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§1. Introduction.

Let (Q,F,P; {Fi}:>0) be a filtered probability space satisfying the usual conditions.
Assume that a standard d-dimensional Brownian motion {Wt}tZO is defined on this space.

Consider the following forward-backward stochastic differential equations:
t t
(1.1) X, =:c+/ b(s,X,,Y,,Z,)ds+/ 0(8,Xs,Ys, Zs)dW,,
0 0
T T
(1.2) Y:=g9(Xr) +/ b(s, X,,Ys,2Z,)ds +/ o(s,Xs,Ys, Z,)dWs,, t € (0,7,
t t :

where (X, Y, Z) takes values in R" x R™ X R™*? and b,b, o, 5 and ¢ are smooth functions
with appropriate dimensions; T > 0 is an arbitrarily prescribed number which stands for
the time duration. Our objective is to find a triple (X, Y, Z) which is {F;}-adapted. square
integrable, such that the equations (1.1), (1.2) are satisfied on [0, T}, P-almost surely. Such
an adapted solution, if it exists, will be called an ordinary adapied solution (here the term
ordinary is inherited from our previous paper [6], in which the adapted solution can have
a relazed form). One should note that it is the extra process Z that makes it possible for
(1.1) and (1.2) to have an adapted solution (cf. {7,10,12]).

In [7] we studied the solvability of such forward-backward equations over an arbitrarily
prescribed time duration [0, 7). We showed, by designing an appropriate relaxed stochastic
control problem, that the solvability of the forward-backward SDEs (1.1) and (1.2) is
equivalent to the non-emptyness of the nodal set of the viscosity solution to a certain
Hamilton-Jacobi-Bellman equation. Using this new approach, we proved the solvability
and non-solvability of a special class of forward-backward SDEs and we described exactly
the nodal set of the corresponding HJB equation. We should note, however, that in general
the adapted solution can only be found in a “wider” sense (cf. [7]). More precisely, the
component Z is replaced by an adapted measure-valued process and the probability space
is subject to change when necessary. Also, we note that the uniqueness of the adapted
solution over an arbitrary duration was not studied in [7] since it basically requires the
uniqueness of the optimal relaxed control, which is far from obvious. Therefore, the natural
questions are: To what eztent can one actually find an “ordinary adapted solution” over

an arbitrarily prescribed time duration? Will such an adapted solution be unique? Also, in
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light of the result obtained in [7], we observe that sometimes the backward components
Y and Z are determined completely by the forward component X via the nodal surface.
On the other hand, in a special case when the forward equation does not depend on the
backward components, Pardoux and Peng [11] discovered recently that the components of
the adapted solution (X,Y, Z), whenever it exists, are explicitly related via the Malliavin
derivatives; and the solution of the backward SDE is closely related to a class of quasilinear
parabolic partial differential equations. Thus, one can hope to find an explicit solution
(in some sense) for the strongly coupled forward-backward equation (1.1) and (1.2) via
a certain quasilinear parabolic PDE system. This paper is devoted to answering these
questions.

We will show that for a fairly large class of forward-backward SDEs in which the
forward equation is non-degenerate (that is, the coefficient o is non-degenerate), there do
exist explicit relations between Y,Z and X in terms of a classical solution of a certain
parabolic PDE system; and when such relations hold we not only obtain the ordinary
adapted solutions of the forward-backward SDEs, but we also find the explicit form of
the solutions. We carry out this idea by designing a generic scheme (which we call the
“Four Step Scheme” in the sequel) to construct explicitly the adapted solution for forward-
backward SDEs. With this scheme we can prove the uniqueness of the adapted solution
over an arbitrary interval, which is not obtainable by the contraction mapping theorem
(see [1]) and which seems not possible by a pure control theoretic argument like that of [7].
The continuous dependence of the solution on the parameters is also proved within this
framework. It is worth noting that solving the parabolic system, which presumably gives
the nodal surface of the viscosity solution to the corresponding HIB equation (cf. [7]), is
already sufficient for our scheme to work. That is, one does not have to verify whether or
not it is really the nodal surface. Thus the technical difficulties are reduced in this special
case. Finally, we would like to point out that the non-degeneracy of o is essential for the
existence of an adapted solution over an arbitrary time interval [0, T]; in fact, Antonelli’s
counterexample in [1] shows that otherwise the adapted solution may not even exist when
the time duration T is large (see also 7] for other non-existence results).

This paper is organized as follows. In §2 we formulate the problem and give some

preliminaries. In §3 we study the solvability of the two essential steps in our *“Four Step
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Scheme”. In §4 we give our three main theorems; and in §5 we prove the continuous
dependence and differentiability of the adapted solutions with respect to the parameters.
In §6 we discuss the applications of our results to an integral representation theorem and

compare it with the Clark-Haussmann-Ocone formula.

Acknowledgement: The authors wish to thank Fabio Antonelli for many discussions

on this subject.

§2. Formulations of the Problem.

In this paper we will only seek ordinary adapted solutions to the forward-backward
equations, which we now describe.

Let (Q,F,P) be a probability space carrying a standard d-dimensional Brownian
motion W = {W; : t > 0}, and let {F;} be the o-field generated by W (i.e., F; = a{W, :
0 < s < t}). We make the usual P-augmentation to each F; so that F; contains all the
P-null sets of F. Then, {F;} is right continuous and {F;} satisfies the usual hypotheses.

Let us consider the following forward-backward SDEs:

t t
Xi==2 +/ b(s, Xs,Ys,Zs)ds +/ o(s,Xs,Ys)dWs,
0 0

(2.1) t € [0, 7).

T T
Y, = o(X1) + / B(s, Xs, Vs, Z,)ds + / 5(s, Xs, Y, 2,)dW,,
t t

Here, the processes X, Y and Z take values in R®, R™ and R™*¢, respectively; and the
functions b, b, o, & and ¢ take values in R*, R™, R™*¢, R™*¢ and IR™, respectively. In
what follows, we use the usual Euclidean norms in R™ and R"; and for z € R™*? (resp.
R"*%), we define |z| = {tr (22T)}!/2, where “ T ” means transpose. Then, R™*? (resp.

R"*?) is a Hilbert space.

