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Abstract

The problem of selecting the population associated with the largest mean from
among k(> 2) independent normal populations is investigated. The population to be
selected must be as good as or better than a control. It is assumed that past observa-
tions are available when the current selection is made. Accordingly, the empirical Bayes
approach is employed. Combining useful information from the past data, an empirical
Bayes two-stage selection procedure is developed. It is proved that the empirical Bayes
two-stage selection procedure is asymptotically optimal, having a rate of convergence
of order O(Q%?Lz), where 7 is the number of past observations at hand. The result of
a simulation study, which indicates that the possible obtainable rate of convergence is
of order O(n™1), is described.
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1 Introduction

Consider k independent normal populations 7y, ..., 7, with unknown means 6y, - -, 0.
Let 0y < ... < 0 denote the ordered 0;’s. A population m; with 0; = 0 is called the best
population. The problem of selecting the best population was studied in the pioneering works
of Bechhofer and Gupta, by using the indifference zone approach and the subset selection
approach, respectively. Gupta and Panchapakesan (1979,1985) provide a comprehensive
survey of the development in this research area.

In a practical situation, one may not only be interested in the selection of the best
population, but also require the selected population to be good enough. For example, in
medical studies, the performance of any proposed new treatment must be better than a
standard treatment before it can be accepted by medical practitioners. In the literature,
Bechhofer and Turnbull (1978), Dunnett (1984) and Wilcox (1984) investigated procedures
for selecting the best normal population compared with a control, respectively. Using the
subset selection approach, Gupta and Sobel (1958) and Lehmann (1961) have made some
contributions to this problem.

In this paper, we employ the empirical Bayes approach to select the best normal popula-
tion provided it is at least as good as a specified standard. The empirical Bayes methodology
was introduced by Robbins (1956, 1964). The empirical Bayes approach has been used in se-
lection problems by several authors. Recently, Gupta and Liang (1989), and Gupta and Leu
(1991) have investigated empirical Bayes procedures for several selection problems. Many
such empirical Bayes selection procedures have been shown to be asymptotically optimal in
the sense that the Bayes risk of the empirical Bayes selection procedure converges to the
minimum Bayes risk.

This paper deals with a two-stage selection procedure for selecting the best normal pop-
ulation compared with a specified standard using the parametric empirical Bayes approach.
Using a parametric empirical Bayes approach, Gupta, Liang and Rau (1994) studied a two-
stage selection procedure for selecting the best Binomial population compared with a control.
Also, this paper is an extension of a one-stage procedure for selecting the best normal pop-
ulation compared with a control studied by Gupta, Liang and Rau (1994). The formulation
of the selection problem is described in Section 2. A Bayes two-stage selection procedure is
derived in Section 3. We then construct an empirical Bayes two-stage selection procedure in
Section 4. The asymptotic optimality of the empirical Bayes two-stage selection procedure is
investigated in Section 5. It is proved that the empirical Bayes two-stage selection procedure
has a rate of convergence of order O(lh‘—:-ﬁ), where n is the number of past observations at
hand. The result of a simulation study which indicates that the possible obtainable rate of
convergence is of order O(n~1), is given in Section 6.

2 Formulation of the Selection Problem

Consider k independent normal populations, 7y,. .., T, with unknown means 6,..., 0,
respectively. Let ) < ... < O} denote the ordered values of the parameters 61,...,0;. It
is assumed that there is no prior information about the true pairing between the ordered



and the unordered parameters. Any population associated with ) is defined as the best
population. For a given standard 6y, 7; is said to be good if §; > 6y, and bad otherwise. Our
selection goal is to select a population which should be the best among the k& competitors
and good compared with the standard 6. If there is no such population, we select none.

A two-stage selection procedure is described as follows. First, we have M indepen-

dent observations taken from each of the k& normal populations. For each : = 1,...,k,
let Xi,---, X,M be a sample of size M from n;. Based on X = (Xj,...,X}), where
Xi=Xi =3 2 Xij, one decides whether the selection should be made immediately

or not. If one dec1des to make the selection immediately, then based on X one may select
a population from among the k populations or one may select none in which case the &
populations are excluded as bad populations. If one decides not to make the selection im-
mediately, then one {potential) population is chosen, say 7;, and a further sample of size m,
Yi,Ya,..., Y, is taken from m;. Let Y; =Y, = l ie1 Yi;. Then, based on X and Y;, one
may decide to either select m; as the best populatlon and consider 7; to be good, or select
none and exclude all the k populations as bad.

Let Q@ = {8 = (61,...,0:)|0; € R,t = 1,...,k} be the pa,ra,meter space. Let ¢ =

(ao,@1,...,ax) be an action, where a; = 0,1;¢ = 0,1,...,k and E a; =1. Whena; =1

for some ¢ = 1,...,k, it means that m; is selected as the best and c0n51dered to be good.
When ag = 1, it means that all the k populations are excluded as bad populations. Also, let
t denote a function associated with the termination action. When ¢ = 1, it means that the
selection is made immediately after X is observed. When ¢ = 0, it means that additional
m observations from some of the k& populations are needed in order to make the selection.

When ¢ = 0, let A = (Aq,...,Ax) be the identity action, where A; = 0,1, =1,...,k, and
k

> A; = 1. When A; =1, it means that the additional m observations are taken from ;.
For the parameter § and action (g,?,4), the loss function L(4, (g,t,4)) is defined to be:

k
L(Q’ (Q, t, 4)) = ma'x(a[k]a 00) - tzaiai + Mkc;

1=0

k

+(1 — t) {— EA,-[a,-Hi + (1 - a,-)00] + mcz} R (2.1)
i=1

where ¢; > 0 is the cost for each observation taken at the first stage, and ¢; > 0 is the

cost for each observatlon taken at the second stage. Note that conditional on the parameter

0;,X; ~ N(6;, M) Y, ~ N(6;, ) and X; and Y; are conditionally independent. We let

fi(z|0;) denote the condltlonal probablhty function of X;.

It is assumed that for each z = 1,...,k,0; is a realization of a random variable ©; which
has a N(p;,7?) prior distribution with probability density function h;(), where both yx; and
72 are unknown. The random variables ©,..., 0y are assumed to be mutually independent.

Let X be the sample space generated by X and let ) be the sample space generated by

=(Y1,...,Y%). A two-stage selection procedure, in general, consists of the following rules:
g Y g ) g

(a) Stopping rule 7: For each £ € X, 7(z) is the probability of terminating the sampling
after observing z and making a selection immediately based on z.

3



(b) Identity rule § = (é1,...,6x): For each z € X,6;(z) is the probability of taking the

additional m observations from #; when the decision of going to the second-stage is

made. Note that § should satisfy that ﬁ}l bi(z)=1forallz € X.

