i,v)th
entry ¢,(T;, Us), Yis(t) = Iix,.>t>2,.] is the at-risk process of the i*th observation, §;. is N X1 with
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ith entry &(t,Uis), and ¢;. is M x 1 with vth entry ¢,(t, U;»). The one-step Newton update for
minimizing (1.4) again satisfies (2.2) but with the entries modified as entailed from the modified
definitions of u,(h) = (1/n) Y%=y [7 hi+Yis€™* and V,(h,g) = pyn(hg), where his(t) = h(t, U;+) and
7+ (t) = n(t,Us). As a proxy of SKL(n,m0) = Jy; [r(e" — €™)(n — m0)Sm where 5(t,u) = P(X >
t > Z|U = u) is the at-risk probability and m(u) is the density of U, (3.1) holds verbatim for
hazard estimation up to the entries appearing in (2.2); an argument can be found in Gu (1993b)

for a singleton U, which extends readily to the general setup.

3 Algorithm

Define H = Ve + AQ, E= Vg5 — Vg e H W g, ug = Q1/n— pe + Ve ug = ST1/n — py + Vi,
ugpe = ug — Ve Hlug, ve = Ve — pe, 04 = Vi — g, and vgpe = vg — Vg e H 1v¢. Solving (2.2)
one gets d = E~luy)e and ¢ = H~!(ug -V, 4d), which are dependent on the smoothing parameters
A and 0 hidden in Rj. It is shown in Gu (1993a, Section 3) that
Lo = TQETQ)  (Qu/n)THQa/n) _ ug H7lue + uf B uge
n(n —1) n—1 2

A(ug — Ve g E luge ) TH1QH Y (ug — Ve g E7luy) 11
— 2 ] ( ° )

is a proxy of SKL(7, 7o), where n = £T¢ + ¢Td is dependent on ) and 03 through &, ¢, and d. A
performance-oriented iteration may be conducted by selecting A and 65 to minimize (3.1) in each
iteration.

The algorithm I will be using consists of an initialization step and an updating step. For
the initial value of 03, say 6y, I first set 6, = 1 and 6, = 0, v # 1, use the single smoothing
parameter algorithm of Gu (1993a, Section 4) to obtain an automatic ), say A;, with R; being
the only penalized term, and then set #; = 1/);. After separate calculations of initial 63 in this
manner, I put all penalized terms back together and employ the fixed 63 algorithm once more to
set up for the updating step. Such a procedure is invariant to individual scalings of Rg, which are
usually arbitrary and not comparable to each other, and if the penalized terms contribute somewhat
“independently” to the estimate, the relative weights should not be too far from the “optimal” ones.

In each iteration of the updating step, I first fix A and 7 and update 63 one at a time through the
list, then I invoke the fixed 83 algorithm to calculate A and 7 for the next iteration. When updating



a certain 0g, say 01, I fix other g at their latest values, evaluate (3.1) at three different values of
0,: the current value, say 6;, and two adjacent values 6:110%1; I then fit a quadratic in log,0 1
through the three points, determine the minimum of the quadratic on [log;, 6, — .5,10g;0 6, + .5},
and evaluate (3.1) once more at the minimum; the smallest of the four evaluations of (3.1) gives
the new 6;. The order in which 03 is updated could be arbitrary, but for definiteness I choose to
follow the descending order of the traces of (6gRp(Xi, X;)) at the outset of each iteration. Note
that only relative values of 85 matter so a standardization procedure should follow the 85 updating,
for which I choose to set the trace of ) to one. The algorithm is clearly invariant to the scaling
and indexing of Rg.

I choose such a simple coordinate-wise updating procedure out of the following considerations.
First, the derivatives of (3.1) are beyond reach so the Newton method is not feasible. Second, (3.1)
will change from iteration to iteration and so will the minimizing 6g, hence it would be unwise to
invest too much to try to minimize (3.1) in one iteration; this rules out the usual quasi-Newton
approach. Now if g5 contribute “independently” to 7, one may expect (3.1) not to have too much
curvature in the neighborhood of the minimum, as suggested by the behavior of a similar score in
the regression setup (cf. Gu, Bates, Chen and Wahba 1989), so a coordinate-wise updating can be
reasonably efficient.