Definition 2.1. A triple of processes (X, Y, 2):[0,T] x @ = R" x R™ x R™*? is called
an ordinary adapted solution of the forward-backward SDEs (2.1), if it is {F;}-adapted
and square-integrable, such that it satisfies (2.1) P-almost surely.

Since we are looking only for ordinary adapted solutions in this paper, the term

“ordinary” will be omitted from now on. Moreover, the adaptedness of the solution enables
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us to rewrite (see also [7]) (2.1) in a pure forward differential form:
dX: = b(t, X¢, Vs, Zy)dt + o(2t, X4, Ye)dW,,
(2.2) dY, = —b(t, X4, Yy, Z,)dt — 6(¢, X, Y1, Z)dWe,  t€[0,T),
Xo =1z, Yr = g(X7).
It is clear that (2.2) is a stochastic two point boundary value problem.
Let us first give a heuristic argument. Suppose that (X}, Y3, Z;) is an adapted solution

to (2.1) or equivalently (2.2). In light of the special case studied in [7], we assume that ¥’
and X are related by

(2.3) Y; = 6(¢, Xy), vt € [0,T], a.s. P,

where 6 is some function to be determined (in [6], 8 is the nodal surface of some HJIB-
equation). Suppose that all the functions involved are smooth, say at least C?; then by

applying Itd’s formula, we have for 1 < k < m:
dYt = do*(t, X.) = {67 (t, X¢) + (65(t, Xe), b(t, Xo, 0(t, X1), Z2) )
(2.4) + 5te (08,6, X)o (6, X, 08, X))o (1, X 62, X))t
+ (6%5(t, X1), o(t, X1, 6(¢, X1))dW, ) .
Comparing (2.4) and (2.2), we see that if 8 is the right choice, then it is necessary that,

fork=1,---,m,

5 (2, X1, 0(t, X)) = 65(t, X)) + (85 (2, X,), b(t, Xy, 0(2, X2), Z) )

(2.5) n %tr 6%, X2)o (£, X, 6(t, X))o (t, X, 8(¢, X)) T1:
(T, Xt) = 9(XT),

and

(26) Oz(t, Xt)O'(t, Xt, g(t, Xt)) = —E(t, Xt, Y't, Zt)

The above arguments suggest that we design the following “Four Step Scheme” to solve

the forward-backward SDE (2.1).

Four Step Scheme:
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Step 1. Find a “smooth” (see Remark 2.1) mapping z: [0,7] x R" x R™ x R™*" —
R™*? satisfying

po(t,z,y)+o(t,z,y,2(t,z,y,p)) =0,

(2.7)
Y(t,z,y,p) € [0,T] x R® x R™ x R™*".

Step 2. Using the function z above, solve the following parabolic system for 8(¢, z):

ok + -;-tr (6%,0(t, 2, 8)o(t,,0)T) + (b(t, 7, 0, 2(t, 7, 8,,)), 6F )
(2.8) +b%(t,x,0,2(1,2,0,0;)) =0, k=1,---,m, (tz)€(0,T)xR",
(T, z) = g(x), z € R™.

Step 3. Using § and z, solve the following forward SDE:
t t
(2.9) Xi=¢ +/ b(s, Xs)ds +/ &(s, X)dW,,
0 0

where b(t, ) = b(t,z,0(t,z), 2(t,z,0(t, z),0:(¢,2))) and &(¢,z) = o(t, z,0(¢, z)).
Step 4. Set

Y: = 0(¢, Xy),
(2.10) {

Zt = Z(t, Xt, G(t, Xt), 9z(t, Xt))
Then if this scheme is realizable, (X, Y;, Z;) would give an adapted solution of (2.1).

The above Four Step Scheme provides a generic method which of course can be applied
to any forward-backward equation (e.g., to those systems in which o depends on z and =z
can take value in any Euclidean space IRe). However, in order to ensure that every step
goes through, some restrictions on the data are inevitable. For instance in order for the
parabolic system (2.8) to have a classical solution, and for the equation (2.7) to be solvable,
we should have at least two reasonable assumptions: (1) the uniform parabolicity of (2.8);

(2) the surjectivity of the mapping . We now give the standing assumptions of this paper.

Standing Assumptions:
Al) d = n; and the functions b, 3, o, 0 and ¢ are smooth functions taking values
g g
in R*, R™, R*™", R™*" and R™, respectively, and with first order derivatives in z,y,z

being bounded by some constant L > 0.



(A2) The function o satisfies
(2.11) o(t,z,y)o(t,z,y)" 2 W(lyDI, V(¢ z,y) €[0,T] x R* x R™,

for some positive continuous function v(-).

(A3) For each fixed (¢, z,y,2) € [0, T]xR"xIR™ xIR™*", the linear map G.(¢,z,y, z) €
L(R™*™) (the space of all linear transforms on R™*™) is invertible with the inverse

G.(t,z,y,2)"" satisfying

Haz(t’ T, Y, z)_IHL(IR""‘") < A(lyl)a

(2.12)
(t,z,y,2) € [0,T] x R® x R™*" x R™*",

for some continuous function A(-). Moreover, for any (¢, z,y) € [0,T] x R x R™,
(2.13) {3(t,z,y,2) | z e R™"} = R™*™;
and there exists a positive continuous function «(-), such that

(2.14) sup{lz| | 3(t,z,y,2) =0} < w(lyl),  V(t,2,9) € [0,T] x R" x R™

(A4) There exists a function g and constants C > 0 and a € (0,1), such that g is
bounded in C*t*(R™) and for all (¢, z,y,2) € [0,T] x R* x R™ x R**™,

(2.15) lo(t, z,y)| < u(lyl),
(2.16) l6(¢, z,y,0)| < u(lyl),
(2.17) 8(t,z,0,2)| < C.

Remark 2.1. Throughout this paper, by “smooth” we mean that the involved functions
possess partial derivatives of all necessary orders. We prefer not to indicate the exact
order of smoothness for the sake of simplicity of presentation. Also, the boundedness of

the first order derivatives in z,y, z requires only the usual uniform Lipschitz condition in

7



these variables, which is close to necessary in order to have global well-posedness for any

differential equations.

§3. Solvability of (2.7) and (2.8).