(c) First-stage selection rule dy = (dio, d11,...,d1x): For each £ € X, dyi(z),i =1,...,k, is

the probability of selecting m; as the best and good, and dio(z) is the probability of
k

excluding all the k populations as bad and selecting none. Also, 'go d1i(z) =1 for all

zed. -

(d) Second-stage selection rule d; = (dgo,d21,...,d2x): For each £ € X,y € J, when
the decision of going to the second-stage sampling from =; is made, d;(z,y) is the
probability of selecting m; as the best and good, ¢« = 1,...,k. It should be noted
that da;(z,y) depends on y only through y; since there are no observations from other
populations 7;,j # i. Also, dyo(z,y) = 2 8:(z)[1 — dai(z,y)] is the probability of

selecting none based on ¢ and the second- sta,ge observation y; for some : = 1,...,k.
For notational convenience, in the sequel, we may use either dy;(z,y) or da(z, y,)
We denote the Bayes risk of the two-stage selection procedure (7, §, dy, d2) by R(7, §, d1, d2)-
Then a straightforward computation yields the following:

R(T, éa dl) 42)

= 0 [ 7@ [ du@e z]f(rv) (2

=0

+ /X[l — 7(z)] {m02 — 60+ Z 8i(z) [/R dai(z, y:)[0o — iz, yi)]fi(yil-'l:i)dyi] } f(z)dz

/ Z: d1i(2)[00 — pi(z:)] — mee
= C+ [ @)y 7 f(z)dz
* - El bi(z) [fr dai(z, yi)[00 — ¥i( s, )] fi(ilz:) dyi]

+ {mcz 00+ Y 50) [ [ )00 il yo]fi(yilxz-)dw]} f(z)ds
- (2.3)
where
[ pil@s) = B(O:lz:) = (wir? + )2+ 5) i =1,k ol Xo) = 6o,

Yi(zi, yi) = E(Oi|zs,4:) = (M,f}izy‘T + M+muz)(7' + M+m) 1140,
J 52) =TIk o, fi(a0) = J laulhi(0d, - the marginal density of X,
fi(yi|z:) : the marginal conditional density of ¥; given X; = z; , '

Yi|X; = z: ~ N(pi(z), %5&) C = fo max(y, 00)dH(0) + Mkey,

H(@) : the joint distribution of @ = (04,...,0%).




3 Derivation of a Bayes Two-Stage Selection Procedure

In the sequel, we assume that 6? = ... = 0f = 02 and 7¥ = ... = 7% = 72, where o

and 72 are unknown. Also, g; is unknown for ¢ = 1,...,k. In order to develop an empirical
Bayes two-stage selection procedure, as a first step, we derive a Bayes two-stage selection
procedure for the selection problem under consideration.

A First-Stage Selection Rule: For each z € &, let

I(z) = {ilpi(z:) = max ¢i(z;),¢ =0,...,k},

0<j<k

R if I(z) = {0}; (3.1)
(2) = { min{z|¢ € I(z), ¢ # 0} otherwise.

i*

Then a first-stage selection rule d2 = (dB,, ..., d5,) is given as follows:
die(z) =1, and df;(z)=0for j #i". (3.2)
A Second-Stage Selection Rule: We define a second-stage selectionrule ¢ = (d5, ... ,d5)

as follows: For each ¢ € X,y € Y, and ¢t =1,...,k, define

1 if Pi(zi, yi) > o;
0 otherwise;

k
and dy(z,y) = Y 67(2)[1 — d3(z, )], (3.3)

=1

d3(z,y) = {

where §8 = (6B,...,6P) is the identity rule defined below. Note that dZ(z,y) depends on
(z,y) only through (z;,y:), i # 0, see (3.3).

An Identity Rule: For each: =1,...,k, and g € X, define
Ti(z) = /Rd]zgi(%yi)[ao — Pi(zi, yi) filyili) dyi. (3.4)

By the definition of d2(z,y;) (see (3.3)), a straightforward computation yields
2t

Ti(z) = (00 — pi(z:)) @lgo(i(z:) — 0o)] — %qﬁ[qo(soi(xi) — bo)] = T(pi(=:)),

where T'(z) = (f0—2)@lao(z—00)|— & lao(—0o)], go = YL TRETZEmIEEL 0 ¢ and
TO ma’o
¢ are cdf and pdf of the N(0,1) distribution, respectively. Since %51 = —®[qo(z — 00)] < 0,
T(pi(z;)) is a decreasing function of ¢;(z;).
For each z € X, let

{ J(z) = {ilei(z;) = max @i(z:),5 = 1,..., k},
sis | (3.5)

J* = 5*(z) = min{j|j € J(z)}.



We then define an identity rule §& = (62,...,6P) as follows:
§7(z) = 1(0) if j = (#)5". (3.6)
A Stopping Rule: Consider the function L : R? — R,

L(g,2) = 28(qz) + §¢(qz> — mey. (3.7)

For any fixed ¢ > 0, let L,(2) = L(g,z). Since 51—[—’(17551 = 0(qz) > 0,lim,—_o Ly(2) = —mcy
and lim,_, ;o L,(2) = +00, Lg(2) is strictly increasing and has a unique zero, say 2o.
For each ¢ € X, let

k k
Qz) = Y. dB(2)[00— pi(z:)] —mes = Y 67 (2)Ti(z) (3.8)
=0 j=1
k k
= Y Ig=ojo=i3 L(90, i(x;) — Oo) + D Liir=jr=iy L (g0, 00 — @i(2:)),
Jj=1 i=1

where the second equality is obtained by noting that if 7* # 0, then ¢* = j*. We then define
a stopping rule 78 as follows:

78(z) = 1(0) if Q(z) < (>)0. (3.9)
Remark 3.1: Observe that
dzom | 1507 =) ) <0
if i* = j* = ¢ then ;(z;) 2 0y — 2.

Hence, if 2o > 0 then 78(z) = 1 for all z. Note that zo is implicitly defined as a function of
t = mc; by 209(goz0) + ;lgqﬂ(quo) —t = 0. Taking derivatives on both side of the preceding

equation with respect to t, we then obtain that %‘1 = q,(qiz()) > 0. Therefore z(t) is strictly
increasing in t = mc,. In the following, we assume that c; is small enough such that 2o <0.

