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1 Introduction and Main Results

Let Ay, A,,..., Ak be a finite set of contractive, affine, invertible self- mappings of
R2. A compact subset A of R? is said to be self-affine with affinities Ay, As, ..., Ak
if «
A= Ai(A). (1)
i=1
It is known [6] that for any such set of contractive affine mappings there is a unique
(compact) SA set with these affinities. When the affine mappings A1, As, ..., Ak are
similarity transformations, the set A is said to be self-similar. Self-similar sets are
well-understood,at least when the images A;(A) have “small” overlap: there is a sim-
ple and explicit formula for the Hausdorff and Bouligand (box-counting) dimensions
[11, 9]; these are always equal; and the §—dimensional Hausdorff measure of such a
set (where ¢ is the Hausdorff dimension) is always positive and finite.

Self-affine sets in general are not so well understood, however, and what is known
makes clear that much more complex behavior is possible. The Hausdorff and Bouli-
gand dimensions may be different [5, 10]; the §—dimensional Hausdorff measure need
not be positive and finite [5, 12]; and for a smoothly parametrized family of self-
affine sets the Hausdorff dimension need not vary continuously with the parameters
[2, 5, 13]. On the other hand [2] there is reason to believe that “most” SA sets are not
so badly behaved, and indeed that the various “bad” behaviors tend to occur together
[5]. But this is all very much speculative: the values of the Hausdorff and Bouligand
dimensions are exactly known in relatively few, and decidedly special cases. Formulas
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for the Hausdorff dimension, in particular, are known only for SA sets for which the
matrix parts of the affinities are simultaneously diagonalizable.

We begin by describing the SA set with affinities Ay, Ay, ... Ag. Let A =
{1,2,...,K} and let AN be the set of all (one-sided) infinite sequences from the
alphabet A. There is a natural mapping 7 : AN 5 A defined as follows: for any
sequence i = (415...) € AN,

7"-(i) = ,}Hﬁ, Ai1 Aiz cee Ainy7 (2)

where y is any point of R2. Since the mappings A; are (strictly) contractive, the limit
exists and is independent of y for every sequence i in AN, Moreover, the mapping =
is continuous. The SA sets to which our results apply will be totally disconnected,
and the mapping 7 will be a homeomorphism. We may be somewhat cavalier about
identifying points of AN with points of the SA set A, measures on AN with their pro-
jections on A, etc. Observe that there is a natural dynamical system on A suggested
by the homeomorphism =: let F': A — A be defined by F'=m oo o 7=, This is an
expansive K —to-1 mapping of A (provided A is totally disconnected).

For a nonsingular linear transformation T' of R? the singular values o(T) > B(T)
are defined to be half the lengths of the major and minor axes of the ellipse TK,
where K is the unit circle in R2. The singular value function ¢°(T) is defined by

s _ [T f0<s<1
(1) = {a(T)ﬁ(T)s-l fl<s<2’ (3)
For a given finite collection 7 = {T},Ts,..., Tk} of nonsingular linear transforma-
tions, define
d=d(T)=inf{s: > > ¢(T,T;,...T;,) < oo} (4)
n=1 A"

where A™ is the set of all sequences of length n from the alphabet A. It is easily
established that for any such collection 7 of nonsingular linear transformations, d is
positive and finite. We shall call d(7) the “Falconer dimension” of the collection 7.

The main result of [2] is as follows. Let 7 = {T3,T3,. ..,Tx} be a set of con-
tractive, invertible linear transformations of R?, each of norm less than 1 /3, and
let a = (a1,as,...,ax) be a vector of K points of R2. Define A = A(a) to be the
self-affine set with affinities {A;, A, ..., Ak}, where

Az = Tiz + a;. (5)

Then the Hausdorff and Bouligand dimensions of A are bounded above by the Falconer
dimension d = d(T1,T3,...,Tk); and for almost every a € (R?)¥X the Hausdorff and
Bouligand dimensions of A(a) are equal to d. Unfortunately, Falconer’s proof does not
give any information as to which a the formula applies.

(In a subsequent paper [4] Falconer gives a lower bound for the Hausdorfl dimen-
sion of a totally disconnected SA set. The lower bound is in general strictly less than
d, however, and in particular, under the hypotheses we will state presently.)
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Our main result gives sufficient conditions for Falconer’s formula to be valid. As
above, let T = {Ti,Ty,..., Tk} be a set of contractive, invertible linear transforma-
tions of R2. We make the following hypotheses about these linear transformations:

Hypothesis 1 (Contractivity) Each T; € T has matriz norm less then 1.
Hypothesis 2 (Distortion) Each T; € T satisfies the inequality a(T)?* < B(Ts).