It is readily seen that among all steps in our Four Step Scheme, the first two (i.e.,
the solvability of (2.7) and (2.8)) are essential. Thus we devote this section to these two
steps, which can also be viewed as the preliminaries of our main theorems in the following
section. The first proposition concerns the solvability of (2.7).

Proposition 3.1. Suppose that (Al), (A2) and (2.12) hold. Then (2.7) admits a unique
smooth solution z : [0,T] x R" x R™ x R™*" if and only if (2.13) holds.

In particular, (2.7) is solvable if the following holds:

~ T
1) tm EOEGSYAT) L vy ey e0,T] x R” x R™

|z|—o00 | 2]

In addition, if (2.14) holds, then, the solution z(t,z,y, p) of (2.7) satisfies

|2(¢, 2,9, P)| <&(ly]) + AlyDlo(t, =, v)]Ip,

(3.2)
V(t,z,y,p) € [0,T] x R* x R™ x R™*".

Proof. Recall that a solution of (2.7) is a mapping z : [0,7] x R* x R™ x R™*"
satisfying
po(t,z,y)+5(t 2,y,2(¢,7,y,p)) =0,
Y(t,z,y,p) € [0,7] x R® x R™ x R™*".

(3.3)

Since all the functions involved are smooth and @,(¢,x,y, 2) is invertible as an element of
L(R™*™), whenever a solution z(¢,z,y,p) of (3.3) exists, it must be smooth. Moreover,
such a solution is unique due to (2.12). Indeed, suppose for some (¢,z,y), there exist

z1,22 € R™*™ with z; # 29, such that 3(¢,z,y, 2z1) = 3(¢,,y, 22). Let
(p(T‘) = a(t’ T,y,721 + (1 - T)ZZ)’ re [01 1]
Since (0) = (1), there exists some r € (0,1) such that ¢'(r) = 0. In other words,

(Gz(t,x,y,rzl + (1 - T)Z2)721 - 22) = 0:
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contradicting (2.12). It is evident that if (2.13) holds, then such a function z will exist.
Conversely, because of (2.11), for any fixed (f,z,y), the range of the matrix function
p > po(t,z,y) is all of R™*™. Thus, (2.13) has to hold if (3.3) has a solution z(t,z,y, p).
Thus we proved the first part of the proposition.

Now noting that R™*™ under the norm |z| = (tr(z2z7))!/? is isometric to R™", the
condition (3.1) implies that the map z — (¢, z,vy, 2) is surjective (cf. [2, Theorem 1.3.3])
for each (¢,z,y). This gives (2.13) and hence (2.7) is solvable.

Finally, it follows immediately from (3.3) and (2.12) that, for (¢,z,y,p) € [0,T] x
R" x R™ x R™*",

< MlyDle(t, z,y)l,
L(R"X™)

0z

whence (3.2) follows from (2.14) and (3.4). O

We now turn to the solvability of (2.8). Resolving this step relies heavily on the theory
of parabolic systems. Our main references are [5] and [14]. Let us first try to apply the

result of [5]. Consider the following initial boundary value problem:

( n n
0 + ) aij(t,3,0)0z,0; + Y bilt,7,0,2(t,2,6,6,))6%,

1,j=1 i=1

+ 55 (t,z,0,2(t,2,0,6,)) =0,
3.5
(3.5) < 1<k<m,(t,z)€[0,T] x Bp,
6|5, =0(z), lz|=R,

\ O(T,.’L') = g(-’ll), T € Bp,

where Bp is the ball centered at the origin with raduis R > 0 and

o-(t7 m’ y)a-(t, x’ y)T7

N =

(aijt,z,y)) =
(bl(t7$1y1 Z), "t ,bn(t,.’L‘,y, z))T = b(t7$a Y, 2)3
(?‘\l(ta z,Y, z)’ e 73m(t7 z,Yy, z))T = Z(ta z,y, Z)-

Suppose (A1)-(A3) hold, then by Proposition 3.1, the solution z(¢,z,y,p) of (2.7) exists

and is smooth. We now give a lemma, which is an analogue of [5, Ch. VII, Theorem 7.1].
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Lemma 3.2. Suppose that all the functions a;j, b;, b* and g are smooth. Suppose also

that for all (t,z,y) € [0,T] x R" x R™ and p € R™*", it holds that

(3.6) v(lyDI < (aii(t, z,y)) < p(lyDI,
(3.7) |b(¢, =, y, 2(t, z,y, p))| < u(ly])( + |p]),
(3.8) la%a.-,-(t,w,y)[ s [a—‘zga,-,-(t, x,y>' < u(ly),

for some continuous functions u(-) and v(-), with v(r) > 0;

(3.9) [8(t, 2, , 2(t, 2, y, P < leClyl) + P(Ipl, [yDI(1 + 12*),

where P(|p},|y]) — 0, as [p| — oo and ¢(|y|) is small enough;
(3.10) Y ¢, 7,y 2(t 2,y p))yE < L(L+ [y,
k=1

for some constant L > 0. Finally, suppose that g is bounded in C?***(R") for some
a € (0,1). Then (3.5) admits a unique classical solution 8(t, z). O

Using Lemma 3.2, we can now prove the solvability of (2.8) under our standing as-

sumptions.

Proposition 3.3. Let (A1)-(A4) hold. Then (2.8) admits a unique classical solution
6(t, r) which is bounded and 8,(t,z), 8,(t,z) and 8,.(t,z) are bounded as well.

Proof. We need check only that all the required conditions in Lemma 3.2 are satisfied.
First, by Proposition 2.3 we know that there exists a smooth function z(¢,z, 8, p) satisfying

(3.3) and (3.2). By (2.15), we further have

|2(2, 2, y, )| < s(lyl)+A(lyDullyDIpl,
Y(t,z,y,p) € [0,T] x R" x R™ x R™*".