Then, we have the following result:

Theorem 3.1. The two-stage selection procedure (78, §8,d8, d%) defined through (3.1) —
(3.3),(3.5), (3.6),(3.8) and (3.9) is a Bayes two-stage selection procedure.
Proof: Let (r,§,d1,d:) be any two-stage selection procedure. We only need to prove that
R(T’ §) dl) 42) - R(TB’ §B7 dlBa d2B) 2 0. NOW7 R(T, é, dly d2) - R(TB') éB, dlBa dzB) = I+II+III,
where [ = R(T-) éa dh dZ) - R(Ta §7 d?) dZB)a II= R(T, éa dlB7 dzB) - R(T, QB, dIBa ‘..123), and III =
R(Ta éBydlB7d2B) - R(TB7‘§B7 dlB7‘~iZB)

From (2.2),

1= [, r@ {160 - i@l  f(e)is (310

+ /x[l —7(z)] {g&'(@) [/R[dzi(% yi) — d5(z,v:)][00 — Pi(z:, yi)]fi(yilxi)dyi] } f(z)dg.
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By the definition of d2 and 4, E [dB(z) — dii(z)]pi(z:) > 0. Also, by the definition of

d2, for each i = 1,...,k, [dg,(:g,y,) dg(:c,y,)][ﬂo — ¥i(z;,y:)] = 0. Hence, I > 0 since all
other terms in (3.10) are nonnegative.
From (2.2) again,

k
1= [ - {26 - PO | Sz 0 )
i=1 ‘
since, by the decreasing property of T and the definition of §&,
k
> l6i(z) — 67 (2)Ti(z E 8i(z)T (¢pi(=:)) — T(max pi(z:)) 2 0.

Now, from (2.3)

111 = [ Ir(2) - T (@)]Q2)f(2)dz 2 0 (3.12)
which holds by the definition of 7B.
The proof of the above theorem is then completed by combining (3.10) — (3.12). O

4 The Empirical Bayes Two-Stage Selection Procedure

Since the parameters o2, 78 and u;, ¢ = 1,...,k, are unknown, it is not possible to apply

the Bayes two-stage selection procedure (72,§8,d2,d2) for the selection problem at hand.
In the empirical Bayes framework, it is assumed that certain past data are available when
the present selection is made. Let X;;;,7 = 1,..., M, denote a sample of size M from =; at

time [,I = 1,...,n. It is assumed that conditional on (6;,02), Xiji,7 = 1,..., M, follow a
N(6;,02) distribution and 8y is a realization of a random variable ©; Wthh has a N(pi,8)
prior distribution. It is also assumed that ©;, ¢ = 1,...,k, | = 1,2,..., are mutually

independent. For ease of notation, we denote the current random observations Xj;,41 by
Xijy 7=1,...,M, 1 =1,...,k. For each z, let
{ Xt = Al,, S X Xi(n) = + T m
Sin) = HXL(Xu—-X (n))2 §%(n) = % Loy SH(n).
Then, X;1,Xi2,...,Xin are marginally independent with a N (;t,-,vg) distribution, where
2
vg =12+ %4‘2’- Hence, X;(n) has a N(p;,~2) distribution and 5%3_—1252(71) has a x%(k(n — 1))

distribution.

(4.1)

In order to estimate o2, it is assumed that M > 2. For each ¢ =1,---,k, let
{ Vszl = M 1 E 1(an X, ) ) (4.2)
Wi(n) = 25k, Wh, Wi(n)=iTh, Wi(n).

Then, ﬂ%’I%QWZ(TL) has a x%(kn(M — 1)) distribution. By the strong law of large num-
[}

bers, Xi(n) — w; as. ,W?(n) — o as,5%(n) — v as., S%(n) — %ﬂl —



2(n o2
2 as. Also E(X;(n)) = pi, E(S2(n2) = v2, E(W2(n)) = 02 , E(S*(n) = 2={0)) = p2 - 28 =
7. Since it is possible that 52(n)_ﬂﬂ(ﬂl < 0, we define iy, 02,,v2,, 72, and go, as estimators
of p;,02,v¢,7¢ and qo, respectively, by the following:

\/(M+m)M‘rgn+(2M+m)‘r§nagn+agn if Tgn > 0. (43)

2
{ pin = Xi(n), 08, = W(n),vf, = $(n), 73, = max(vg, — 5, 0),
fon = RV

Without loss of generality, we assume o2, > 0, since o3, = 0 with probability 0.
For:=1,2,---,k , we define

2
z.,rz +0Qn .
[ Onuo M_Hin , (pon(.'l:o) = 00,
n

il

(Pin(""'i)
Mz tmy; 2 +ﬁ"<2m_ (4.4)

Yin(Ts,y)) = —HEmontIrmbin

2 4 %n
TOn+ M+m

and use @, (;) and ¥, (2;,y;) as estimators of wi(z;) and v¥i(zi,y:), respectively.
Recall that, for i = 1,...,k, fi(y:|x;) is the density of a N(g:i(z;), pj) distribution, where
2 2 2
pE = %n"-(—MA';ﬂZ:)—Ef;ﬁ Hence, we let fi,(yi|z;) be the density of a N{win(z:i), p,) distribution
0

_ ok, (M+m)72 +od
— m  Mri,+0i,
Now, an empirical Bayes two-stage selection procedure (7*",§*", di", d3") is proposed as

follows:

and use fi,(yi]z;) as an estimator of fi(y;|z;), where pe.

Empirical Bayes First-Stage Selection Rule " = (d}3, ..., di%)
For each ¢ € X, let

In(-'!}) = {'Llsom(mz) = &ljagi Sojn(mj)ai =0,... 7k}a .

i = if I(z) = {0}, (4:5)
=i (z) =
o =ik min{i|i € I(z), ¢ # 0} otherwise.
We then obtain an empirical Bayes first-stage selection rule di™ = (dig, ..., di}) as follows:

a7 (z) = 1(0) if j = (H)ic. (4.6)

Empirical Bayes Second-Stage Selection Rule d5" = (d35, ..., d5;)
We define di" as follows: Foreachz € X andy € Y,i=1,...,k,

1 if Yin(ziyy:) > o,

k
, and dig(z,y) = 3 &"(2)[1 — dyi (g, 47
0 otherwise; and dzg(z,y) = 36" (2)l 5 (2, ¥)] (4.7)

i=1

3 (z,y) = {

where §** = (8,...,6") is the empirical Bayes identity rule defined below.

Empirical Bayes Identity Rule §* = (6;",...,8")



For eachi=1,...,k,and ¢ € X, let
Tin(z) = /Rds?(%yi)[oo — Yin(i, Yi)) fin(yslxs) dy:

{ Tn(som(xt)) if Tgn > 0,

4.8
(0o — @in(:)) Ligin(zi)>80y Otherwise, (48)

where T;,(z) = (6o — 2)®[gon(2 — 00)] — -1-$lgon(z — 60)]  and the second equality in (4.8) is

obtained by the definition of d? accordingly. Note that d—r";’i‘é(fl = —®[gon(z — bp)] < 0. Hence
T.(#) is a decreasing function of z. Let

{ In(2) = {ilein(2i) = max eim(@:)sj = 1, k},

Jn = Jn(g) = min{jlj € Ja(2)}-

(4.9)

Then, the empirical Bayes identity rule §* = (61",..., ;") is defined as:
5"(z) = 10) it § = (A (4.10)

Note that, by the definition of ¢** and j**, if ¢** # 0 then ¢** = 7*".