Hypothesis 3 (Separation) Let Q; be the closed second quadrant of R?; then the
sets T1(Q3) are pairwise disjoint subsets of Interior(Qa).

Hypothesis 4 (Orientation) Each T; € T has positive determinant.

Our main results actually hold without the fourth hypothesis, but many of the
arguments become quite cluttered without it. Observe that hypotheses 3-4 imply that
each of the matrices T; maps the closed first quadrant into its interior. Consequently,
each T; has (strictly) positive entries. It will be apparent that our results remain
valid when the second quadrant is replaced by any other angular sector, because
conjugation by an invertible linear transformation does not affect either Hausdorff or
Bouligand dimension.

Let a = (a1, as,...,ax) be a vector of K points of R?, and let A; be the affine
transformation of R? defined by (5) above. We shall restrict attention to vectors a
satisfying the

Hypothesis 5 (Strong Open Set Condition) There exists a bounded open set V such
that A1V, A3V, ..., AKY are pairwise disjoint closed subsets of V.

This is equivalent to assuming that the (compact) sets A;A are pairwise disjoint,
by an elementary argument. This is also a hypothesis for Falconer’s [4] lower bound
for the Hausdorff dimension of A. It also implies that the projection 7 from sequence
space onto A is a homeomorphism. Observe that the set of vectors a for which the
Strong Open Set Condition holds is an open subset of (R2)X.

Theorem 1.1 Let §5(A) and 65(A) be the Hausdorff and Bouligand dimensions of
A. If Hypotheses 1-5 hold then

du(A) = ép(A) = d. (6)
Moreover, the d—dimensional Hausdorff measure of the set A satisfies

Hd(A) < o0, (7)



For any Borel probability measure on the SA set A the Hausdorff dimension of v
is defined to be the supremum of the set of Hausdorff dimensions of Borel subsets of
A with v—measure 1. It is not known in general whether a compact, invariant set
A for an expansive mapping F' must support an F'— invariant probability measure
whose Hausdorff dimension equals the Hausdorff dimension of A. (For Axiom A map-
pings this is not true: one can easily construct counterexamples using a “horseshoe

mapping”.)

Theorem 1.2 Under Hypotheses 1-5, there exists a unique ergodic F'—invariant prob-
ability measure whose Hausdorff dimension is d. This measure is the image under the
projection = of a Gibbs state on AN.

The Gibbs state g will be described in the next section. It will play a central role
in the proof of Theorem 1.1.

The key hypotheses in our theorems are the Separation and Distortion hypotheses
2 and 3. The rationale for such hypotheses may not be immediately clear, nor may
it be apparent to which sets of matrices 7 they apply. Observe, however, that both
are easily checked. To check the separation hypothesis one needs only compute the
action of each matrix in the collection on the unit vectors (0,1) and (—1,0) and
then compute the angles these images make with the positive z-axis. To check the
distortion hypothesis one need only compute the eigenvalues of the matrices T}T;.
Note that for any two by two matrix M there exists a constant C' > 0 such that for
all 0 < ¢ < C the matrix cM satisfies the distortion hypothesis (this is because ¢
multiplies both singular values of M). Note also that if a given collection of two by
two matrices satisfies the separation hypothesis, then “neighboring” collections also
satisfy it; thus, the set of collections 7 satisfying hypotheses 1-4 is open in the natural
topology.

Example: The matrices M7, M;', M3 given by

(2 —1) (4 —3) (4 —4)

—4 4 "\—-4 4 "\-2 3

are such that My, My, M3 satisfy the separation hypothesis. Hence, any constant
multiples of these matrices satisfy the separation hypothesis. Multiplication by 1/30

is sufficient to force the distortion hypothesis. The resulting collection of matrices
Ty, T3, T3 given by
1 1

1 L
30 120
30 60

satisfies hypotheses 1-4.
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2 Background: Thermodynamic Formalism

The proof of the main result will rely on standard results from the theory of Gibbs
states and thermodynamic formalism, as developed in [1, 14]. In this section we

review some of the salient features of this theory.
Define

A = {1,2,...,K};
A = UL, A%
AN = {l-sided infinite sequences from A};
A% = {2-sided infinite sequences from A};
A = A UAY,

o = shift on A* or A%

For any two sequences i,j € A* define the distance d(i,j) to be 27™, where m is
the index of the first entry where i and j differ. A function f with domain AN or
A* is said to be Holder continuous if it is Holder continuous for some exponent with
respect to this metric. There is an analogous metric on AZ, and a corresponding
notion of Holder continuity. Observe that any function on AN may be considered
also a function on AZ, and that Holder continuity on AN implies Holder continuity
on AZ. Moreover, any Hélder continuous function f on AN can be extended to a
Holder continuous function on A* with the same sup and Hélder norms: e.g., if f is
real-valued, define, for any finite sequence ¢123 .. . %y,

F) = sup{f(I') : 1 = i;¥j < m}.