(3.11)

Now, we see that (3.6) and (3.8) follow from (A1), (2.11) and (2.15); (3.7) follows from (A1),
(2.16) and (3.11); and (3.9)~(3.10) follow from (A1) and (2.17). Therefore by Lemma 3.2
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there exists a unique bounded solution 6(¢, z; R) of (3.5) for which 6,(¢, z; R), 8.(t, z; R) and
8.:(t,z; R) together with 8(¢, ) are bounded uniformly in R > 0. Using a diagonalization
argument one further shows that there exists a subsequence (¢, z, R) which converges to
6(t,z) as R — oo, and 8(%,z) is a classical solution of (2.8), with 8:(t,z), 6:(t,z) and
8.:(t,z) all being bounded.

Finally, noting that all the functions together with the possible solutions are smooth
with required bounded partial derivatives, the uniqueness follows from a standard argument

using Gronwall’s inequality. O

Remark 3.4. Note that the solution z(¢,z,y,p) of (2.7) is not bounded in general.
Thus, (3.10) almost implies that /I;(t,a:,y,z) is bounded for fixed (¢, z,y) uniformly in z.
This leads to our assumption (2.17) in the present framework. This assumption could be

relaxed if we had some more information about E(t, z,y,z) and the function z(¢, z,vy,p).

§4. Main Theorems.

In this section we state and prove our main theorems concerning the existence and
uniqueness of the (ordinary) adapted solution to the forward-backward SDEs (2.1). By
slightly changing the conditions on the data, we can derive different forms of the results.

We shall therefore consider three cases.

1. The General Case:
Theorem 4.1. Let (Al1)-(A4) hold. Then the forward-backward SDE (2.1) admits a

unique adapted solution (X,Y,Z) which has the expression (2.10) with z(t,z,y,p) and
6(t, z) being the solutions of (2.7) and (2.8).

Proof. By Proposition 3.1 we know that there exists a unique smooth function
z(t,z,y,p) satisfying (3.3). Next by Proposition 3.3, one can find a classical solution
8(t,z) of the uniform parabolic system (2.8). Now we consider the forward SDE (2.9).
Since under our conditions both 5(¢,z) and &(¢,z) are uniformly Lipschitz continuous in
z, we see that for any z € R", (2.9) has a unique strong solution. Then, by defining Y;
and Z; via (2.10) and applying Itd’s formula, we can easily check that (2.4) is satisfied.
Hence, (X,Y, Z) is a solution of (2.1).
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It remains to show the uniqueness. First, we claim that any solution (X, Y, Z) of (2.1)
must be of the form we constructed using the Four Step Scheme. Let (X,Y,Z) be any
solution of (2.1). We define

(4.1) Ve =0(t,X:), Zi=a2(t, Xe,00t,X:),0:(¢, X))

By applying Itd’s formula to 6(t,X;) and noting the definition of z(t,z,y, p) and 6(¢,z),
one shows as in §2 that (¥, Z) is an adapted solution of the following (pure) backward
SDE:

T T
(4.2) Y,=g(XT)+/ b(s,Xs,Y,,Zs)ds+/ 5(s, X0, Y, Z)dW,,  t€[0,T].
t t

Therefore both (Y,Z) and (?,Z) satisfy (4.2), with the same X;. We now prove that
it is necessary that Y; = Y,and Z, = Z,. In fact, applying Itd’s formula and taking

expectations, we have

T
Em—m2=2/ E(Y, - V., 8(s, X, Yo, Z) — B(s, X, Vo, Z) ) ds
t
(4.3) ) o
—/ EIE(S,XS,}’;,ZS)—ﬁ(s,X,,Ys,Zs)lzds
t

By (A3) we see that for any fixed (¢,z,y) (we suppress these three arguments below)

|z — 2| = [67'5(2) - 5775(2)|

1
/0 571 (3(3) + 7(3(2) — 3(9)))dr(3(2) — 3(9))
<AWDEE) -3, Ve, Fe R

(4.4) —

Thus, we have
T ~ ~~ —~ —~ -~
2/ E(Y, -V, 85, X0, Yy, Zs) = (s, Xo, ¥, ) ds
t
T —~ ~ ~
<ar / E(lY, - TV, = | + 12, — Z.))]ds
t
T
(45) S 2L/ {Ely; - Y;lz + E“Y; - Ysl/\(lnl)la(S,Xs’ }fs, ZS) - 8(37X37i;3, Zs)”}ds
t
T
< [ {CEW, ~ Tuf + CEY, - Fillo(s, X,, Vi 2) ~ 505, X0, Fs, Zo) s
t
T _ 1 o
< / {CEIY, = Tif? + S El3(s, X, Vs, Z,) - (s, X Fa, 2P} s.
t
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Here, we have used the fact that ¥; = 6(¢, X,) is unformly bounded. Then, (4.3) yields

T
El}/t"'y'tl2+/ Elb\(s,XS,Y:”ZS)_E(S’X”Ys’z’)Pds
(4.6) T f
<c / E\Y, — ¥.[%ds.
t

By using Gronwall’s inequality, we conclude that
(4.7) Y=Y, 6@ X,YZ)=0tX,Y,Z), as. P

An argument similar to that in Proposition 3.1 shows that Z; = Zt, a.s. P.; Thus any
solution of (2.1) must have the form that we have constructed, proving our claim.
Finally, let (X,Y, Z) and (X,Y, Z) be any two solutions of (2.1). By the previous

argument we have

Y; =6(t,X:), Z;=2z(t, Xe,0(2,X:),0.(¢,Xy)),
(4.8) - . . ~ ~ ~

Yt = 9(t,Xt), Zt = Z(t,Xt, G(t,Xt),Gz(t,Xt)).
Hence X, and X, satisfy exactly the same forward SDE (2.9) with the same initial state
z. Thus we must have X; = Xy, V¢ € [0,7], a.s. P., which in turn shows that Y; = Y.,

Zy=Z,Vte [0,T], a.s. P. by (4.8). The proof is now complete. O
2. Special Case I: b has linear growth in z.

Although Theorem 4.1 gives a general solvability result of the forward-backward SDE
(2.1), the condition (A4) is rather restrictive; for instance, the case that the coefficient
Z(t, z,y,z) is linearly growing in z is excluded. This case, however, is very important for
applications in optimal stochastic control theory. For example in the Pontryagin maxi-
mum principle for optimal stochastic control, the adjoint equation is of the form that the
corresponding b is affine in z. Thus we would like to discuss this case separately.