Empirical Bayes Stopping Rule 7"
For each ¢ € X, let

k k
Qulz) = ()0 — pinlee)] — mes — 3 6(2)Tin(2) (4.11)
1=0 j:]_
Yho Ts=ogs=iy L(don, pin(zi) —00) 1 .,
* if 74, > 0,
= + 2 I{i;:j;,:i}L((IOn, 0o — <Pin($i))
—mes otherwise.

We may use Q,(z) to estimate Q(z) and propose an empirical Bayes stopping rule r*"
accordingly. That is, for each ¢ € X, define

(z) = 1(0) if Q.(z) < (>)0. (4.12)
When 72, > 0, we let 2o, be the zero of L(gon,2). Then,

ifis = 0,52 =j then pju(a;) < b0+ z0u;

Qn(z) < 0®{

if if = j* =1¢ then @i(z;) > 0o — zon.



5 Asymptotic Optimality of (7*",8*", d;", d3")

Consider an empirical Bayes two-stage selection procedure (7, ", dt, d3). Let R(7",

&, dt, d2) be the associated conditional Bayes risk (conditioning on the past observa-
tion Xy, i = 1,...,k, j = 1,...,M and I = 1,...,n ) and let E,R(r",§",d},d3) be
the corresponding overall Bayes risk where the expectation E, is taken with respect to
the probability measure P, generated by ( Xij, ¢ = 1,...,k, j = 1,...,M and | =
1,...,n). Since (78, §8,d2, dP) is a Bayes two-stage selection procedure, R(1",§", d7,d5) —
R(TB7§Ba dlB, dzB) > 0 and EnR(Tnaén’d?adg) - R(TB7§B’dlB7 dzB) > 0 for all n. The non-
negative regret risk E,R(™",6",d¢, d2) — R(8,6B,d2, d7) is generally used as a measure of
performance of the empirical Bayes two-stage selection procedure (7", §",d7, d3).

In the following, we evaluate the asymptotic optimality of the proposed empirical Bayes
two-stage selection procedure (7**,§*", d;", d5"). First, we have:

R(r", 8™, ", d5") — R(r®, 8%, 87,45) = L + I L + 111, (5.1)

o
IN
s
Il

R(r*", 8", di", &5") — R(r™", 8, 7, d5)
= [ (@) (@) (aie) — di (2 (2i)) (2)da
b 1= P @Y 5@ 452 o) — B w0 — i )
Z_in(yilwi)dyi]}f(:g)d@ (5.2)
= L+ Ing;
0< I = R(r™,g™,d8,df) ~ R(r™, 8%, df, &)
= [ 1t - @8 (@) ae) - 2T (@) (2)da; (53)
and
0<III, = R(r,6%d7,d7) - R(7%,8°,d7, d7)
= [ @) - @)@ (2)ds. (5.4

To investigate the convergence rate of E,[I,1], we state some facts:
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Fact 1
1.1 =0, g(z)) <bpforalll=1,...,k Then,if i; =7 #0,

PAi* =0, iy = j} = Pu{u(z1) < 0o VI#0, jn(z;) 2 oim(1) VI # 5}
< Pu{pin(®;) — @i(w;) 2 00 — ¢j(x;)}-

1.2 Ifi* =0, om(z)) <o foralll=1,...,k Then,if¢* =1 #0,
P {i* =1, it = 0} = P{pi(:) > @i(z1) VI #3, pum(z) <0 VI#0}
< Pu{oin(@i) — pi(zi) < —(pi(@:i) — 0o)}- |
1.3 Ifé*=1+£0, i* =j #0and i # j, then
P A" =4, iy = j} = Pu{ei(zi) 2 oulz)) VIZ 14, @jn(2)) 2 oml@) VI # 5}

< Pullpin(e) - oi(ep) 2 EELEE) 4 p (1o, (o) - i) > HEL_ i),

Recall that o;(z;) = (z:7¢ + %43‘#1') /(¢ + %,13-) and X; is marginally N(u;,v3) distributed.
Therefore, @;(X;) is N(u:, %‘;—) distributed. Moreover, @;(X;)—¢;(X;) has a N(u;—p;, 5§+%§—)
0 0
distribution. For e, >0, 7,7 =1,...,k, 2 # j, let

Xi = Az |pi(z:) — Oo| < en},
{ Xi; = {(zi, ;)| leiz:) — wi(zi)] < enl- (5.5)

From Facts 1.1 — 1.3,(5.2) and (5.5), we get
E [I'n. 1]

= ZE / 7*™(2) Ljinzijin=0y[pi(2:) — 00 f(2)dz

=1

+ E E, /x 7*(2) Tr=0i5=13[00 — wi(2;)]f(z)dg
J=1

k k
+ LB [ 7(E) linmiinmilii(ei) = ei(e ) (D)
3 [, Palliin(ei) = eie] > lii(as) = Gul}lpi(a:) = Gul i@
b33 [ [llonte) - w2 12 2itely

i=1j5=1

IA

)l 2 |<P1($1) —

i)l
5 }

+ P {lein(z;) — 0i(z;

11



x|pi(z:) — @i(x;)| fi(z:) fi(z;)dzide;
k
< ;/X enfi(xi)dz;

k
+3 [ Pullom(@:) = oid@)| > ea}lpi(as) - bol fi(w)da

=1

k k
+Y Y [ 2eafi@)fi(a;)deids;
i=1 =154 " Y

ko k
+X 2 /R2 [Pn{|90in(:vi) — pi(zi)| > %"} + P {loin(z;) — 0(z;)] > 5_27»_}]

1=1 j=1,j#1
x|pi(z:) — pi(z;)| fi(x:) f5(z5)dzide;

< O(£) (5.6)
+3 [, Pellonn(e) = wile)l > S Hlpi(os) = il + s = oll sz,
k k . .
+3 S [ [l - > $14 Bllente) el > 5]

X i) = pl + 1pi(25) = sl + s = psl fil@i) fi(5) daide;,

whete 3° [y enfi(z:)dzi = () and ¥ % [y, 26ufi@)fi(a;)duids; = O(e3)

1=1 j=1,5#¢
since

Jail 1oito—toleny Ji(@i)di S ZBmen, i=1,..00k,
Si@iai)| o -es(ap)iceny fi(@) fi(s)doide; < Hmen, 145, 1,5=1,...,k
For I, 2, we state the following facts:

Fact 2

2.1 d;;n(@ayz) = 11 dzb;(:g’ yi) =0 > ";bin(xi, yz) - '(,bi(-’l?,’, yi) 2 00 - d)i(l'i,yi) > 0.
2.2 &Mz,9:) =0, d2(z,4:) =1 =  Yinlzi,ui) — Yi(@i, yi) < —(Pi(wi, yi) — 0o) < 0.

