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Abstract

For the purpose of nonparametric density estimation, a prior distribution is
. constructed on the space of stepwise constant density functions, not necessarily of
bounded support. In particular, the sequence of heights is conditionally distributed
a priori as a Dirichlet process on the integers, given a bidimensional mixing param-
eter with location and scale components which are, in turn, assigned an arbitrary
marginal prior.

Proper Bayesian estimates of the density are obtained. They are not his-
tograms, but they share common features with the histogram and other kernel
based estimators. They also incorporate prior information, like a prior guess for
the density or bounds for its support, which may be particularly appealing for small
sample situations, where usual density estimation methods are not satisfactory.

The estimates are computable by simple numerical methods, as opposed to
other nonparametric Bayesian density estimators proposed in the literature, which
display significant computational problems. Moreover a simple way to generate
density functions from the posterior process allows simulation of Bayesian intervals
for functionals of the density, in particular for the density itself, evaluated at

selected points.
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1 Introduction

Consider a statistical model in which random variables X3,..., X,, are independent and
identically distributed with an unknown density function f. The focus is on estimating
f, or a functional ¢(f) of it, in the presence of a sample X; = zy,...,X, = z,. The
uncertainty about f may be such that any finite dimensional parametrization of the
density is regarded as insufficient. On the other hand, some information may be available
a priori about its location, shape, smoothness or other characteristics. The researcher
may decide to quantify this prior information by assigning a prior to a nonparametric
neighborhood of some prior guess f,. Then the problem arises of specifying a prior
distribution for f, lying in an infinite dimensional space of functions. In other words, we
seek a model for Bayesian nonparametric density estimation.

Several proposals have already been made to exloit the computational advantages of
Dirichlet process priors in the density estimation setup (for recent discussions see Hjort [§]
and Hartigan [6]). These prior processes, introduced by Ferguson [2], have proven very
useful for many other nonparametric Bayes problems. The computational advantages
of Dirichlet-type priors rest on the conjugate character of the Dirichlet distribution to
multinomial sampling. To understand how they could be used in the context of density
estimation, consider first the following very simple histogram-like prior: partition a finite
interval of the real line into subintervals of equal length and imagine a random density
f, stepwise constant over those intervals. Now suppose the heights of the density are

given a joint Dirichlet prior distribution and are appropriately scaled. Next, obtain a

n
=1

sample zy,...,z, from f. Then the multinomial likelihood []%; f(z;) trivially produces
a posterior on the heights of f which is again a scaled Dirichlet. Leonard [10] considers
models of this kind, but regards them as unsuitable to density estimation because of the
lack of local prior correlation between the ordinates of f. It is also obvious that the finite
dimension of such a rigid specification of f does not allow many density functions to be

in the support of the prior.



It is the purpose of this paper to consider a generalization of the simple model above,
refined in such a way that one can still take advantage of the computational ease, but
also obtain enough flexibility in the prior to correct for the aforementioned problems. In
particular, to give a summary of the proposed method in simple terms, take the interval
described above to be the whole real line and generalize the Dirichlet distribution to
an infinite dimensional distribution (a process on the integers). Such a generalization is
naturally given by an appropriate Dirichlet process. Next, take the bin width A to be
a random positive quantity, thus allowing densities not necessarily stepwise constant to
enter the support of the prior. Finally, also take a location parameter u to be random.

From a methodological viewpoint, such a prior represents a specification which the
researcher may not literally believe, but which allows for the approximate representation
of a great deal of prior information, for example, centering around a prior guess.

In a related paper Lo [11] defines a prior random density f as

f(z) = / K(2,u)G(du),

where K(z,u) is a fixed density kernel and G is a Dirichlet process. Ferguson [3] details an
example with a normal kernel. The explicit form obtained for the posterior expectation of
f(z) requires summing over all partitions of the sample size, so that exact computations
are prohibitive even for small data sets. More recent works by West, Miiller and Escobar
({14], v. bibliography) explore the computational usefulness of the Gibbs sampler for this
kind of models. The prior considered by all these authors is kernel-based, as is the one
proposed in this paper, but location and weight of the kernels are controlled by the same
Dirichlet index. In this paper, instead, they vary according to an arbitrary marginal
distribution. On the other hand, only a simple rectangular kernel is considered.
Approximate posterior expectations of the density are obtained by simple numerical
methods. Computations are possible for any sample size, up to a certain degree of
numerical accuracy. Furthermore, posterior distributions, and in particular Bayesian

intervals, for any functional ¢(f) of the density can be constructed by simulation.
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2 Prior and Posterior Processes.

