ROBUSTNESS OF STEIN’S TWO
STAGE PROCEDURE

by

Hyun Sook Oh and Anirban DasGupta
Purdue University

Technical Report #93-22

Department of Statistics
Purdue University

May 1993



ROBUSTNESS OF STEIN’S TWO
STAGE PROCEDURE

by
HyYUN S0o0K OH AND ANIRBAN DASGUPTA
Purdue University

May 14, 1993

1 Introduction

The robustness of Stein’s two-stage procedure against possible departures
from normality was considered originally by Bhattacharjee(1965). There had
been works to show that the procedure is quite robust. For example, Blu-
menthal and Govindarajulu(1977) claim that the procedure is remarkably
robust under a mixture of two normal populations differing in location pa-
rameters and having the same unknown variance. Using an Edgeworth series
model, Ramkaran(1983) showed that the procedure is quite robust by re-
viewing Bhattacharjee(1965)’s assertion. In this article, the robustness of
the procedure is considered by investigating the expected sample size for
appropriate nonnormal distributions such as the bounded uniform, Double
exponential, t distributions with 3 and 5 degrees of freedom, logistic and Von
Mises extreme value density. Notice the last distribution is asymmetric.

In section 2, Stein’s two-stage procedure is briefly summarized. In section
3, a general formula for an upper bound on the ratio of the expected sample
sizes for a normal population and a given nonnormal population is derived
when the first stage sample size is taken to be 2. Let X;, X5, ... be observa-
tions from a nonnormal population with unknown mean and unknown but
finite variance. Then the derived upper bound on the ratio of the expected



sample sizes is given by a function of a single variable,

R(z) = 2% 4+ 222 (}/—2'-/2 yF(y)dy >0
(2) = 2P(x? < 2/2%) + 22P(x3 > 2/22)’ =
where F is the distribution function of X; — X;. In the above, z plays the role
of a/+/c, o and c being the standard deviation and a preassigned constant
respectively (see section 2). In section 4, we specialize to the case when the
underlying distribution is absolutely continuous. Then R(z) is demonstrated
to be unimodal if the density function of F crosses the half-Normal density
function only once from below. This can be regarded as a tail ordering. The
implication of this unimodality result is that a local maximum must be a
global maximum. The general Theorem is then applied to several specific
distributions and in each case it is shown that the loss of efficiency is small,
uniformly in o and ¢. Throughout the article, we take an initial sample size
equal to 2. Admittedly, this restricts the applicability of the results; but most
of the analytic results including the general upper bound seemed unprovable
for a general initial sample size. Plots of R(z) are provided at the end. The
principal achievements of this note are the exact bounds it was possible to
obtain; in the process, the illustrative examples give rise to some interesting
calculations.

2 The Two-Stage Procedure

Assume that X, X3, ... is a sequential sample from N (g, 0?) (¢ and o2 are
unknown). Take an initial sample of size ng from this sequence and calculate
the unbiased estimate of o2,

o
s* =) (¢ = To)*/(no - 1)
=1
where Tj is the mean of the first ng observations. Then n — ngy additional
observations are taken from the same sequence. The size of the second sample

is such that 2

n = maz{no, [S? + 1]}.

The quantity ¢ > 0 is a preassigned constant and [y] denotes the largest. inte-
ger less than or equal to y. Let T, = Y%, z;/n, the mean of n observations
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obtained by pooling the two samples; then the "pivotal-quanty”

t=+/n(T, —p)/s

can be used for inference about p. Stein(1945) has shown that the sampling
distribution of t is Student’s t with ng — 1 d.f. and the coverage probability
of the interval (Z, & [), a function of o2, is always greater than or equal to
1 —a, irrespective of the values of 4 and o2, provided ¢ = 2/b?. The quantity
b is the upper 100a/2 % point of t distribution with no—1 d.f. A martingale
argument can be given to show that the infimum coverage is exactly 1 — a.
This fact does not appear to be formally known. For conditional coverages
of the Stein two stage interval, see Casella(1988).

3 Upper Bound on the Ratio of the Expected Sam-
ple Size for Normal Data and a Given Nonnormal
Data

Let X3, Xs,... be a sequence of i.i.d. random observations from a popula-
tion. Assume that Var(X;) = 0? < oo. Then, the expected sample size of
the Stein procedure for an initial sample size ng is

Ep(n)=no+ Y Pp(s?>cm)

m=ng

where s? is the sample variance from the first sample of size ng. Stein(1945)
derived the following lower and upper bound for the expected sample size for
a Normal population.