Let U; = {(zi,9:)| |¥i(zi,yi) — 00| < en}. Observe that 1;(X;,Y;) is N(p,-,l—:";), where

wi=1+ Fa_l_‘z’;; Then, by Facts 2.1,2.2 and (5.2),

En [In,2]

k .
= B [ 1T @I @ ) — e )

k
x[00 — Vi(xi, vi)) fiyila:) fi(wi)dyidz:} 1] [fizi)dei]

I=1,l#i

12



IA

g /U enfi(yilea) fi(zi)dyidas (5.8)
k
+E/R2 . Po{|Vin(@i, 4:) — Yi(zi, )| > [Wiwi, yi) — Ool} fiwilz:) fi( i) dyida;
=1 e
O(el)
k
+Z/Rz Po{|tbin(®i, yi) — $ilzi, yi)| > €} filyilz:) filz:)dyidz;
i=1

IA

k
where Y Ju, enfi(yile:) fi(zi)dyidz; = O(el)
i=1
since 9 ,
Wo .
i\YilLe ) Ji ididis—"—'na =1,"'7k' 5.9
/{(zi,ye)llll}.'(wnyi)—%ISEn} Syl fi(@)dyida V27”'36 Z 59)
Now, we consider
k k
=Y 3 [ 1= ()] Ljrmigz=n T(@) — T (2)da- (5.10)

1=1j5=1
By the mean value theorem, we have

dT(z)

Ti(z) = T(z)l = IT(pi(z) = T(pilz)l < sup|—7=llp(z3) — i)l
< lwilz;) — izl (5.11)
since |d—%fl| = |-®(g(z—0o))| < 1. From the definitions of 2*, ¢}, j* and jy;, if * # O and 2} # 0

then i* = j* and ¥ = j*, respectively. Therefore, by Fact 1.3,(4.9), (4.10), (5.5), (5.7), (5.10)
and (5.11)

E.[I1)
k k
< 21 ~_§:-¢-/X.-,- Enfi(:ci)fj(mj)dzidmj
k k . m —_— . x.
+§ ._;;E./Rz—xﬁ [Pn{l(pom(xz) _ Soi(mi)l > |501( 1) 5 90.7( J)l}
+Bullpin(e) — gites)] > 12222l
x|pi(2:) — @;(xi)| fi(:) fi(2;)dzide;
< O(e2) (5.12)
k . ..
+; ._;;é./m [Pn{koin(zi) — @i(z:)| > ?} + P {|ein(z;) — 0i(z;)] > ?}]

X [loi(a:) — pal + l@i(e;) — 5| + i — w51l fi(z:) fi(z5)dwidz;.

13



For III,, we proceed as follows: Recall that L(go,20) = 0 and consider the equation
L(g,z) = 0. By implicit differentiation,
dg _ ¢*®(q2)
dz  ¢(q2)
So, under the condition L(g,z) = 0, ¢ is an increasing function of z, and ¢(zp) = go > 0.
Hence, by the continuity property of ¢(z), there exists o > 0 such that 0 < ¢(z) < oo, for all

z € [20— 60, 2o+ b0]. Let gon be the estimator of go given in (4.3) and when 72, > 0, let 2, be
the zero of L(qon,z). That is, L(gon, 2zon) = 0. Moreover, we define a function v : R?> —» R

by u(s,t) = (t\/ms)‘l\/(M + m)Mi? + (2M + m)ts + s%. Observe that u(o?,72) = ¢o and

> 0. (5.13)

(5.14)

& =[5 — (M + m)M¢t?) (23t\/r_r_z§\/(M +m)Mt? + (2M + m)ts + 32)—1 ,

{ B — —s[(2M +m)t + 23] (22/ms\/(M + m)Mt? + (2M + m)ts + 2 -

Recall that z < 0 ( see Remark 3.1 ) and 2422 = @(gz). For e, > 0, 4,5 = 1,...,k, define
H; = {zj| [(i(z;) — bo) — 20| < €},

D; = {zil |(6o — i(z:)) — Z0| < én}, (5.15)
B = {(o%7%)] \/(0'2 —03)? + (12 — 1¢)? < L min(o?, 7¢)}.
Note that
Ju,; fi(zi)dz; < 72529—26‘”, 1=1,...,k,
{fD.' fi(z)dz; < 72—39‘;8,1, 1=1,...,k. (5.16)
In the following, we assume &, < min(6o, =32 ,bO%‘;) where by = %min(ag,'rg), Cy =

mMax(,2 ,2)eB \/(a—”(gz’il)2+ ('9—“(2'3’722’7—2))2 < o0 and ¢, = 1 min,_s<o<z+6 |'(2)] > 0. Note
that c, is finite by (5.14) and (5.15) and ¢, is positive by (5.13) and the definition of §,. We
state some facts:

Fact 3
31 (6%,7?)€R*—B= |o®—0q} |>%or T2 — 13| > % —°—
3.2 If |2 — 2| > 2 and (0?,7%) € B, then
= |g(2) — q(20)| > min{g(z0 + %) - q(20),9(20) — q(20 — Ezl)} 2 CgEn

= ¢en < |q(2) — q(20)| = [u(o?, %) — u(ff?n 13)| < cuy/(0? — 0B)? + (r? — 73)?
= |o? —0'0|>\/-5n0r|r |> En-

3.3 Ifi*=0,=7, and z; € Hj, then
L(qo,p;(x;) — o)

L(qo, ‘Pj(l'j) — o) ~ L(qo, 20)

0L(qo, 2)
< ——€n
=W
= 5n



34 If*=0, j*=j, z; € R— Hj and |20, — 20| < 22, then
(a) mB(z)=1, 7 (g)=0
= @i(z;) < b —(—20) —&n and Oy — (—20n) < Pjan(zjz) < o + (—20n)
= @inl(ziz) — e (i) > 2.
(b) B(z) =0, ™(z)=1
= 00 — (—Zo) +e, < (,Oj(wj) < 00
and ( @jsn(zs) < 00— (—20n) OF Pjan(Tja) > 00+ (—2o0n) )
= oin(z;) — wi(z;) < =% or pisn(zis) — @is(zi) > 2.
3.5 If i* =3*=1¢# 0 and z; € D;, then

L(q0,00 — pi(z:)) = L(go,00 — wi(z:)) — L{qo, 20)

oL
< sup I———(aqo’ ?) len
zER z
= €n.