We will call a Holder continuous extension of f : AN — A* to f : A* — A* a
completion of f. Note that there are many completions of any Holder continuous
function on AN. ”

Given a real-valued function f with domain AY, A*, or A? define

.S'nf=f+foa+foo*2+...+foa"—1.

Observe that if d(i,j) < 27" then | S, f(1)—Snf(j)| < Cj for a constant C'y independent
of n,1i,j. Two Holder continuous functions f and g are said to be cohomologous if
there exists a Holder continuous function A such that f —g=h —hoo. If f,g are
cohomologous then there exists a constant C' < oo such that |S,f — Sng| < C for all
n > 1; and conversely, if there exists such a constant, then f and g are cohomologous
(see [1], Th. 1.45).

For any sequence i € A* or A%, let i* denote the reversed sequence. For any
function f with domain A* or A%, let f* be the “reverse” function, i.e., f*(i) =
f(i*). Observe that the operation * is an isometric involution of the space of Holder
continuous functions on AZ.



Say that a finite sequence i is a prefiz of another sequence i’ if the length n of i
is no greater than that of i’ and 7; = ¢} for all j < n. We will also say that i’ is an
extension of i, and write i < i’. Note that if ¢ is a strictly negative function on A*
and i < i’ then S,p(i) > Swe(i') (here n and n’ denote the lengths of the sequences
1 and 1/, respectively.

Given two sequences f,, g, of nonnegative functions on AN or, more generally, on
any domain, write

fa X gn

if there exist constants 0 < ¢; < ¢z < oo such that ¢; fn(1) < ga(i) < cafn(i) for all
arguments i and all positive integers n. Similar notation will be used for functions
parametrized by positive numbers p: e.g., f, < g, for p > 0. In general, when the
notation is used it should be understood that the implied constants are independent
of any arguments or parameters on which the functions might depend.

Gibbs States and Pressure

For any Holder continuous function ¢ on A% there exists a constant P(p) and a
unique o—invariant probability measure p,, on the Borel sets of A% such that for each
ie AZ

po(T(i) < exp{Sap(i) —nP(e)} (8)
where n is the length of i and T'(i) is the cylinder set T'(i) = {j € AN : i < j} (see [1]).
The measure p,, is called the Gibbs state with potential function ¢, and the constant
P(yp) is called the pressure.

If two functions are cohomologous then they have the same pressure and the same
Gibbs state. The pressure functional is monotone and continuous: if f < g then
P(f) < P(g), and for any Holder continuous f the function P(af) is a continuous
function of the scalar a (see [14]). The pressure functional commutes with the involu-
tion *, i.e., P(f) = P(f*). For every Holder continuous f and for every integer n > 1
the pressure functional satisfies P(S,f) = nP(f). Of key importance to us is that if
¢ < 0 then there exists a unique constant § > 0 such that

P(6¢) = 0 )
(see [T)).

The pressure and the entropy of the Gibbs state are related to each other by the
Variational Principle (see [1], Th. ). This implies that

h(se) = P(80) + hlusy) = — [ 6 ds, (10)

where h(us,) denotes the entropy of the measure ps,,.

Counting Problems and Thermodynamic Formalism



Let ¢ : A* — (—00,0) be a Holder continuous function such that, for some integer
n>1,
Snp < 0. (11)
Note that this property is actually determined by the restriction o] AN of ¢ to AN in
particular, if S, < 0 on AN, then for any completion of @| AN, there exists a positive
integer k such that Sk, < 0 on A*. For any function ¢ satistying (11) there exists a
unique § > 0 such that P(6p) = 0. For 0 < p < 1, define

A*(p) = |J{i € A" : Snp(i) < logp and Skep(i) > logp VE < n}. (12)

n=1

Thus, A*(p) consists of finite sequences of possibly different lengths n such that Spe
takes a value just below log p. Note that since ¢ is bounded, for any i € A*(p), Snep(i)
differs from log p by at most ||¢]le < 0. For every i € AN there exists a unique n
such that the finite sequence iyiz...%, is an element of A*(p).