Lemma 1. (Stein) Suppose X, Xs,... ~ N(p,0%). Let Eg 52(n) denote the
expected sample size. Then

noP(x3,-1 < no(no — 1)c/a?) + %P(X;‘;oﬂ > no(no — 1)c/o?)
< EQ,UZ’ (n)
2
< noP(x% _y <no(no —1)c/o?) + ZP(x2 41 > no(no — 1)c/o?)
FPOC s > nalmo — 1)e/o?).



Note that the difference between the upper and lower bound of Eg ,2(n)
is less than 1. So Eg ,2(n) can be approximately evaluated from tables of the
incomplete gamma function by using one of the bounds.

From now on, throughout this paper, let us consider the following set up:
Take ng = 2. Let Y = (X; — X3,) /o and let F' be the distribution function of
Y. Assume that F is absolutely continuous with the density function f.
Then -

Ep(n) =2+ Y P(Y?>2cm/d?).
m=2

An upper bound for E}i 22(2) can be evaluated by taking an appropriate upper

bound of E,2(n) and the lower bound of E3,2(n) as in Lemma 1. First we
give an illustrative example.

Example 1. Let X;,Xs,... be ii.d. random variables from Uniform(p —
V30, u 4+ /30). This parametrization keeps the interpretation of o2 as vari-

ance intact. Then f(y) = &(2v3 — ly|), ly| < 2v/3. So

0 V2em  2cm
E,2(n) = 2+m2=2(1— 7 +120_2)I(2cm512a2)

2 if o2/c < 1/3
2+ T2/~ Bem 4 Zemy it 52/0 > 13,

But

[Gazzfc](l V2em + 2cm) - /602/6(1 V2ecz + ﬂ)dw
sy V3o ' 1202 30 602

Thus if 02/c < 1/3, E_}i% is less than

2
2P(x3 < 2¢/0?) + 02/cP(x3 > 2c/o?)




and if 62/c > 1/3, it is less than

1+o%/c+ :—";%\/E/a — &c/o?
2P(x3 < 2¢/o?) + 0?/cP(x% > 2¢/0?)

Combined with Lemma 1, this gives an upper bound on the ratio of expected
sample sizes.

Theorem 1. Suppose the support of the underlying distribution is the whole
Real line. Then R(z) as defined below is an upper bound on the ratio of the
expected sample sizes for Normal data and the given data, where

22 +222 [ yF(y)dy
2P(x3 < 2/22) + 22P(x% > 2/2?%)’

R(z) = z=o0/+\/c.

Proof:

S P(Y?> 2em/o?) < 2 /1 ~ /\Zz/a F(y)dydz

m=2
2,,2

= 2 /;/aﬂy)("; ~1)dy (by Fubini)

o? V2c/o
= 7(1 + 2/0 yF(y)dy) — 2.

The inequality holds because P(Y? > 2cm/a?) is a monotone function of m.

Thus 2 gt E
lo2 g 2¢cfo
Eoz(n) < —+4+ -c— A yF(y)dy.

c
By using the lower bound of E ,2(n) given in Lemma 1, the result now fol-
lows. ]
Discussion: Of course, the interesting question is what is a global upper
bound on the ratio of expected sample sizes, uniformly in o and ¢. A nu-
merical maximization of R(z) cannot be rigorously asserted as a tool for
achieving this per se due to the unbounded nature of z. In the next section,
we provide an analytic justification for the numerical method by establish-
ing that R(-) is unimodal. This result implies that a numerical maximum is
indeed a global maximum.



4 A Global Upper Bound

Example 1.(continued) Let z = o/+/c. Then, it is easy to see that

2
sup =1.
s<iyv3 2P(x§ < 2/22) + 22P(x3 > 2/2?)

And
1+z2+24él_L1

33z 1222
sup = 1.12744,
2>1/v3 2P0G < 2/2%) + 22P(x3 > 2/2?)

(by numerical maximization) which is attained at z = 2.6167 i.e. o =

2.6167+/c. Hence % < 1.12744 for all o and for all c.

Before proving the next theorem, we define a tail ordering of two random
variables.

Definition 1. Let V and W have the density function g and A, respectively.
The tail of V is thicker than the tail of W(V >; W) if 3K > 0 such that
g(z) > h(z) for all z > K.

Theorem 2. Let U ~ N(0,2). WithY = (X; — X;)/o, let Y >, U. Suppose
that f crosses 2¢ only once in the positive half line where ¢ is the density
function of the standard Normal distribution. Then R(z) is unimodal with a
unique marimum.

Proof: see Appendix.