In the following Lemma a formal construction of the random density described in Sec-

tion 1 is given.

Lemma 1 Let ap(p,A),k € N :=0,%1,42,... be a double sequence of nonnegative mea-
surable functions defined for 0 < u < A, in such a way that
a(p,A) = Y ar(u,A) <oo Vg, A
keN
Let the stochastic double sequence (M, A, Go, G11,Gxa,...) be defined on some probability
space and take values in RT™ X R* x [0,1] x [0,1] x ..., in such a way that the distribution
of (M, A) has Lebesgue density n(u,)) and, for any integer N, the vector
(Go,Gu1s.-.,Gen, 1= D Gi)
k>N
has, conditionally on any given (u, ), a Dirichlet distribution with index
(ao(/“, ’\)a Q4 (,LL, /\)’ SRR aﬂ:N(lu’ /\)7 Z ak(/" /\))
k>N
Define a random step function f by
, G _ Gemn
f2)=) ={M+(k-DA<2< M+EA} = 208 (1)
keN A A
where {A} is the indicator of event A and c(u,\) := min{n € N :n > (z—p)/A}. Then

f is almost surely a probability density function.

Proof. It is easily seen that the process (M, A, Go, G41,Gxs,...) with the desired
properties exists. The distributions of (M, A, Gy, G41,...,G+n) are consistent, so that
existence follows from Kolmogorov’s extension theorem. The rest of the proof is straight-
forward. §

A random function f as in Lemma 1 is said to be a Dirichlet Density Process with

indices w(u, A) and {ag(p,A),k =0,£1,£2,...},for 0 < p < X < oo.
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Notice that the assumption that (M, A) has a Lebesgue density is not essential in
Lemma 1, although it helps giving f desirable properties. In particular, the joint density
of (M,A,Go,Gyy,...,Gen) evaluated at (g, A, go, g1, .. - ,g+N ) 1s
D(ex(t, Ty 2"V (L = Ty ;) ity i)

(Tl n Dok (i )T (Tpiow (s, 1))
foreach N =1,2,... and for gy > 0,5, gx <1,k =0,£1,...,£N.

T(phy A) (2)

The construction in Lemma 1 implies that the infinite double sequence {Gy;k =
0,+1,%2,...} is, formally, a mixture of Dirichlet processes on the integers (Antoniak
[1]), that is, a mixture of infinite dimensional Dirichlet distributions.

Now suppose that a Dirichlet Density Process is used as a prior in a nonparametric

Bayesian approach to density estimation, when a random sample from f is available.

Theorem 1 Let Xi,..., X, be, conditionally on f, i.1.d. random variables with density
[ and let f be a Dirichlet Density Process as in Lemma 1. Then, conditionally on

X1 =x1,...,Xn = x4, f is a Dirichlet Density Process with indices

_ (15 A) Mrew @ty Ming (uny)/ (A" (i, A pag)
fosm<,\'<oo ”(#I, A') er/\/ ak(#" )‘/)[nk(#’,)\’)]/(’\ma(#/, /\l)[n])d/‘/d/z’ ,)
3

™ (py Az, ..oy 20)

for0 < u <A <oco and
{ar(p, A) + ne(p, A), b =0,%1,42,.. .},

where
ne(p, A) =F#{i<n:pu+(k-1)A <z, <p+k}
and i) := 1, and zpy = z(z+1)...(z+ k—1), for any z € R and any positive integer

k, is the ascending factorial.

Proof. By the properties of marginals and moments of Dirichlet random vectors (see

Wilks [15]) we have the likelihood

l(‘zlv- .- ,xn‘,uv/\tgmgila' .- 7g:tN) =



= E(l(.’l?]_, .. zn|IM7A7 GO, Gil; Gi2a . )I,U, /\7g07g:l:17 e 7g:f:1V)

H ' nk(ﬂ A) n
= ( = j\j\gk )E( H Gkk(#’/\)l#a/\ago,gﬂ:ly-"7giN)

[k|>N
nk(p,A) N
(Hk--“;fk )(1 — 3 go) it () (4)
=1

H}I|>N au(p, /\)[nl(ﬂv\)]
(Ziki>n s, /\))[ZWN n5 (1,A)]

X

The second product in (4) is finite, and actually void if IV is large enough.