36 Ifi*=j3*=1¢+#0,2; € R— D; and |20, — 20| < 22, then
(a) 78(z)=1, 7(z)=0
= @i(z:) > 0o+ (—20) + &n and o — (—2z0n) < ¥jzn(zjz) < bo + (—20n)
= in(z:) — pi(zi) < -

(b) 8(z) =0, m"(z) =1
= O < pi(z;) <o+ (—20) —€n
and ( @jzn(2jz) < b0 — (—20n) O Piga(2s;) 2 b0+ (—20n) )
= pin(ei) = @ilz:) <= or pin(esy) — @is(ziz) > F-

From (3.8) and (5.4), we can write II], as follows:

I, = Z/X[T*"(@)—TB(@)] Liie=0,5+=3} L (g0, @i (z;) — 00) f(z)dz

=1

k
¥ 2_; /x[T*n(@) —72(2)] Lirmjo=iy L(do, b0 — i(2:)) f(z)dz

= Il + II1,,. : (5.17)
Now,
E,[II1,4]
< Jz;/Ha enfi(z;)dz; (by Fact 3.3)

15



+EE / [7*"(z) = 7°(2)] Lgrmojr=iy Lszjer-H;) Ulzon-zol>22)
=
X [ L2, 2 )ere—By + L2 2 TOn)GB}] L(go, i(z;) — 60) f(z)dz
k
+Y E. /X[T*”(@)—TB(%)] Lis=o,io=i} Lojer-H;} I{jzon-20l<2}
i=1

x L(qo, 0j(z;) — o) f(z)dz

< O(en) (by (5-16) ) (5.18)
Pn n P'n. y —Te c—q n
[Pl — > e+ Pl — 2> e
X .
1
X Z(E“goj(Xj) — pill + lp; — 0o + o + me;) (by Facts 3.1,3.2 and (3.7))
k
+33 [ Plpn(a) - pia)] > )
ij=1l=1
<(13(z5) — ] + it — Ool + —o + mez)f()dz. (by Fact 3.4 and (3.7))
%\/2_7!'
Similarly,
E,[IIL, ]
< 0(e?) (by Fact 3.5, (5.16)) (5.19)

C,
+[Pulloh, Bl > e+ Pl - > )

k
1
X Z(EH(,D,-(Xi) — wil] + | — Oo| + —= e + mez) (by Facts 3.1,3.2)

k

+ZZ/ Po{lpm(z1) — pi(z1)| > —}

=1 [=1

X(|pi(z:) — ps| + |pi — 60| + + mcp) f(z)dz. (by Fact 3.6 and (3.7))
40\/2_7T

Then, in view of (5.1)—(5.4), (5.6), (5.8), (5.12) and (5.17)—(5.19), it suffices to investigate
the following:

( Jr Pa{lpin(zi) — @i(z:)| > S} filzi)das,

Jr Pud{lpin(2:) — @i(2:)| > 2 Hei(z:) — pil filzi)des,

- Pn{l'l/)m(mnyz) bi(zi, yi)| > en} filyilzs) fiw:)dyidas, (5.20)
Pu{lod, — o3| > Z5-en},

L Pu{|¢. — I > 75’;57»}-
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Lemma 5.1 Let S, be a random variable having a x?(n) distribution. Then,

(a) P{S» <n(1—m)} < exp(~5a()) forany n, 0<n <1,

(b)) P{S.=>2n(l+n)}< exp(-—%m(n)) for any 7, 7 > 0;

where gi(n)=-n—In(l—9) forany 5, 0 < <1,
g2(n) =n—In(l +n) for any 9, n > 0.

Proof: See Corollary 4.1 of Gupta, Liang and Rau (1994).
Remark 5.1 Observe that ¢;(0) = g2(0) = 0, 2%91(77) >0, for 0 <n<1,and %gz(n) > 0,
for n > 0. Thus, g1(n) and g,(n) are positive and strictly increasing functions for 0 < 5 < 1
and g > 0, respectively. Also, lim,_,o &3 = 2 and lim,_o %zﬂ =1

In the following three lemmas, since the proof is just a straightforward computation, we
omit the details.

Lemma 5.2 Let pin, 02 , vZ and 7, be the estimators of y;, 03, v2 and 7¢, respectively, as

defined in (4.4). Then, for any ¢ > 0,0 < ¢, < 62,0 < ¢, < v2 and 0 < ¢; < min(2v3, 2;;
we have

(a) Po{|pin — l‘t|>c}<\/— \/_exp( )

kn(M Co kn(M -1 Co
(5) Puflod,— o3> e} < exp(——(-z-—)gl(—2)> texp(- ML) oy,
o 2 Lol
k(n—1 Cy k(n—-1 Cy
(©) Pullod, — 2l > e} < exp(— 22D g (S 4 ey HE =1 g (o0
2 'Uo 2 'UO
0 M"'g
(d) Pu{lrd, — 7ol 2 ¢} < Po{|vd, —v3l > 5}t P {log, —oal > —5 )
Me,

+Pn{|v3n—vo|z5}+Pn{|00n—aa|z 2}

Lemma 5.3 Let p;(z;) and pin(z;) be defined as in (2.4) and (4.3), respectively. Then,
for any € > 0, any £ > 0 and any z; € R, we have

%Pn{lgom(:ci) — pi(zi)| > €}

Mr?
Pn{l,uin_,uil ZKI}"'Pn{lﬂm ,u’zl > 2

Mvie
502
Muvie o2 ev?
1) 1 0P, (|0, — of) > %

AN

~—} + Pu{log, — o3| > }

+Pn{|a(2)n—0(2)| > a2 2
a2 — pil + evg
2 2 75 2 2 g £Vg
+Po{|vo, — ol > o} + Pu{lvg, — vol > 57 }
2 Zloi — pul + o0}
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Lemma 5.4  Let v;(z;,y:) and vin(zi,y;) be defined as in (2.4) and (4.4), respectively.
2
Also, recall w§ = 73 + 378, Then, for any £ > 0, any « > 0 and any (z;,y;) € R?, we have