Proposition 2.1 Let § be the unique positive number such that P(6¢) = 0. Then, as
p—0,

#A%(p) < p~°. (13)

Observe that the set A*(p) is defined solely in terms of the function ¢]A*, but

that the asymptotic behavior of the cardinality is determined by ¢|AN. Thus, relation

(13) is valid for every completion of ¢|AN. Stronger statements than (13) are proved

in [7]: see Th. 1 and Th. 3. However, a much simpler and more direct proof can be
given.

Proof: Each element i of the set A*(p) determines a “cylinder set” I'(i) of AN, to
wit, [(i) = {j € A" : i < j}. The cylinder sets {TI'(i) : i € A*(p)} are pairwise
disjoint and their union is the entire sequence space AN, Hence,
2. s(l() =1
ieA*(p)

By the defining property of a Gibbs state, there are constants 0 < Cy < €2 < o© such
that for every i € A*(p) the measure of the cylinder set I'(i) satisfies

C1 exp{6Snp(i)} < pso(T'(1)) < Caexp{dSnp(i)}

where n is the length of i. But by the defining property of A*(p), there exists a
constant 0 < Cs < 1 such that for every i € A*(p) ,
Cap < exp{Sap(1)} < p.
Combining the last three displayed formulas gives
Ci Y, FS1G X 4
icA*(p) ieA*(p)

for a suitable constant Cy; this proves the proposition. O



Proposition 2.2 “Most” sequences in A*(p) are apmzimately ps,— distributed. More
precisely, for every Holder continuous function g : A 5> R, every 0 <t <1, and
every € > 0, there exists 0 < n < 6 such that

S i

————["?Zg( ) 4 / g dps,

The proof is accomplished by the same techniques as used in the proof of Th.
6 in [7]. (There only the case t=1 is proved.) We shall not give the details. For
proving that the Bouligand dimension equals the Falconer dimension ¢ only the weaker
estimate o(p~%) is needed; but for the proof that the Hausdorff dimension equals
d the stronger exponential estimates are needed. (It is not difficult to derive the
weaker estimate o(p~%) from Birkhoff’s ergodic theorem for the measure ys,. However,
the “large deviations” type exponential bounds (14) seem to require more of the
thermodynamic formalism, specifically, properties of the Ruelle operators.)

Let

log p
n, = —0obF 15
* [edus, (13)

Corollary 2.3 “Most” sequences in A*(p) have lengths between n,(1 —¢) and n,(1+

€).

Corollary and Proposition suggest that the set A*(p) is in some appropriate sense
“close” to the set of sequences of length n, that are approximately “generic” for
the measure ps,. By the Shannon-McMillan-Breiman theorem, the cardinality of the
latter set is &~ e*", where & is the entropy of the measure ys,; the cardinality of the
former is given by Proposition 2.1 . This is consistent with the variational principle
(10), which implies that

p-ﬁ — enph.

3 Products of Positive Matrices

Let T = {T1,Ty,...,Tx} be a set of invertible, strictly contractive 2 X 2 matrices
with strictly positive entries. Any finite product of matrices taken from 7 is again a
matrix with strictly positive entries. In this section we will present some properties
of such products.

Any invertible 2 X 2 matrix T" induces a mapping T of projective space P, the space
of lines through the origin in R?. If T has (strictly) positive entries then T(Py) C Py
and T-Y(P-) C P-, where P, and P_ are the sets of lines with positive and negative
slopes, respectively. (The lines of slope 0 and slope oo are included in both P, and
P_, so they are both closed subsets of P.) Moreover, TIP.,. and T!|P_ are strictly
contractive relative to the natural metric on P (the distance between two lines being
the smaller angle between them).



For any sequence i € A* of length [i| > n define the matrix products
0,(i) = TuT, .. Ti; (16)
v.(i) = T7'T; ... T (17)

Observe that W, (i*) = ®,(i)~". Let &, and ¥, be the corresponding mappings of

projective space.