The posterior finite dimensional distributions of the stochastic double sequence
(M, A, Go, G11,Gxa,...) thus have Lebesgue densities proportional to the product of
(2) and (4). The posterior structure as in the statement of the Theorem can then be
easily recognized. |l

This useful selfreproductive property is analogous to the property described in The-

orem 1 of Ferguson [2].

3 Bayes estimation and choice of the prior

Now consider the Bayesian estimation of f in the above setup. There is no loss of
generality in solving first the simpler no data problem, since the posterior process has
the same structure as the prior. The expectation of f(z) (the Bayes estimate under
squared error loss) conditionally on a given (u, A) has a simple form, but the integration
over (¢, A) is to be done with numerical methods.

With the convention 1/0 = oo, a no data estimator of f(z) is the prior expectation

(7 (2)) = B(E(CLA s ) = [ | “““’(”’ N u Ndudr. (5)

<ugi<oo  afpy, A)A

We therefore obtain the following

Corollary 1 The posterior mean of f(z) is given by

fulz) = E(f(2)l21,...,2a) = (6)



Ae(u ) (s A) + neuny (1, A)
Mzy, ..o,z )dud.
//OSIJS'\«X’ (a(p, A) +n)A (s A, - 20 )dp

Now suppose that a known density f,, derivative of a distribution function F,, is
considered a suitable prior guess for the density. The goal is to approximate this prior
guess with a Dirichlet Density prior process centered around f,. For this purpose, a

natural choice for any given (g, ), is the following:

ak(:u'a /\‘)
afp, A)

For example, if the prior guess f, is a standard normal, we are not putting any prior

=F(p+k\) = Fy(u+(k=1))), keN. (7)

mass on it or on any other normal density, but we are giving probability 1 to a set of step
functions which approximate it. The prior guess is well centered around f,, although
the analytical expression for it, formula (5), is not that transparent. For example, in
the normal example of the next Section the highest relative difference between the prior
guess and the prior mean occurs at z = 0 and is about 3%.

By substituting (7) in (6) we have

) = [ b ELa(2) ®)

alp,A) 1

+(1- W)Fn(h,x(z))]}f(#, A1, .., Tq)dpud

where [,(z) == (p + (c(u, A) = 1)A, & + c(g, A\)A] is an interval containing z, F,, is the
empirical distribution function and the symbols F, and F, are used to denote both
the distribution function and the corresponding measure. The usual representation of a
Bayes estimate as a weighted average of prior and empirical is contained in the integrand
of equation (8); one further averaging operation takes place when the integration over
%, A is performed.

Note that estimator (8) is very similar an average shifted (Scott [12]), or WARPed
(see Hérdle [7]) histogram, the main difference being in the presence of a prior guess.

The limiting case with a(g, A) = 0 and (4, ) degenerate at a specified value (g, A,)

reduces to a histogram with bin width A,.



As n — oo - the other, more important, limiting case - the conjecture is that the
posterior on (u,A) will degenerate to a unit point mass on the point (0,0), allowing for
consistency of the corresponding estimates. Pointwise consistency has been proved in

Gasparini [4] for the special case of x identically equal to 0.

4 Toward computations

The estimation method presented in this paper is fairly intuitive but intrinsically nu-
merical. The presence of the counts n(y, A) in (3) makes it impossible to have natural
conjugate priors for 7(u, A) and ©*(u, A|z1,...,z,) is quite an irregular function, whose
behaviour is deeply connected to the distribution of the spacings X; — Xj, 7,7 < n. Large
jumps of 7*(g, A|zy,...,z,) are due, roughly speaking, to the way the pair (g, A) fits in
the interstices between the spacings.

Abandoned the search for conjugate priors, the prior density =(u,)) is then to be
approximated numerically by a discrete probability mass function over a grid of (u;, A;)
values, 1 = 1,2,..., I such that 0 < y; < A; < Az, where I is a large number and Ao
an arbitrary upper bound for the support of A. From a practical point of view, Amqz can
be of the order of magnitude of the seminterquartile range of the prior guess, say. If the
prior guess is not too far off, An.. is then a large fraction of the sample range and, since
A plays a role similar to the bandwidth in kernel density estimation, few objections can
be raised to that. Typically, only few of the (u;, A;) points carry significant posterior

mass.