%Pn{l¢in(xia i) — ¥i(zi, y5)| > €}

M + m)wie
< Pallion =l 2 6} Pulin — il > LLET0)
M + m)wie Mr?
+P{lo = of) > LAy 4 p o8, o3 > 18
o Muwk gw?
+4Po |05, — 05| 2 min(2, =) —
R SE
i w? ew?
+P’n{|vgn_vgl Z _2}+Pn{|v0n vOl - '_0 . .0
2 20 s M+mlM]tI—'I7-1;mL — pil + ewg
Now, consider the terms in (5.20). By Lemma 5.3,
En
Pof{lpin(zi) — il@i)| > 57}
Mv“ M?
< 2| Pa{lpin — il 2 £} + Pa{lpin — pil > =5 } + Pa{lod, — ool > =7}
Muv2e o en 2
4P {0k, — o) > 2BLY L op o3, — o] > B2
& % — pal + 20
i
+Po{|v5, — v5 > —} + Po{|vg, —val > 2 2 (5.21)
|$1 — pil + 58
Also, |pi(z;) — pi| = %‘;Lkv, — pi|. By Lemma 5.4, we have
Pn{|¢in(xi’ yz) - ’l‘bi(IBi, y‘l)l > 6""-}
M + m)w?e,
< 2| Bullin = il 2 6} + Pl — il > LR
M len M~}
4Pl — o] > (—Jr;")L} + P{lod, — o2l > 28 (5:22)
02 Muw? Enwi
+4Pn{|00n 0'0| >mln( Oa 0) o2 . . .
20 SRR — il + enwd
72 w? Enwi
+Pu{lvg, — v5l 2 - } + Pu{lvg, — vgl 2 2_3 Mty : )
M+m| Mym pil +

Moreover, by Lemma 5.2(d),

c
Pn{lTozn - T(ﬂ > \/iqcuen}
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T2 M2
< Puflod ol 2 2 + Pallot — ot 2 7% (5.23)

Cq

Mec
+P{|v2, —v3 > e} + P {lo2. — 0| > —=¢n}.
{l o ol— 2\/§cu } {| on aol—- 2\/2-% }

Let

2
(oo o= (220d)(5e|zi — il + 2v3)7
{ (202)(33 |+ 202) 52

2 , .
M = (en0d) (37| Matt — il + enwg)

In order to prove the rate of convergence, in view of (5.20) — (5.24), we need to consider the
following:

(1) Paf{lpgin — gl 2 &},

(2) Puflpin— pi| > biea},

(3) Pu{log, — ool > ba},

(4)  Pa{log, — 0ol > bsen},

(5) Pu{lo, — o2l > b,

©) [ Pudlod, — 31 > boGa} fie)das,

(7) /R2 Pu{log, — o3l > bedn} filyilzi) fi(wi)dyidei, (5.25)

(8)  Pa{lvg, — vgl > b1},
(9)  Pa{lvdn — vl > bsen},

(10) [ Puflod, —vdl > bodu} i(ai)des

(1) [, Puflob, = o8] > brode}ilyiloi) f:)dyidas,
(12) [ Pallod, — o3l > boCuYlas — il i)y
(13) [ Pallod, = 0§] > boCuYles — il (o) dai

( In the above, (5.25) represents (1)-(13). ) where

( M2 . (M72 o2 . c o2
b = Too3 b, = min(5*%, %), bs= mm(—“—ﬁcu, 2),
. M2 (M4m)w? ol o2 . 02 Mul
— D MV /0 0 — -0 — 0 — 0
ﬁ b4—m1(107 5 12)) b5—5, bG—mln(sa 20 /» (526)
2 2 2 .
—Y — min(—S4—. Y% =%
b7— 2 bg—mln(z\/-éc“,2), b9—5,
wp
\ blO = ‘20
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In the sequel, we let

K = Kkn =+VInn, €n = J=

Gi = {=zi |z — il < #%/c -hi=1,... (5.27)
Ai = {(wi )| | MRS — | < (Mt’é’)w°en,/%,nn}, i=1,...,k,

where ¢ and ¢, are positive constants which will be given later. Then, by the inequality for
a N(0,1) distributed random variable Z ( see Pollard (1984) Appendix B ),

exp(FF)
\/—w

we have, if ¢ < 7 ( in the sequel, we use (1), (2),..., (13) for the corresponding expressions
n (5.25) ),

P{Z>n} <> . n >0, (5.28)

1

(1) Pulltin — 1l > 5} < O mexp( Fozninn), (5.29)
(@) Pl — il > b} < O(=—). (5.30)

By Lemma 5.2(b), the fact 0 < g% < 1 and Remark 5.1, we get gj(f%) >0, j=1,2 and
0 0

(3) Pu{los, — o5l > b} < exp(—]m(#—lzgl(%)) + exp(—kn(ﬂg — 1)92(%))
< eXP(—ﬁ(Ag__llmin(m(%)agz(ﬁ—%)))- (5.31)

Similarly, by Lemma 5.2(c), the fact 0 < %072- < 1 and Remark 5.1, we have gj(%é-) >0,7=1,2
and

©) Pulloh =1 > b1} < (- min(a (a5 (632

From Lemma 5.2(b) and Remark 5.1, if ¢ < H—M—})Jb we get

(4) Pn{lagn - Ug| > b35n}

< exp(- T2 =00, (B5)) 4 exp(- =0 25

n 35n21b: n - 3n22%§n
— exp(- M=) Bt )g(;n*’))) exp(~2AM 1)(1,02)9(;%:)3) (5.33)
< O(%)-
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Similarly, if ¢ < 2404,

(5) Pu{loZ, — 02| > b4——} <ol ). (5.34)
Also, by Lemma 5.2(c) and Remark 5.1, if ¢ < ?9; we have

(9) Pu{[vd, — v2] > baga} < 0(%). (5.35)

For (6), we proceed as follows. By (5.27), Remark 5.1 if ¢; 2 _k(131201Q)b :

Mv? n
2 € Gi = |wi — pi| < 55en
20k cslnn

£aq)2
= (= 0 2

a2 e
I/Io'lw‘t ,u'z|+ ﬂ'U +]. n

c;Inn

b b cslnn

kn(M

) j=1,2

=>exp(————Tl—) gi( 2<n))
< exp(— k”(]\/j;— 1) (o bs cslnn)) (5.36)
= exp( kn(M — 1)( bs Cslnn) gJ(2ao V o lnn)
=exp(m 5 \9a2Y \/:—15)2
= 0()

Also, by (5.27),(5.28) and the fact that JX—‘;L"J is N(0,1) distributed, if ¢ < SK:;Z%, we have

| X; — pil o Mwo n
Elgpgy = P > i
=0 { vo 203 ¢ cslnn}

M*%? en

< - 0 = _
B %%Qsm/ \/27r exp(= 8od cslnn)
40 cs M2’02 Inn
B ) \/Q; exp(= 8030 csc) (5.37)
1
< 0 .
- (n\/Inn)
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Hence, by Lemma 5.2(b), (5.36),(5.37) and the fact 0 < %%Cn < 1 ( which implies gj(g%cn) >

320%

M252 .
0, j = 1,2, by Remark 5.1 ), 1fc,2k—(ﬂ—4—g%5a dcggy—gg‘i—,weobtam

) [ Pa{lod, = 03] > bsCa}flai)dos

< [ oxpl- 2=, )t expl- = oa e
- [ _exp(—’“—"%—‘—)gl(—zcn»+exp(—’-“f‘(—]‘§—i)gz( LY ACHYENCE

b ] e 2h0) +exp(—1“—"(—]‘§——)gz( ()l
< O(;)'*'O(nm)
- 0(%).