Proposition 3.1 There ezist constants C > 0 and 0 < r <1 and Hélder continuous
functions V : A* — Py and W : A* — P_ such that for every i € A~

diameter(9,(1)(Py)) < Cr™ (18)
dzameter(\I’ 1)(P-)) < Cr% (19)
limn-0®,(1)(P+) = {Vi)} (20)
limn—oo W (1)(P-) = {W({)}. (21)

Proof This follows immediately from the fact that the induced operators T, and
TZ- are strictly contractive on P, and P, respectively. o

Let Q. and Q_ be the sets of unit vectors in the closed first and second quadrants,
respectively. These vectors serve as representatives of the positive and negative arcs
P, and P_. In the following we will not always be careful to distinguish between
elements of Q4 and Py. In particular,we will let V(i) and W(i) also denote the unit
vectors in the first and second quadrants representing the lines V(i) and W(i); the
meaning should be clear from context. It follows from the preceding proposition that
for every i € AN the vector T;, V(oi) is a scalar multiple of V(i); consequently,we may
define a function ¢ : AN — R by

T, V(oi) = e?DV (i) (22)

By the Holder continuity of the function V, ¢ is also Holder continuous. Moreover,
iterating the defining relation gives

0,(1)V(c™) = 5DV (i). (23)

Proposition 3.2 The function ¢ is strictly negative on AN. Therefore, there exists
a unique § > 0 such that P(bp) = 0.

Proof: Since each T; has matrix norm less than 1, and since each V(i) is a unit
vector, T}, V(oi) has norm strictly smaller than that of V(i). Consequently, o (i) < 0.
The existence and uniqueness of § now follow from the general considerations of the
previous section. O



For all i € AN and integers n > 1 define

(i) = min{|@n(i)u|: ve Q) (24)
®x(i) = min{|®,(1)u|: ve Q_}; (25)
T,(1) = min{|¥a(i)ul: ve -} (26)

and define ®, ®*, and ¥” to be the corresponding functions with min replaced by
mag. Observe that o (1), <I>” "(i), etc. , depend only on the first n entries of i. Also,
®x(i) = ¥/ (i*) and ®*(i) = Wi (i) for i € A"

Proposition 3.3 7
@ =< P x 5 (27)

Proof: This is a routine consequence of (18) and (20) in Proposition 3.1. m

There are a number of useful completions of the function ¢. One completion is
defined in terms of the first singular value « as follows:

o(i) = loga(®,(i)) —loga(®n_1(ci)) iflij]=n>1
= log a(®4(i)) if li| =1 (28)
=0 if |i| = 0.

Notice that for every i € A* and every n > 1,
(B, (i) = 5, (29)

Also, since the matrices T; are strictly contractive, the function ¢ defined by (28) is
strictly negative on A* and hence, by Proposition 3.2, on A*.

Proposition 3.4 The function ¢ is Holder continuous on A*.

Proof: Let i € A* be a finite sequence of length n, and let i’ € AN be an infinite
sequence such that i’ is an extension of i. We will show that the difference between (i)
and ¢(i') is less than Cs™ for some constants C < oo and 0 < s < 1 not depending
on n or 1,i'.

If M is a matrix with positive entries, then the major axis of the ellipse MK
ends at the point Mu where u is the unit vector that maximizes || Mu||. Since M has
positive entries so must the vector u. It follows that the major axis of Q)n(i)K ends
at a point T ®,_;(oi)u where u is a unit vector in Q. Similarly, the major axis of
®,_1(ci)K ends at a point ®,_;(coi)u’ where u' is another unit vector in Q. Now
the vectors ®,_;(ci)u and ®,_;(oi)u’ are both in ®,_,(0i)Q4, which is an angular
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sector of aperture smaller than Cr™~!, by Proposition 3.1. This angular sector also
contains the vector V(ai’).

Let v and v’ be the unit vectors in the directions ®,_;(ci)u and ®,_1(oi),
respectively. Then v, v’ and V(oi’) are all unit vectors contained in an arc of the unit
circle of length smaller than Cr™~. Moreover,

A = V(i)
D, (oi)u

e!® = |5 v] ®,—1(oi)w

Since the unit vectors v, V(oi’) are at distance less than Cr™~! it follows from the Lip-
schitz character of T; that |T;, V(ai')| and |T;,v| differ by less than C'r™~! for a suitable
constant C’. Thus, to complete the proof we must show that |®,_1(oi)u|/|®n-1(ci)u|
differs from 1 by less than C"s".

Observe first that the ratio is less than one, because the vector ®,_;(oi)u’ is the
endpoint of the major axis of the ellipse ®,_;(c1)K. Recall that the directions of the
vectors ®,_;(oi)u’ and ®,_;(oi)u differ by less than Cr™~1. But if the ratio of the
lengths were greater than C"'r"~! then by the Lipschitz continuity of T; the length of
T:®,-1(ci)u’ would be greater than that of T;®,_1(o1)u, contradicting the fact that
T:®,-1(ci)u is the major axis of ®,(i)K.