5 Frequentist Monte Carlo simulations

This section contains a comparison of the frequentist performance of the Bayes estimator
fa to an optimal kernel density estimator. The comparison is aimed at highlighting some

of the properties of f,, rather than comparing the efficiency of the two methods, since,



loosely speaking, if the true density f is smooth, a kernel estimate is perhaps the best
known method over repeated sampling in the absence of prior information, but it can
be outperformed, trivially, by a Bayes estimate centered around a prior guess which
happens to be close to the true underlying f. The following simulations can only give
an idea of what amount of correct prior information is necessary for the Bayes estimate
to outperform the kernel estimate in a regular (normal) case. Given the affinity between
fn and WARPed histograms, it would probably be more sensible to compare these two
procedures, rather than f, and a kernel estimate. On the other hand, since WARPed
histograms are a bridge between the histogram and the kernel estimate, they improve
their performance as they converge to the latter and it is therefore impossible to find a
WARPed histogram to use as a term of comparison.

1000 samples of n = 100 points each were pseudo-randomly generated from a normal
with mean 0 and variance 1. The Bayes estimate (8) was calculated for each sample using
the default prior described in the previous section: a grid of 25 x 35 (u, A)-points were
chosen over the triangle 0 < u < A <1, and assigned an improper prior proportional to
1/A. The correct prior guess f, = Normal(0,1) and a function a(u, A) identically equal
to constant values A = 10, A =50 and A = 100 were used.

For the kernel density estimator, a normal kernel was chosen, since considerations
about higher asymptotic efficiency of other kernels with compact support seemed irrele-
vant in this case, the sample size being relatively small (for density estimation standards)
and the data being themselves normally generated.

Both L; and L, optimality criteria are used to evaluate the performance of a density

estimate (Bayesian or kernel) f*, namely the Mean Integrated Absolute Error
MIAE(f*) = E([ 1*() - £(2)ld2) (9)
and the Mean Integrated Squared Error

MISE(f") = E([(f*(2) — £(2))%dz). (10)



To obtain an approximation to the optimal bandwidths, we computed Monte Carlo
values of MIAE and MISE over those 1000 samples for different values of the bandwith
h. We then selected h;, minimizing MIAE, and h,, minimizing MISE. The integrals
in formulae (9) and (10) were approximated as sums over 81 z-points, equally spaced
between -4 and 4. For n = 100, the MIAE minimizer turned out to be 4; = .426, up to the
third decimal point. The MISE minimizer was instead h; = .447, to be compared to the
asymptotic approximation .422 = 1.06 % (100)~% appearing, for example, in Silverman
([12], page 45). Notice that h; < hg, that is, minimizing L; distance requires less
smoothing than minimizing L, distance, but the two values are not so different. This
was already noticed by Hall and Wand ([5], page 73).

Table 1 shows the Monte Carlo averages, the fifth, the fiftieth and the ninetieth
percentiles of the sampling distributions of the three different figo(z) and of two kernel
estimates - corresponding to bandwidths A, and h; - for few selected values of z. Monte
Carlo approximations to MIAE and MISE of the estimators are shown in the last two
columns. As it can be seen from a comparison with the true density at the top of
the table, the long run averages of the Bayes estimates are substantially closer to the
true values than the kernel estimates, but their sampling variabilities are much larger,
accounting for much larger MISE and MIAE if A = 10 or A = 50. For A = 100,
the MIAE of the Bayes estimate finally becomes smaller than the MIAE of the kernel
estimate. Notice once again that we are using the correct prior guess, so that as A — co
MIAE and MISE tend to 0.

The weight A = 100, for which the MIAE of the Bayes estimator is smaller that
the MIAE of the kernel estimator, may, at first, seem quite large. However, it should be
noticed that the hyperparameter A in a Dirichlet Density Process has not quite the same
interpretation as the prior mass in a straight Dirichlet process prior. The reason is that,
for too small an A, too much weight is given to the “maximum likelihood” estimator of
the density, which is, basically, an unreasonable combination of spikes at the observations.