Similarly, by Lemma 5.2(c), (5.36),(5.37) and the fact 0 < Bl < 1,if e 2 %%é and
0
c< —;—ngf, we have
o%e

(10) [ Puflod, — 93] > boGo} i) < o). (5.39)

For (7), following an argument analogous to that of (6), if c; > H]?Tzﬁf)_bf’ we have

1 [el
(w;,y,—)eAi = /\n>§ ¢ ;n (5.40)

Also, if ¢ < %%?c)—:ﬁ, we get

1

nvinn

Elipz_ay < O( ). (5.41)

Therefore, by Lemma (5.2)(b), (5.40), (5.41) and the fact 0 < —%)\ <1l,if ¢, > E&Eﬁg and
Mu we get

204¢Cs

(1) [ Pullok, — o2l > boda) filuslos) ) duad,

< /A‘[GXP("———_) 1(— ))+exp(—En_(]_wz___ll.qZ(g%/\n))]fi(yiIwz‘)fi(wi)dyidxi
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kn(M kn(M
b o200 ) b expl- = as b i) adds

1 1
< — 5.42
- n nx/lnn) (5-42)

1
= 0(-)

Similarly, if ¢; > ﬁ;’: and ¢ < @L;};:gﬁ, we have
1
(11) /Rz Po{lvd, — v2| > broda} fi(yilz:) fi(wi)dyidai < O(-). (5.43)

Now, we consider (12), by Lemma 5.2(b),

(12) [ Puflod, = o8l > botuYlai = pal fi(zi)da
< [ena(~EM =D, )+ expl- T e i)
= I1p1+ L2, (5.44)

where

T = fo lexp(— 2220 g, (5¢,) + exp(— 5 ga(G a))llei — pul fl:)dzi
Tz = Jr_g[exp(— 2% g1(5C0)) + exp(- —ﬁ—Jm(%cn))]lwz il fi(w:)das.

3202

By (5.36) and the fact E|X; — p| < +o0, if ¢; > gzz—iyz» We get
1
Ioy < O(). (5.45)
By (5.27), Remark 5.1 and the fact 0 < 3—%(” <1l,ife< g%ﬂc&, it follows
0 8

Ly < 2/ i — il fizi)dz:
122 = R-g.-lw pil fizi)dz

2 z; — il fi(zi)dz:
/{Iz.—u,|>—29-sn /c,ln—n}l K |f( )

|2|d®(2)

IA

'1)0/
M
{lzi220p | /lnn)
0

4vg ( M} lnn)
exp(—
V27 P 80’3 CsC

0(%).

IA

(5.46)

IA
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Hence, by (5.44) — (5.46), if ¢, > k(—M_—ngg and ¢ < ggg%‘jl, we obtain

(12) [ Pullod, — o3l > butuHai — pili(ei)dn: < OC3). (5.47)

Similarly, by Lemma 5.2(¢), if ¢, > 372:5& and ¢ < 8%2%‘?, we get

(13) [ Pullvhy — 98] > boGuHos — il iai)des < O() (5.48)

Hence, by (5.20), (5.25) — (5.27), (5.29) — (5.35), (5.38), (5.39), (5.42), (5.43), (5.47) and
0.4 ’U4 . ,u2 - 2 - 2 2 2’U2
(5.48), if ¢, > 22 max(w—_"mg, -b—%";) and ¢ < mm(%fa’ k(I\gagl)bs, k(J\gagl)b-;, %%, Js‘igcc:

the expressions in (5.20) have the rate of convergence at least of order O(%). Now, by
(5.1) — (5.4), (5.6), (5.8), (5.12), (5.17) — (5.20) and the above fact, we conclude the following

theorem.

), we see that

Theorem 5.1 Let {(7**,&*", di", d3")}22, be the sequence of empirical Bayes two-stage

n=1

selection procedures constructed in Section 4. Then,

*n  CkN JRT KT B ¢B B 3B 2 (lnn)2
EnR(T 7‘5 7d1 $d2 )_R(T 7(5, ,dl,dz)SO(&'n):O(——).

n

That is, the empirical Bayes two-stage selection procedure (7*",§*", di", d;") is asymptoti-
2
cally optimal with convergence rate of order O(gh‘—:L)

6 Small Sample Performance: Simulation Study

Let Ex and Ey|x be the expectations taken with respect to the probability measures gener-
ated by X = (X3,...,X) and (Y;|X;, ¢ =1,..., k), respectively. For any first-stage obser-

vation X, second-stage observation ¥ and past observations Xia(Gi=1,....,k, 7=1,...,. M
and let [ =1,...,n), let
Drian(X) = m(X)dR(X)pir(Xiv) — i (X)pig (Xig )],
Dipn(X,Y) = [1—m(X)]Thy 6(X)dsH(X, i) — di(X, Yi)][0o — (X, Vi),
Dia(X) = [—mXNERX)T5(X) — 62 (X)T (X)),
Duia(X) = [™(X) - (X)RX),
Du(X,Y) = Dran(X)+ Drza(X,Y) + Dia(X) + Drrra(X)-

Then, by (5.1) — (5.4) we have
E’nR(T*na é*n7 d;n, d;n) - R(TB’ éBa dlB7 dzB) = EnEXEy|XDn(X7 Y)

Therefore, by the law of large numbers, the sample mean of D.(X, Y), based on the obser-
vations of X,Y and X;5i (6 = 1,...,k, j=1,...,M and | = 1,...,n), can be used as an
estimator of E,R(T*", &, d&:*, d3*) — R(rB, 65,47, d?).
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We carried out a simulation study to investigate the performance of (7*",8*",d;", d3")
for small to moderate values of n based on D,(X,Y) for £ = 3 case. The average of
D, (X,Y) based on 4000 repetitions, which is denoted by D,, is used as an estimator of
E,R(t*, 8", di", d3") — R(75,§B,dP,d5). We find that the values of D, decrease quite
rapidly as n increases. Moreover, the values of nD, decrease in general. This supports
Theorem 5.1 that the rate of convergence is at least of order O(&n"ﬁ). It also seems to
indicate that the possible obtainable rate of convergence is of order O(1).
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