In order to relax the condition (A4), we compensate by considering the following

special forward-backward SDE:

t t
Xe=z+ / b(s,Xs,Ys,Z,)ds +/ o(s, Xs)dWs,
(4.9) ° ° t € [0, T].

T T
Y =g9(X7)+ / b(s,Xs,Ys,Zs)ds + / 6(s, Xs,Ys, Zs)dWs,
t t
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We assume that o is independent of ¥; and Z;, but we allow b to have linear growth in z.

In this case, the parabolic system looks like the following (compare with (2.8)):

(0% + 5tr (85,0(6,2)0(t,2)7) + (86,2, 6, (0,2, 6,02)), 6

+ 3%, .6, 2(t,2,0,8;)) =0,
(4.10) { (t,2.6,2( )

1<k <m,(tz)€0,T) x R,

8T, z) = g(z), z € R™

Since now b has linear growth in z, the result of [5] does not apply. We use the result of

[14] instead. To this end, let us rewrite the above parabolic system in divergence form:

0f + ) (aij(t,2)8,)s; = f¥(t,2,6,65),  (t,2) € [0,T] x R™,
ij=1
(4.11) ¢ Eel...m

\ 9(T7$) = g(:l:), S IRna

where
( 1 T
(aij(t,2)) = —2-0(t,:1:)a(t,:c) ,
(4.12) \ fEt2y,p) = Y aije; (L,2)pf = > bilt,z,y, 2(t, 2, y, p))pf
Tk
\ —b°(¢, z,y, 2(t, 7,9, p))-

From [14], we know that for any T > 0, (4.11) will have a unique classical solution, global

in time, provided the following conditions hold:

(4.13) vI < (aij(t,z)) < pl,  VY(t,z)€[0,T] x R,

k rk 2 2
y (¢, z,y,p) < eolpl® + C(1 + |yl?),
(4.14) ;

v(t,%y,P) € [O,T] X IR," X ]Rm X IRnXm’

where v, u, C, €9 are constants with ¢ being small enough. (To fit the framework of [10],
we have taken H = |y|?, cF =0 and r¥F =0, k = 1,---,m. See [14] for details). Therefore,

we need the following assumption:
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(A5) There exist positive constants v, u, such that

(4.15) vI < o(t,z)o(t,z)T < ul, V(t,z) € [0,T] x R",
(4.16) b(¢, z,0,0)|, [6(¢,2,0,0)| <p,  V(t,z,)e€[0,T] x R,

Moreover, (A2)—(A3) hold with A being independent of y and «(|y|) having no more than

linear growth in |y|.

Theorem 4.2. Suppose that (Al) and (A5) hold. Then (4.8) admits a unique adapted
solution (X,Y, Z).

Proof. In the present case, similar to Proposition 3.1, there exists a unique smooth

function z(t,z,y,p) satisfying

po(t,z)+o(t, z,y, 2(t,z,y,p)) =0,

(4.17)
Y(¢,z,y,p) € [0,T] x R* x R™ x R™*".

Moreover, we have the estimate (see (3.2))

|z(t, z,y,p)| KC(1 + |y| + |pl),

(4.18)
V(t,z,y,p) € [0,T] x R® x R™ x R"*™.

Therefore conditions (4.13) and (4.14) hold, which will lead to the existence and uniqueness
of classical solutions of (4.11) or (4.10). Next, applying an argument similar to the one we

used in the proof of Theorem 4.1, we can show that there exists a unique adapted solution

(X,Y, Z) of (4.8). O

Remark 4.3. It is not hard to see that since E(t, z,y, 2) is uniformly Lipschitz contin-
uous in (y, z) (see (Al)), (4.16) gives that

[b(t, @y, 2)| SC(1 + ly| + Ipl),
V(t,z,y,2) € [0,T] x R® x R™ x R™*".

(4.19)

In other words, the function b is allowed to have a linear growth in (y, z).
3. Spectal Case II: m = 1.
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Unlike the special case I, this is the case in which the existence and uniqueness result
can be derived for a more general system than (2.1). The main reason is that in this case,
the function 6(t,z) is scalar valued, and the theory of quasilinear parabolic equations is
much more complete than that for parabolic systems. Consequently, the corresponding
results for the forward-backward SDEs will allow more complicated nonlinearities. Re-
member that in the present case, the backward component is one dimensional, but the
forward part is still n dimensional. This is exactly the case when we discuss the integral
representation formula in the next section.

We can now consider more general forward-backward SDEs:

t ¢
X:=<z +/ b(s, Xs,Ys, Zs)ds +/ o(s8,Xs,Ys, Zs)dWs,
0 0

(4.20) t € [0, 7).

T T
Y, = g(X1) + / B(s, Xo, Y, Zo)ds + / 5(s, Xy, Y, Zo)TdW,,
t t

Here W is an n-dimensional standard Brownian motion, b, o, 3, o and g take values in
R", R**", R, R” and IR, respectively. We use the convention that all vectors are column
vectors (thus we have (¢, X¢, Y, Z:)T in the above). We note that (4.20) is of the same
form as (1.1)-(1.2); and the difference between (4.20) and (2.1) is that we now allow o to
depend on Z. In what follows we will try to use our Four Step Scheme given in §2 to solve

(4.20). To this end, we first need to solve the following equation for z:
(4.21) o(t,z,y,2) p+5(t,z,y,2z) = 0.

Let us make the following assumptions. We keep the assumptions (A1), (A3) with m =1
and replace (A2) by the following:
(A2)’ There exist positive continuous functions u(-), v(-), such that
v(ly))I <o(t,z,y,2)o(t,z,y, Z)T < w(lyDI,

V(t,z,y,2) € [0,f] x R" x R x R".

(4.22)

We have the following result.

Proposition 4.4. Let (Al), (A2) and (A3) hold. Then there exists a unique smooth
function z(t,z,y,p) that solves (4.21) and satisfies (3.2).
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The proof is the same as that of Proposition 3.1.

Theorem 4.5. Let (A1), (A2)’ and (A3) hold. Let the function g be bounded in C**+*(IR"™)
for some a € (0,1) and suppose that there exists a constant C > 0 such that for all
(t,z) € [0,T] x R,

(4.23) b(t, 2,0,0)| + [5(t, 2,0, 0)| + |o(t, 2,0,0)| + [3(¢,,0,0)| < C.