Next, several distributions are considered as Examples. All distributions
considered in the following Examples satisfy the conditions of Theorem 2.
Thus any local maximum of R(z) is the global maximum of R(z), which is a
global upper bound on the ratio of the expected sample sizes. Without loss
of generality, assume that the mean is zero for the given distribution.



Example 2. Let X;,X;,... be i.i.d. observations from a Double Expo-
nential distribution with variance o2. Then the density function of Y =
(X1 — X32)/o, is given by

/3

1) = L2 M1+ Val)), o0 <y <oo.

Thus
E,z(n) < 2 2/°°/°° dyd
) < 227 [ f)dyds
= 2+E/o<> (1+y)e?d
c \/E/ay Y Y
= 2+(-21+5‘i+1) —3ele
= 7t
Hence
R(s) = g G Ve
T 2P(x3 < 2/22) + 22P()3 > 2/2%)’
with

sup R(z) = 1.1514 at z = o/+/c = 1.38839.

z2>0
That is, the ratio of the expected sample sizes for Normal data and Double
exponential data having the same variance is at most 1.1514 for all o and c.

Example 3. Let X;, X3,... be i.i.d. observations from the Student’s t dis-
tribution with 3 degrees of freedom, i.e., the density function is given by
2 1

=——75w. Lhen

om (1+z2[o2)2 *

4(y? +20
Thus
o o 4(y* +20)
Ea(n) < 2+2 i
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© 4(y’+20) o

= 242 —y“ —1)d
2 e 7 +4)( )y
2
— 1+22+ 1_6\/__2:_ - 2itan—l(ﬁ) + _8\/2—_
m(4+2/22)® = 227 wz(442/22)?
42 2 V2

+W + ;tan_l(z), = 0'/\/5

It follows that
sup R(z) = 1.17023 which is attained at z = o/+/c = 1.3108.

2>0

Example 4. Let X;, X,...bei.i.d. observations from the Student’s t distri-
bution with 5 degrees of freedom. i.e., the density function of the distribution

is given by '3785;175?3%? Then
16 iy*+8y?+ 336

= , —00 <y < oo.
Thus
% 16 1yt +8y? + 336 0%y?
E, < 242 9 —1)d
(n) + \/2_00_3\/5’”_ (%y2+4)5 ( % ) Y

= (89607 — 8575tan"(v/22))(1 + 24262 + 2162* + 8642° + 12962°)

2
4+8575v/62(1 + 222° + 8;6z 0088 2°)
+35v/2492° H,(3/2,5/2)(542% + 6z + 3/22°% + 2°)
+TV29NV2T2 H,(5/2,7/2)(~1 + 122% + 242* +
69122° + 298082° + 51842'%) + 5v/28V/372TH,(7/2,9/2)(-1 — 322 +
2882* + 36722° + 168482® + 27216217),

where
F(b) a—1 b—a-1 2\-5
Ho(a,) = Tra—a) /t — t)-=1(1 — 6t22)~5dt
and z=oa/+\/e.
Hence

sup R(z) = 1.14503 which is attained at z = o/+/c = 1.40092.

z>0



Example 5. Let X;,X,... be i.i.d. observations from a Logistic distribu-
tion with variance o2, i.e., the density function is given by 775'«?6%:/@3)7

Let W = |Y| = | X1 — X;|/o. Then
W= (X@ ~ Xw)/o,

where X(;) denotes the ith order statistic. Gupta and Shah[1965] showed that
the distribution of W has the density

2re™/V3(6 + \Brw + (V31w — 6)em™/V3)
3\/:._;(_1 + emu/\/g)3 )

f(w) =

Thus

o 0.2w2
E,(n) < 2+ /ﬁ_c/ahs( 5o — 1) (w)dw

o? Vac/o
= 24 -(B(W") - /0 w? f(w)dw) — /ﬁ/o F(w)dw

22 V2/z 00
= 2+ 22— /0 w? f(w)dw) — /ﬁ/z fw)dw, z=o/\/e

omeVr/(V32) + 32— \/gzeﬁ”/ (V32)
- V32z(—1 + eV2r/(V32))2

2 /32/3x 4 421 +3)

4 =
+ 2 ( + 23(—1 + e\/fr/(Sz))2 22 \/'?:23(1 — e\/fﬂ/(Sz))
—\/Wgz_(sln(l - eﬂ"/(sz)) - %Polylog[% e‘ﬁ’r/(sz)]),
where
0 1n(] —
Polylog[2,t] = / -l-udm.
t z
Hence

sup R(z) = 1.13843 which is attained at z = o/+/c = 1.43368.