The algorithm is implemented in portable RATFOR code soon to be released to public archives.
Its performance will be discussed along with the examples in sections to follow. Numerical details

are not of prime interest here and are omitted.

4 Density Estimation Examples

I shall first analyze the blood fat concentration data listed in Scott (1992, Appendix B.3). Concen-
trations of plasma cholesterol and plasma triglycerides (mg/dl) in 371 male patients were evaluated
for chest pain. The patients were classified into two groups, 51 patients with no evidence of heart
disease, and 320 patients with narrowing of the arteries. Of interest are the estimation and com-
parison of the bivariate distributions of cholesterol and triglycerides for the two groups.

I transformed both variables by log;, to make the data more evenly scattered, and employed the

algorithm of Section 3 to estimate the density for the disease group. Let T = log;¢(cholesterol) and



U = log,o(triglycerides). Two outliers were removed (see below for discussion) from the disease
group and a domain X = 7 X U = [2,2.65] x [1.5,2.Qj was chosen to cover the remaining 369
observations. The support of the density is often unknown in practice whereas a finite domain
has to be specified for the method to work, but the resulting estimate can (and should) always be
considered as that of the conditional distribution of X|(X € X). X was mapped onto [0,1]? for
calculation using the tensor product spline construction of Section 2. On the translated domain
[0,1]% T used a null space J; = {¢1,¢2,¢3} = {(t — .5),(v— .5),(t — .5)(u — .5)} with M = 3
dimensions and an RK Rj = 0, R,c + 0. sRcs + OsxRsx + Ox sRrs + 05 5Rs 5 With 5 terms.
Letting z = (t,), the fit 7(z) = Y0_; é.(2)d, + ©%; Rs(X;, z)e; decomposes into 5(z) = g,(t) +
g, (v) + gt,u(t9 u), where g, = d1$:1(2) + 1i; Os,cRs o(Xiy 2)ei = di(t — .5) + 2oty 05, Rs(Ti, e
9y = dat2(z) + 1iog b5 Re,s(Xis )ei = da(u — .5) + Yoy Oc,s Rs(Us, u)ci, and Gtu = ds¢s(z) +
Sy Borr Regr (K ©) 40,0 B (X, )00, R (X, )i = da(t—.5) ()4 0 (B0 BT ) (Ui
B)(w—.5) + 0x s(T; — .5)(t — .5)Rs(Us, u) + 05 s Rs(Ti, t) Rs(Us, u))eci. All the integrals appearing in
the terms of (2.2) were calculated by summation over an equally spaced 50 x 50 grid on X’; see Gu
(1993a) for discussion concerning the choice of quadrature in this setting.

The estimated density for the disease group is contoured in frame (a) of Figure 4.1 as solid
lines, where the 318 observations used in the estimation are superimposed as circles, the 2 outliers
as stars, and the integration grid as dots. The estimated density for the healthy group is similarly
contoured in frame (b) of Figure 4.1 and observations and integration grid superimposed. Frame
(c) overlays the two estimated densities and frame (d) contours the likelihood ratio of the disease
group density over the healthy group density. To assess the strength of the dependence of the
two variables, I calculated the information proper Inf(TLU) = Ey log(fry/frfy) as defined in
Whittaker (1990, Chapter 4), otherwise known as the relative entropy (cf. Joe 1989), where fr;,
is the estimated joint density and f; and f;; are the corresponding marginals. The information
proper were .04118 and .04285 for the disease and healthy groups respectively, and the equivalent
normal correlations p = {1 — exp(—2Inf)}!/? are .281 and .287.