Keeping the weight of the prior guess, A, the same order of magnitude as the sample

9
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size prevents, in this example, unwanted spiky looking Bayesian estimates for most of
the samples ?. Nevertheless for some samples, the magnitude of A, the hyperparameter
A and the spacings interact in such a way that some undesirable spikeness still appears.
Figure 1 contains the Bayes estimates of f given the first and the second of the 1000
samples used in the simulations described above. The first is affected by the problem but
the second is not, although the only difference between the two is the observed sample.

It is not clear how to avoid this phenomenon, since “adjusting” the prior based on the
data to avoid spiky looking estimates - for example by starting the prior support of \ at a
value large enough - involves a circular reasoning contrary to the Bayesian dictate. Such a
corrective action has not been applied sample by sample in the simulations above, giving
some more explanation of the high MISE and MIAE of the Bayes estimates. Another
possible solution would be to use a Bayes estimate based on a loss function that penalizes
for roughness, instead of the square error loss implicit in the use of the posterior mean,
although this would mean introducing a complicated structure in the problem, too far
removed from the simpleminded Bayesian approximation ideas underlying the use of
Dirichlet Density Processes.

The issue of how to avoid too rough Bayes estimates parallels the choice of bandwidth
in kernel estimation but it is a little less crucial, since a posterior spread over a multitude

of possible values of A is less committing than the choice of a single bandwidth.

6 Bayesian Monte Carlo simulations

The simple structure of Dirichlet Density Processes has the advantage that it is fairly easy
to simulate from the posterior process. With repeated simulations from the posterior

comes the possibility of constructing Monte Carlo posterior distributions and Monte

2From this point of view, the hyperparameter A is more similar to the hyperparameters of a Polya
tree prior, as in Lavine [9], where big values of the hyperparameters are used to for the purpose of

density estimation.
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Carlo Bayesian intervals for any functional ¢(f) of the density f. The simple step

character of the posterior realizations of f makes the computation of #( f) straightforward |

in many cases.

A method for simulating 100c% Bayesian intervals for a functional #(f) of interest

from a posterior process, given one sample, goes through the following steps:

L.

6.

Generate (', \') from m*(u, Alzy, ..., z,).

Fix N large enough that n(y’, \') = 0 and also a,(y’, \') are numerically negligible
(compared to a(u,A) +n) for all |k| > N.

Generate g’ y,...,gy_; from a Dirichlet distribution with parameter

o (', N) + (W, X), b = =N,..., N

Compute ¢(f'), where
N 7

Fle)= 3 SE{W +(k=1N <2< p +EX) (11)
k=-N
for ' < z< ' + NN, 0 otherwise.

Repeat steps 1 through 4 a large number R of times.

Report the (1 —¢)/2 and (1 + ¢)/2 quantiles of the ¢ sample of size R obtained.

For step 1, a discretization of the posterior as the one used in the previous section

will do. For step 3, the usual construction of Dirichlet vectors, as independent gamma

variates divided by their sum (see Wilks [15]), is computationally efficient.

Bayesian intervals have been simulated for two particularly interesting functionals,

namely f(0) and the mean m = [z f(z)dz, given the second of the 1000 samples used

in the previous Section. In this case, R = 5000 and the functionals are easily calculated,

for a particular Monte Carlo realization f’ from the posterior, using the formulae

f0) = go/A
m = / zf(z)de = p' + X' 3 kgl — N2,

11



The Monte Carlo experiment produced the following 90% Bayesian intervals:

0.2774 < f(0) < 0.4528

—-0.0841 < m <0.1559.

Notice that the construction of frequentist confidence intervals for densities in the
presence of a relatively small sample size (n = 100) is quite problematic, whereas the
Montecarlo Bayes procedure is straightforward.

A Montecarlo estimate of the whole posterior distribution of f(0) and m is provided

by a histogram of the 5000 Montecarlo replicates and is shown in Figure 2.

Acknowledgement: The author thanks Professor Michael Woodroofe for his help

and advice.
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Captions for tables and figures.

e Table 1: Simulation results from 1000 pesudonormal samples of size 100
o Figure 1: fioo(z) = posterior mean of f

o Figure 2: Montecarlo posterior distributions of f(0) and m
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Figure 1: (author: Mauro Gasparini) fio0(2)
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Figure 2: (author: Mauro Gasparini) Montecarlo posterior distributions of f(0) and m
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