z>0



Example 6. Let X, Xs,... be i.i.d. observations from the Extreme value
distribution with the density function as

L -wye g Vo .
T

Notice that this ditribution is not symmetric. It is known that the distri-
bution of Y = X; — X, is a Logistic distribution (Gumbel(1961)). That

® B 1/ﬂe—y/ﬂ B \/6
fly) = A+ evio)e B = et

Thus

\/5/2 y
2 2
Ea(n) < z°4 2z A 1+?dy

Numerical calculation now gives that

sup R(z) = 1.14426 which is attained at z = o/+/c = 1.40703.
z>0

5 Discussion

Our exact results show that Stein’s Two-Stage Procedure is quite robust
with respect to the expected sample size under the distributions considered
(Bounded Uniform, Double Exponential, t distributions with 3 and 5 degrees
of freedom, Logistic and Von Mises Extreme Value distribution ) when the
initial sample size is 2. Specially, an asymmetric distribution, Von mises
extreme value distribution, was considered and it worked as well as others.
Except the uniform, each distribution considered as an example here belongs
to the family of scale mixtures of Normal distributions. Most distributions
in that family satisfy the condition of Theorem 2. Robustness with respect
to the coverage probability will be treated elsewhere.
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Appendix

Proof of Theorem 2:

Let
142 /ﬁ/z F(s)d
Q) =142 [ aP(a)de
and let
P(Z) = 2/ P(x} < 2/5*) + P(d > 2/22).
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Then R(z) = Z2.

 Let us look at the sign of the second derivative at the zeros of the first

derivative, which is

sn(@"(2)P(z) - Q)P"(2)) = sgn(Q@"(2) — % E"gp"( )
Now, L s
Q'(2) = ~5F(V2/2), P'(2) = —5P(xi < 2/7").

and

Q) = ZF(WA2)+ ‘M

P'(z) = P PG < o)) +

—l/z .

\/_5

Let h(z) = 2¢(z) = \/_%_e‘zzﬂ, z > 0.
Then

|

P(x3 <2/2%) = /0 5 \/_ e?dy = /Oﬁ/z h(z)dz = H(V2/z), sa

Thus
(1) = sg ( f(V2/2)  h(v2/2) )
F(v2/z) H(2/z)

(1)

By the assumptions, the tail of F' is thicker than that of H and so h cuts f

exactly once (and from below).

Let 2o be the crossing point. Then clearly zp > my, where my, 1s the median
of h. Because if o < my, F(z0) < H(zo) < H(my) = 7, which is impossible

since f is symmetric about 0.
Define ¢t = inf{z > 0: F(z) < H(z)}. Then mj <t < 2o.

We will now prove R(z) is unimodal. The proof consists of two steps: (a) To
show that R has at most one mode on (v/2/t,0); (b) R has no extrema on

(0, v2/1].

(a) Consider z > v2/t (& V2/z < 1):

Then f(v/2/z) < h(v/2/z) and F(v/2/z) > H(\/2/z).
So if 3y 3 R'(y) = 0, then

sgn(R"(y)) < 0.

12



Hence every extrema on (v/2/t,00) is a maximum. Thus there exists at most
one maximum on (v/2/t, o).

(b) Consider z < V2/z (& V2/z > t):

Suppose that Jv 3 R'(v) = 0.

Then

2L

= T =

(2)
But

E,:(n) = 2+ i P(S? > cm)

= 242 i P(Y > V2em/o)
= 2423 (1= F(VEm/a)), ==o/Ve

Let G denote the distribution function of U ~ N(0,2).
By the assumption of Y >; U, for z near 0,

1—F(\2m/z) > 1 - G(V2m/[z) for each m=2,3,....

Now,

Eoo(n) =2 +2 f; (1 G(vam/2)).
So E,2(n) > Eg 42(n).

Thus R(z) > Ei 22(7(?1) > 1 for z near 0.
Hence if there is v such that R'(v) = 0, then there must be an extrema above

1. This contradicts (2). That is, there is no extrema on (0,v/2/%].

Consequently, there is at most one mode for z > 0.
We will now finally demonstrate that there is exactly one mode.

13



First, lim,_,o, R(z) = 1. And since

V2/z
2< Ep(n) < 224 2z2/ zF(z)

< 224+ 2F(V2/z)
and li_r}r&(z'z +2F(V2/2)) = 2,

one also has that
lin& R(z) =1.

Also, R(z) > 1 for z near zero. Hence there must be one mode and R(z) >

for all z > 0.

14
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Figure 1: Plots of Upper bound on the ratio of the expected sample size for
normal distribution and each distribution where z = o'//c