For the second example let us look at a data set listed in Wang (1989) concerning AIDS patients
infected by blood-transfusion. The variables are the time 7" from HIV infection to AIDS diagnosis
and the time U from HIV infection to the end of data collection, both in months. The data set
consists of 3 subsets: 34 “children” of age 1-4, 120 “adults” of age 5-59, and 141 “elderly patients”
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Figure 4.1: Blood Fat Concentration Data. (a) Disease group density with data. (b) Healthy group
density with data. (c) Overlay of densities of (a) and (b). (d) Likelihood ratio of (a) over (b).
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Figure 4.2: Blood-Transfusion Data of “Elderly Patients”. (a) Density estimate without pre-
truncation independence. (b) Density estimates with pre-truncation independence.

of age 60 or above. Clearly only data with T < U can be observed, i.e., the observations are
randomly truncated. Of interest is the estimation of the distributions of T" and U.

Under the assumption of pre-truncation independence of T' and U, the distributions of T and
U were estimated separately in Gu (1993c) by a penalized conditional likelihood approach. Using
penalized full likelihood with multiple smoothing parameters, one may check the assumption of pre-
truncation independence by allowing interaction in the estimation and assessing its strength. Under
the assumption of pre-truncation independence, penalized full likelihood with multiple smoothing
parameters estimates the distributions of T and U simultaneously. For illustration I shall conduct
these analyses for the “elderly patients” and compare the results with those in Gu (1993c).

The pre-truncation domain was chosen to be [0,100]? which covered all the observations. The
domain to use in (1.3) was the triangle X = [0,100]N {¢ < u}. I mapped [0,100]? onto [0, 1]?
and used the same ¢,’s and RK components as those used in the previous example. The estimated
density without pre-truncation independence is contoured in frame (a) of Figure 4.2 with the data
superimposed as circles and the integration grid as dots, where the grid points on the diagonal
carried half weights as compared to the others in calculating the integrals. The estimate with pre-

truncation independence was calculated by setting d3 = 8; » = 0r s = 0, = 0 and is contoured in

11



frame (b) of Figure 4.2 where the data and the integration grid are superimposed. The distributions
on the margins are superimposed in the blank space on their corresponding axes, where the solid
lines are estimates based on full likelihood calculated here and the dashed lines are estimates based
on conditional likelihoods quoted from Gu (1993c). The heights of the solid and dashed lines are
adjusted so the areas under them are the same. It is clear that the two estimates agree well in
the light truncation area but depart a bit in the heavy truncation area. To assess the feasibility of
pre-truncation independence, I calculated the log likelihood ratio Y121 log(f,(X:)/ f,(X:)) = 7.243
where f; and f, are the estimates without and with pre-truncation independence. This gives a
“y?-statistic” about 14.5 but one needs an appropriate degrees of freedom for its calibration. A
closer look at the components of the estimate revealed that d3¢s dominated the interaction term
in log fi, so one degree of freedom appears reasonable for the calibration of this particular “y2-
statistic” resulting from nonparametric estimation with an associated p-value of .000, and in turn
the pre-truncation independence does not seem to be too good an assumption for the observed
data. An alternative check on the interaction is to set d3 = 0 and see if the penalized terms are
“willing” to reproduce the effect of dz¢s in f;. Denoting this estimate as f;, we have a log likelihood
ratio Y"1 log(f,(X:)/ f5(Xi)) = .179, so the same effect was indeed reproduced. The Kullback-
Leibler information are Ey log(f,/f;) = .02578 and Ey, log(f,/f,) = 03180 yielding SKL(f;, f;) =
05758, Ef log(fs/f2) = 01717 and Ej, log(f,/f3) = 01975 yielding SKL(fs, fz) = .03692, and
Ej log(fi/f3) = 00211 and Ejy, log(fs/f) = .00224 yielding SKL(f;, f3) = .00435.