Then, there exists a unique adapted solution (X,Y, Z) of (4.20).

The proof is omitted here because it is similar to that of Theorem 4.1. We should
note that the well-posedness of (2.8) in the present case (m = 1) follows from [5, Ch.V,
Theorem 8.1]. We see that the condition (4.23) together with (A1) means that all the

functions b, 3, o and 7 are allowed to have linear growth in y and z.

§5. Dependence of Solutions on Parameters.

In this section we study the dependence of the solution of forward-backward SDEs
(2.1) on parameters, which will be useful in applications. We show that all the tasks can
be accomplished under a unified framework—the Four Step Scheme. Consider forward-

backward SDE with a parameter:

t t
Xt=a:(a)+/ b(a,s,Xs,Ys,Z,)ds+/ ola,s, X,,Y,)dWs;
(5.1) - °
Y,:g(a,XT)+/ E(a,s,Xa,Y,,zs)der/ 5(a,$,X,,Y,, Z)dW,,
t t

where o is a parameter taking value in a metric space, say A. The solution of (5.1),
whenever it exists, will be denoted by (X(a),Y(a), Z(a)). Let us make the following basic

assumption:

(A6) The functions b(a,-,-,-,), Z(a,-,-, ), olay - -), 6(a,+, -+, ) and g(a,-) satisfy
the standing assumptions (A1)-(A4), uniformly in a € A.

It is readily seen that under the assumption (A6), for each a € A and any T > 0, the
adapted solution (X (a),Y(a), Z(a)) of (5.1) exists and is unique on [0,7]. Furthermore,
let us introduce the notion of £- (resp. L£(B)-) continuity and differentiability of N. V.
Krylov (cf. [4]).
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Definition 5.1. An R%valued process {£;(a) : t > 0} with parameter « € A is called £-
(resp. L(B)-) continuous at ap € A if

T
62) Jim E{ / |(5t<a)—et<ao)|2dt} -0,
o 0
(resp.

(53) im B { sup_ lee) —&an)l} = 0)

a—rgo

() is called £- (resp. L(B)-) differentiable at ap if for all I € R’ the limit

(£)- lim, [e(cto + 1) — €(e0)

(5.4)
(resp. (L(B))- 11_% %[{(ao +rl) — f(ao)])

exists. In this case, the limit process is called the £- (resp. £{B)-) derivative of {(a).

Our main result of this section is the following.

Theorem 5.2. Suppose that (A6) holds. If for each t € [0, T], the functions b, b, o, 7 and
g together with their first order partial derivatives in z, y, z are continuous with respect
to a; and z(a) is continuous at ag € A, then the adapted solutions (X(«a),Y:(a), Z:(a))
of (5.1) is L(B)- (whence L-) continuous at ay.

Moreover, if z(a), g(a,) are ¢ times continuously differentiable in o and z, and for
fixed t, the functions b, 3, o and G are all i + 1 times continuously differentiable with
respect to the variables «, z, y and z; and all the derivatives (up to order ¢ + 1) above
are at most polynomial growth in z, y and z, uniformly in t and «, then the solution
(X(a),Y(a),Z(a)) is i times L-differentiable with respect to a.

Proof. (1) Continuous dependence. We shall check our main scheme step by step. First
of all, if o(-,¢,z,y) and (-, s,z,y,2) are continuous at oy, then obviously, the implicit

function z(s, z,y, p; @) of the equation
(5.5) po(a,t,z,y) + 0(e, t, 2,9, 2(, 2, 4, p; @) = 0,

which always exists by (A6), will be continuous (in a) at ay € A.
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Next consider the parabolic system with parameter:

6 + %tr(9§za(a,t,x,9)0‘(a,t, 2,0)T) + (b, t, , 8, 2(t, 2,0, 85 ), 65 )
(5.6) + Ek(a,t,a:, 0,2(t,z,0,0;;a)) =0, k=1,---,m,

(T, z) = g(a,z), r € R".
Using the assumptions of the theorem it easy to see that the solutions of (5.6), denoted by
8(t, z; ), will be continuous in a at ag for fixed (¢,z) € [0,T] x R". Moreover, it is not

hard to check that 8.(¢,z;«) is continuous at ag as well.

Now we turn to the third step. Consider the forward SDE:
t t
(5.7) X =z(a) +/ Wa,s, Xs)ds +/ &(a, s, X)dWs,
0 0

where

) b(a,t, z) = b a,t,z,0(t, z; @), 2(t, ,0(t, z; ), 6,(t, z; @); @));
(5.8

&(a,t,z) = o(a,t,z,0(t,z; a)).
Let us denote the solution of (5.7) by X(a). The assumption of the theorem and the

results from the last two steps show that both b and & are continuous in « at ag for fixed

(t,z) € [0,T). Hence by a continuous dependence theorem (cf. [4]), we have

(5.9) L(B)- ali’rgo Xi(a) = Xi(ap)-

Finally, recall from Theorem 4.1 that the adapted solution of (5.1) must have the form
(5.10)  Yila) =6(t, Xe(a);a);  Zi(a) = z(t, Xo(a), 0(2, Xo(a); @), 8:(t, Xo(a); @); ),

the conclusion follows immediately from (5.9).

(ii) Differentiability. We again follow the Four Step Scheme. First, by our assumption,
the solution z(t, z, 8, p; &) will be 7 times differentiable with respect to z, 8, p and o for each
fixed t. Second, the solution 6(¢,z; a) (together with 8.(¢,z;a)) of the parabolic system
(5.6) will also be : times differentiable for fixed t, with respect to z and a. Therefore the
functions b and & defined by (5.8) are all 7 times continuously differentiable with respect

to @ and z; and their derivatives (up to order i) are at most polynomialy growing in z,

19



uniformly in ¢ and a. Thus, by {4, Theorem 2.8.4], the solution X (a) of (5.6) is ¢ times
L- (in fact £(B)-) differentiable. The conclusion then follows easily from the expression
(5.10) for Y (a) and Z(a). The proof is now complete. O

§6. An Integral Representation Formula.