Finally comes some discussion on the performance of the algorithm. The performance-oriented
iteration implemented in the algorithm operates on mathematically different performance prox-
ies at different 7, so convergence is not guaranteed. Nevertheless, divergence rarely occurs in my
experiments with a single smoothing parameter (cf. Gu 1993a, b, ¢). Multiple smoothing param-
eters introduce greater flexibility, however, and one may expect a bit more difficulties. For the
blood-transfusion data, the algorithm converged in all cases without incidence. For the blood fat
concentration data, the algorithm converged for the healthy group and for the disease group minus
2 outliers to give the estimates presented, but it did not converge when the outliers were kept in
the disease group data: The algorithm iterated to a certain # combination on which the fixed 6
iteration asked for interpolation. Similar phenomena also occurred in runs with untransformed or

partly transformed data with apparent outliers. Because a key step in calculating performance
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proxies is the estimation of terms of y,,(7) via the sample mean or cross-validated version of it (cf.
Gu 1993a, Section 3), it appears reasonable for the procedure to be somewhat sensitive to outliers,
but how exactly this may cause trouble to # updating remains unclear. Numerically the algorithm
is quite demanding: A run for the n = 318 blood fat concentration example with 5 &’s took about
300 cpu minutes out of an IBM-RS6000 and a run for the n = 141 blood-transfusion example with

5 0’s took about 30 cpu minutes.

5 Hazard Estimation Examples

The first example we will be looking at is the Stanford heart transplant data listed in Miller and
Halpern (1982). Recorded were survival or censoring times of 184 patients after (the first) heart
transplant (in days), their ages at transplant, and a certain tissue type mismatch scores for 157
of the patients. There were 113 recorded deaths and 71 censerings. There is no truncation in the
data, i.e., Z; = 0. Due to the nonsignificance in the analyses by Miller and Halpern (1982) and by
others, and also due to the missing values, I shall discard the tissue type mismatch score in the
following analysis.

Let T be time after transplant and U be age at transplant. I transformed the time axis by
t* = t1/2 to make the survival/censering times more evenly scattered, and then estimated hazard
on (t*,u) € [0,61] x [10,65] = 7* x U which covered all the observations. From the estimated
hazard on the transformed time axis €”(*"**) = —dlog S(t*,u)/dt*, the hazard on the original time
axis is simply €"(t"%)(dt* /dt) = en(t*/*%) /(241/2). 1 mapped T* x U onto [0, 1]? for calculation using
the same tensor product spline construction as in the density estimation examples but with the
constant term included. The fitted e"(*"*) with interaction is contoured as solid lines in frame (a)) of
Figure 5.1 and that without interaction in frame (b), where the contour labels are multiplied by 100
and data are superimposed as circles (deceased) or crosses (censered). To assess the plausibility of
hazard proportionality, I calculated the log likelihood ratio 3123 {6;(n —n.)(X:, U;) - fOX i(emtUi) —
en2(tUi))dt} = 3.376 (cf. 1.4) which yields a “x?-statistic” 6.65, where 7, is the fit of frame (a)
and 7, is the proportional hazard fit of frame (b). This time the penalized terms did contribute to
the interaction so one degree of freedom is only a lower bound for the calibration of this particular

“x?-statistic”. The p-values associated with x? = 6.65 are .010, .036, and .084 for d.f. = 1,2,3, so
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Figure 5.1: Stanford Heart Transplant Data. (a) €"®"%) with interaction. (b) e"*¥) without
interaction (proportional hazard e*%+edu). (c) “Base hazard” e%+9=(") of (b) and slices of (a)

and (b). (d) “Base hazard” on the original time axis e%+9e(*'/") /(271/2) and age multiplier e%« of
(b). Circles in (a) and (b) are observed deaths and crosses censorings.
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the interaction seems at most marginally significant, and in turn hazard proportionality appears
plausible. Plotted in frame (c) of Figure 5.1 are the “base hazard” e%*9+ of the proportional
hazard model as the solid line, a slice from frame (b) on the dotted line as the dotted line, and a
slice from frame (a) on the same dotted line as the dashed line; data are relatively dense near the
sliced line in 7* X U and the two slices agree well up to about ¢* = 35, beyond which only a few
failures occurred near the sliced line so information from data is very limited. The “base hazard” on
the original time axis and the age multiplier 9« in the proportional hazard model share frame (d)
of Figure 5.1 as the solid line on the solid axes and the dotted line on the dotted axes, respectively.
It can be seen that beyond the first 250 days or so highly hazardous period the risk remains rather
stable through the rest of the time axis, with the lowest risk at about 750 days after transplant.
The age effect is virtually uniform for those under 40 but the risk takes off quickly beyond age 45.

For the second example I shall try to analyze the Zidovudine (ZVD) treatment data described
by Wang, Brookmeyer, and Jewell (1993). A total of 500 patients with a prior diagnosis of AIDS
were recruited for a two-year observational study of ZVD treatment sponsored by the Burroughs
Wellcome Company. Available are time from AIDS diagnosis to enrollment in the study, time
from enrollment to end of follow-up, both in days, and death/censoring indicator. There were
206 recorded deaths and 294 censorings. One may set the time origin at AIDS diagnosis (incident
model) or at initiation of treatment (prevalent model); see Wang, Brookmeyer, and Jewell (1993)
for relevant discussion. When the time origin is set at AIDS diagnosis, the life time data are
truncated at enrollment time. I shall use U = log,o(time from AIDS diagnosis to enrollment-10)
as a covariate, and estimate hazards in both the prevalent model and the incident model. The log
transform on covariate makes the data more evenly scattered.

Let T be follow-up time and T3 be time since AIDS diagnosis. Data are on (#1,%) € [0, 735] x
[1,3.2] and (%3,u) € [0,1570] x [1,3.2], respectively, on the two time axes. The domains were
mapped onto [0, 1]? and the same tensor product spline construction was used to calculate estimates.
Automatic hazard estimates are contoured in Figure 5.2 with contour labels multiplied by 1000,
where the two frames in left are for the prevalent model and those in right for the incident model.
The frames on top carry interaction terms and the frames on bottom assume hazard proportionality.
Observed deaths are superimposed as circles and censorings as crosses. The truncation line is also

superimposed as the dotted lines for the incident model. An assumption for the theory and the
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Figure 5.2: Zidovudine AIDS Treatment Data. Left: estimates in prevalent model; right: estimates
in incident model. Top: estimates with interaction; bottom: proportional hazard estimates. Circles
are observed deaths and crosses censorings.
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Figure 5.3: Zidovudine AIDS Treatment Data, Prevalent Model. Left: slices of estimates; solid
lines are from proportional hazard estimate, dashed lines from estimate with interaction, and dotted
lines from discretized data. Right: base-hazard e%e*9 and covariate effect e« in the proportional
hazard estimate.

performance estimate to work properly is that the truncation times (and life and censoring times)
be independent of the covariate (cf. Gu 1992b, 1993b), which does not hold for the incident
model in this example. This may explain the apparent undersmoothing in the upper-right frame
of Figure 5.2, yet the proportional hazard estimate in the lower-right frame appears reasonable.
We shall take a closer look at the prevalent model. The log likelihood ratio of the estimate with
interaction over the proportional hazard estimate is 7.292 yielding a “x2-statistic” 14.58, which
has a p-value of .010 with a d.f. = 4.75. We are in a grey area with little guidance, and the
“x2-statistic” does not seem to be of much use here. The left frame of Figure 5.3 compares the two
estimates on three slices marked as dotted lines in the left frames of Figure 5.2, where the solid lines
are from the proportional hazard estimate and the dashed lines from the estimate with interaction;
the estimates seem to agree well in data-dense area. The base-hazard and the covariate effect in the
proportional hazard estimate are plotted in the right frame of Figure 5.3 in the same manner as in
frame (d) of Figure 5.1. We see that the hazard increases as time goes on, but the up-and-downs in