In this section we consider a special case: 5=0and = —2. We shall derive an
integral representation formula for functions (or functionals) of diffusions via our explicit
solution of forward-backward SDEs. The forward-backward equations (2.1) now take the

form:

t t
X,=x+/ b(s,Xs,Ys,Zs)ds+/ a(s,Xs,Ys)dWs,
0 0
(6.1) T
Yi=g(Xr)- [ ZdW, te0T)
¢

From our Four Step Scheme, we know that if we define
(6.2) z(t,z,y,p) = po(t, z,y), Y(t,z,y,p) € [0,T] x R* x R™ x R™*",
and let 9(t, ) be the classical solution of the following parabolic system:

Of + %tr [Gﬁza(t, z,0)o(t,z, G)T] + (b(t,z,0,2(t,z,6,0;)), 9’; )y =0,
(6.3) k=1,---,m;

8(T,z) = 9(z),
then we can derive the (unique) adapted solution of (6.1) by first solving the following
forward SDE:

t ¢
(6.4) Xi=z +/ b(s, X,)ds + / (s, Xs)dWs,
0 0

where

(6.5)

{ I;(t, z) = b(t,z,0(t,z),0.(t,z)o(t, z,0(t,z)));
a(t,z) = o(t,z,0(t,z)),

and then setting Y; = 0(¢, X;) and Z; = 0.(¢, X,)o(t, X¢,8(t,X:)). Further, letting t =0

in the second (backward) equation in (6.1), we get
T
(6.6) Yo = 9(XT) - / 0:(s,Xs)o(s,Xs,0(s,Xs))dWs.
0
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Note from (6.1) that
(6.7) Y, = E{g(X7)|F:}, t€(0,T),

and since Fy is a trivial o-field, ¥p is non-random, hence Yy = EYy = Eg(X7) and (6.6)

can be rewritten as
T
(6.8) o(Xr) = Eg(Xr) + / 8.(s,X,)o(s, X, (s, X,))dW,.
0

We see that (6.8) provides an integral representation for g(X7). A more general formula

is the Clark-Haussmann-Ocone formula, which is (in this case):

T
(6.9) o(X1) = Eg(Xr) + / E{D,g(Xr)|F\}dW,,

where D is the “Malliavin derivative” operator (cf. [8] or [9]). To see the relationship
between (6.8) and (6.9), note that since X is the solution of (6.4), which is actually a
diffusion, we can calculate E{D;g(XT)|F,} as follows:

Dsg(XT) = gz(XT)DsXT7
and

t t
DX, =&(s,X,) + / by (r, X )D, X, dr + / 52(r, Xr)D X dW,,

L]

for 0 < s <t <T. Thus fixing s and letting u; = D, X;, we have that u is the solution of
a linear SDE. For simplicity, we now assume that m = n = 1. Then it is known (cf. [12])

that u; has an explicit form:
(6.10) us = £(2):6(s,X5s),
where £(Z); denotes the Doléans-Dade stochastic exponential of Z and
7 = /t Ez(r,Xr)dr + /t &z(r, Xr)dWr.
In other words,
£(2). = exp{Z: — 512, 2))

t t
= exp {/ Gz(r, X, )dW, +/ (EI(T‘,_X,-) - %—&2(7‘,)(,)) dr} ,
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Therefore (in the case m = n = 1) we have
(6.12)  E{D.g(X1)|Fs} = E{g:(X1)DsX1|F,} = E{ga(XT)E(Z)7|F:}5 (s, Xs).

Furthermore, if we let ¢(z;s,T) denote the flow of X from s to T given X, = z (cf. [11,
§V-T7]), then
E{gZ(XT)g(Z)Tl"FS} = H(XS’ Sy T)7

where

T
H(z,s,T)=E {g,(go(:v; s,T)) exp [/ Fz(r,p(z;s,7))dW,

+ ]ST (51(7',99(:16; $,7)) — %ﬁ(?‘&(ww)) d’”] } ;

and we are able to conclude (for m =n = 1):
T
(6:13) o(X1) = Bg(Xr) + [ H(X,,s,T)o(s, X)W,
0

directly from the Ocone formula. The function H(z,s,T) is however not amenable either
to closed form expression nor to simple computations. But if we compare (6.13) and (6.8),
then we have H(X,,s,T) = 0:(s, Xs).

For general m and n, we have that D,X; solves a linear system of SDEs, and hence
it has a closed form solution (see [13, p.271]), and we can again obtain information from
the Ocone formula, but it will be more complicated (a simpler argument without using
Malliavian derivatives is given at the end of this section). The next theorem shows that

in this case, our formula is simpler.

Theorem 6.1. Under assumptions (Al)-(A4), let X solve (6.8). Then
T
oXr) = Eg(Xr) + | B{Dug(Xr)lF}aW,
0

T
— Eg(X7) + / 8.(s, X)5(s, X,)dW,.
0

Consequently, E{D,g(X1)|F,} = &(s,X,)0:(s, X,), dP ® dt-almost surely.
Proof. The first equality is the Ocone formula (cf [9]); the second is (6.8), and sub-

traction gives
T T
/ E{D.g(X)|F.}dW, = / 5(s, Xs)62(s, X,)dIV,.
0 0
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Subtracting one stochastic integral from the other yields the zero local martingale, hence

T
| B(D.gxn)iE.} - o5, X)0u(s, X)) ds =0,
0
and so we have the third equality dP ® dt-almost surely. O

We can simplify the assumptions of Theorem 6.1:

Theorem 6.2. Let W be an n-dimensional Brownian motion, let b, 0, and g be C* with
bounded first derivatives and suppose that g is bounded. Suppose further that the function
o is invertible for each (t,z) and that c~(t,z) is bounded. Let X be the solution to the
SDE:

t t
(6.14) Xi==z +/ b(s, Xs)ds +/ (s, X)dWs.