the covariate effect appears puzzling. To check whether these are “real” or just some artifacts due
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to the estimation procedure, I selected three subsets of data with time from diagnosis to enrollment
in the ranges of [30,40], [60, 80], and [95, 130] surrounding the three slices marked in the left frames
of Figure 5.2, and estimated log hazards for the three groups using cubic splines as in Gu (1993b);
the sample sizes and observed deaths are 79/28, 50/27, and 32/8 for the three groups in order.
To make things somewhat comparable, I turned off the automatic smoothing parameter selection,
and instead chose to match the integrated second derivative of the estimated log hazards to that
of g, in the proportional hazard estimate. The three estimates are superimposed in the left frame
of Figure 5.3 as dotted lines, where referring to the upper end of the time axis, the upper, middle,
and lower curves correspond to covariate ranges [60,80], [95,130], and [30,40]. A bump around
70 on the covariate axis is clearly there. We also see that separate estimates go their own ways,
especially on the upper end of time axis where information from data is scarce, while smoothing
on the covariate axis reconciles them and hopefully reduces noise in turn. The up-and-downs in
the covariate effect may or may not be “real”, but they appear to faithfully describe features of the
data.

All iterations for the hazard examples converged without incidence. Entries of (2.2) for hazard
estimation have multiple terms of integrals as seen in (2.3), so the calculation is generally slower
than that for density estimation. For the Stanford heart transplant data, the fit with interaction
took 50 cpu minutes on an IBM-RS6000 and the proportional hazard fit took 29. For the ZVD
treatment data, the two fits in the top row of Figure 5.2 took 974 cpu minutes in total and those
in the bottom took 375.

6 Discussion

In this article, structural nonparametric estimation of multivariate probability densities and co-
variate dependent hazard functions is implemented through tensor product splines. Examples are
presented to illustrate potential a.pplica.tiims of the technique in data analysis. Although demand-
ing in memory and execution time, the algorithm is generic to fit various model configurations
and the data-driven multiple smoothing parameter selection makes the estimation fully automatic.
The code comprises part of a collection of RATFOR routines for penalized likelihood density and

hazard estimations soon to be released to public domain archives statlib and netlib, as sequel to a
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collection of routines for smoothing spline regression archived in RKPACK.

In the existing literature on multivariate nonparametric density estimation, little attention is
paid to the exploration/exploitation of independence structures of random variables and no means
seems available to allow for truncated domains. The blood-transfusion example of Section 4 shows
how these aspects may be incorporated in estimation using tensor product splines. Tensor product
estimator respects qualitatively different axes and the automatic selection of smoothing parameters
makes the estimation invariant of axis scaling. On multidimensional domains with comparable
scaling but not so interpretable axes such as geographical maps, rotation invariant estimation
using thin-plate splines would be more appropriate.

Generalizations of Cox’s (1972) partial likelihood proportional hazard model received much
attention in recent literature. Cast as special cases of models available through tensor product
splines, O’Sullivan (1988b) set g; , = 0 while Zucker and Karr (1990) restricted g, € Hcx and g, ,, €
Hr,x ® Hs,x, and both treated the “base hazard” e%*9: as nuisance and employed penalized partial
likelihood to estimate the remaining terms. Gray (1992) illustrated the use of regression splines
in penalized partial likelihood for fitting these models, with the amount of smoothing tuned via a
certain definition of “degrees of freedom”. In comparison, all terms are estimated simultaneously
via penalized full likelihood in this article, and the amount of smoothing is tuned automatically
according to a certain estimated performance of the fit. Kooperberg, Stone and Truong (1993)
implemented an adaptive tensor product linear regression spline approach to the estimation of
covariate dependent hazard functions, where the ANOVA decomposition is implicit.

For density estimation, the development represent a modest step forward towards nonparametric
estimation of graphical models (cf. Whittaker 1990); related work on conditional density estimation
is under way. For hazard estimation, a further topic is the incorporation of time dependent covariate,
on which a theory has yet to be developed.

If observed (T',U) center around some monotone curve in 7 X U, the estimated terms in an
ANOVA decomposition may suffer identifiability problem; this is called concurvity. If T and U are
independent for distribution data or if hazard proportionality holds for survival data, the estimated
interaction in an ANOVA decomposition should be negligible; this calls for the assessment of
practical strengths of estimated ANOVA terms. Some diagnostic tools for regression can be found

in Gu (1992a). Those for density and hazard estimations are yet to be developed.
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