0 0
Then it holds that

T
(6.15) o(X7) = Eg(X7) + / 8,(s, X))o (s, Xs)dW,.
0

where 8 is the classical solution of the following PDE:

1 . )
(6.16) { 0 + 5trlbzz0(t, @)o(t,2) ] + (b(t, ), 02 ) = 0,
(T, z) = g(z),

Proof. Let us consider the following uncoupled forward-backward SDE:

t t
Xt=:z:+/ b(s,Xs)ds+/ o(s,X)dWs,
(6.17) 0 0

T
Y, = g(X7) - / Z,dW,, te€[0,T).
t

We again use our Four Step Scheme to get the explicit solution of (6.17). To do this, note
that now m = 1, so we need only to apply Theorem 4.5; but in this case it is easily seen
that the conditions of Theorem 4.5 are reduced to ones given in the theorem, therefore the

result is a direct consequence of the argument at the beginning of this section. O

To end this section, we discuss a little bit about the process p; 2 6:(t,X:). Such a
process is of independent interest; for example, in stochastic control theory. The following

proposition gives an important property of p.
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Proposition 6.3 There exists an IR™*"-valued adapted process {K; : t > 0} such that
(p, K) is the unique adapted solution of the following backward SDE:

T T
(6.18) pt = g:(XT) + / [b,,.(s,X,)T s +0z(8,X5) Q@ K,|ds — K dW,,
t t

where 0, @ K & (tr (02, K), - -,tr (04, K))T. In particular, if the function 6 is C®, then
Kt = Gu(t,Xt)a(t,Xt) for t 2 0.

Proof. We first assume that 8 is C3. Taking one more derivative in the z variable for

equation (6.16) and doing a little computation, we get, for every £ =1,---,n:

Our, + Y 0z, b (8, T) + Z b, (t, )05,
i=1 1

+ = Z 03'%:! (Z a]k(t $)akz(t (L'))

1]—

+ Z Oz;z; (Z o?*(t,z)ok (t :v))

| 8(T, z) = ¢(z).

(6.19) !

On the other hand, if we apply It&’s formula to 8,, from ¢ to 7 (0 < ¢ < 7), then we have

for every £ =1,---,n:

GIL(Tv XT) = ezt(t':Xt) + / {oztt(s')x-!) + Zetzzi(‘s’Xs)bi(saXs)
t

=1

(620) Z GIlz,z, (3 X ) (Z a-jk(s,Xs)a-ki(s,Xs)) } ds

=1 k=1
/ Z (Z 0s,2,(8,X)0* (s, X )) dwk,
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Using (6.19) and denoting K% = Y"1, 6,,5.(¢, X:)o*(¢, X;), we obtain from (6.20) that

931 (Ta X‘r) = 91:: (t’ Xt)

/ (Zez. zl+29.z,201k >(sx)d3

vJ_

s O"k S k
(6.21) +/ E (Zb‘m.( , Xo)ot (s, X )) AW}

=1
=9,l(t,Xt)—/ (Zaz‘bil(s,Xs)+ Z K:kafj(s,Xs)) ds
t i=1 i,k=1
+/ > Kkawy, £=1,---,n.
t k=1

Now setting pf = 8,,(¢,X;) and 7 = T, and rewriting (6.21) in vector form, we obtain
(6.18) immediately.

To show the general case, let t € [0,T] be fixed and define Q¥ = P(-|F;)(w), w € Q.
For any rational ¢ € IR", and (P-almost) every w € (2, define a diffusion process X(£) (on
the probability space (2, F, Q%)) by

(6.22) X(6) =€+ /t " (s, X, (€))ds + /t " o(s, X, ()AW,,  t<r<T.

By a standard argument, one shows that for P — a.e. w € (,

(6.23) EY { sup |X(£) - X,|2} < Clé = Xo(w)I”.

r€t,T)

Moreover, if we define ((¢) = X-(é) — X,, t < 7 < T, then ((£) satisfies

626) () =(€ =X+ [ bl X)G(Ods + Y [ o, X)W +e(r,6),
t i=1Y?

for t < 7 < T, where ¢{?) is the i-th column of o; and (6.23) would lead to

(6.25) EY” { sup (7, £)|2} = o([¢ — Xe(w)I?),

r€lt,T)

for P-a.e. w € §). We now consider the backward SDE (6.18) on the probability space
(Q,F,Q%) for € [t,T]. It is known (cf. [10]) that it has a unique adapted solution under
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our assumptions. We shall prove that 8, (¢, X;(w)) = p(w), t € [0,T], for P-a.e. w € 2. To
this end, first note that an application of It’s formula to { p-, (+(£) ) from ¢ to T, together
with (6.25), leads to

(6.26)  EY {(pr,(r(£))} = (pr,€ — Xe)w) + ([ - Xi|(w)),  P-ae we

Next, for P-a.e. w € 2, we have

6(t,€) — 8(t, Xo(w)) = E {g(Xr(£)) — 9(X1)|F:} (w) = EY {g(X1(&)) ~ 9(X1)}
(6.27) = E¥ {(9:(X1),¢7(€))} + o€ — Xil(w))
= (p,§ — X )(w) + o(|€ — Xi|(w))-

Therefore, by the definition of the derivative, we see that for P-a.e. w € Q, 8,(t, X¢(w)) =

pi(w) (a similar argument can also be found in [15]). The proposition is proved. O

As a final remark, we wish to point out that (6.26) actually gives an adjoint relation

between the backward SDE (6.18) and the linear forward SDE

(6.28) dG = ba(t, Xe)Ge + > o0 (t, Xo)GdW;

=1

More precisely, if ¢ and p are the (adapted) solutions of (6.18) and (6.28) respectively, then

(6.29) (p1,CT) = (Pt, ¢ ) +mr — My

where m stands for some {F;}-martingale. Therefore, upon taking a conditional expecta-

tion E{-|F;} on both sides of (6.29), we obtain that

(6.30) E{(pr,CT )| Ft} = (pe; (e )5 t e [0,71], a.s. P.

Note that pr = g-(Xr) and that (6.30) is true for any solution ¢ of (6.28). If we let &(r,¢)
(t < 7 < T) be the fundamental matrix of the linear SDE (6.28) satisfying ®(¢,¢) = I,
then (6.30) leads to

E{g:(X1)T®(T,1t)|F.} = p: = 0:(t,Xy), t€[0,T], as P
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Noting that if m = n = 1, ® is actually the stochastic exponential as defined by (6.11),
and comparing with (6.12), (6.13) and Theorem 6.1, we see that this again proves the

Haussmann formula in our special case.
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