O

Corollary 3.5
a(®,) x< e on AN, (30)

Proof: This follows routinely from the exact equality in (29) and the fact that ¢ is
Holder continuous on A*. O

Another completion of ¢ will be useful in sections 5 and 6 below. Let U be an
arbitrary bounded open subset of R2, and for i € A* define

(i) = log(diameter®, (i)U) — log(diameter®,_;(c1)U) if [ij =n >1
= log(diameter®,(i)U) iflij=1 (31)
— 0 if Ji| = 0.
For every i € A* and every n > 1,
diameter(®,(1)U) = 50, (32)

Proposition 3.6 The function ¢ : A* — R defined by (31) is a (Hélder continuous)
completion of ¢ : AN — R.

11



The proof is similar to that of Proposition 3.4, and uses the fact that there are
concentric discs A; and A, such that Ay € U C A,. The condition that U be a
bounded open set is essential to the validity of the proposition: if, for instance, U
were a line segment, then the function ¢ defined by (31) would no longer necessarily
be a completion.

For this and the next section, ¢ will denote the completion defined by (28).

Define another function 3 : A* — R as follows:

(i) = log det ®4(i) = logdet T;, (33)

if |i| > 1, and ¢(i) = 0 if |if = 0. Observe that 9 is a function only of the first
entry of i, hence is Holder continuous. Moreover, since each of the matrices T; is
strictly contractive, the determinants are less than one, so 1 < 0. Note that for every
sequence i of length at least n,

det @, (1) = €S, (34)
det T,(i) = e~ 5+v0, (35)

Recall that for a 2 x 2 matrix M the second singular value is denoted by S(M).
It is the length of the minor axis of the ellipse MK.

Proposition 3.7
B(2) < exp{Snh — Snip}. (36)

Proof: The area of the ellipse ®,(i)K is
7 det ®,(i) = we5?D = 10(®,(1))B(2(1)).

The result therefore follows from Corollary 3.5. a

Proposition 3.8
U < U < exp{Spp* — Sn¥}. (37)

Proof: Recall that ¢* is the “reverse” function to ¢, also that ¥/ (i) = @ (i*) and
U”(i) = ®*(i*). Thus, it suffices to show that ®;(i) and @}(i) are comparable
(x) to exp{Snp(i) — S.1(i)}. Note that by (19) of Proposition 3.1, ®7(i) < o1 (i);
consequently, it suffices to show that for some unit vector u € Q_, |®,.(1)ul is
comparable to exp{Sn(i) — S, (i)}. But this follows from the previous proposition:
just let u be the unit vector in the direction of the minor axis of the ellipse o,(i1)K
(observe that the major axis has positive slope, since the matrices ®,(i) have positive
entries, so the vector u does indeed lie in the second quadrant).
O
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4 Consequences of Hypotheses 1-4

Assume henceforth that the matrices T4, To, . . ., Tk satisfy Hypotheses 1-4 of section
1. Recall that Hypotheses 3 and 4 guarantee that the matrices all have positive
entries. Hypothesis 1 states that the matrices are all contractive. Consequently, all
results of the previous section are applicable. We will continue to use the notation
established there.

Let i = 4432.. .1, be an element of A* of length n. Define

P_(i) = ¥,()P_ = T T - T'P- . (38)

Under Hypothesis 2 these are, for a fixed n, pairwise disjoint closed subsets of P-.
Moreover, they are naturally nested: if i’ is an extension of i then P_(’ ) € P_(i).
Notice that

W={Wwi:ie AN} = U P-() (39)
n=1icAn
is a Cantor subset of P_, hence has Hausdorff and Bouligand dimensions less than 1.
Define the diameter function A, on AN as follows: for i = i143... € AN, set

A,(i) = diameter(P_(i1¢2. . . 1n))- (40)

Proposition 4.1
A, < exp{Sn® — 25,0} (41)

Proof: Let e; and e, be the unit vectors (0,1) and (-1,0), respectively. By Proposition
3.8, the matrix U, (i) maps e; and ez to vectors v; and v; of lengths comparable (x)
to exp{Snp*(i) — Snb(i)}. In addition, the matrix W, (i) maps the set of unit vectors
Q_ to an arc of an ellipse; the endpoints of this arc are v; and v,. The angular sector
bounded by this arc and the two segments connecting the origin to v and v; has area

(r/4)| det U, (i)| = (x/4)e 5V D),

It follows that the distance between v; and v, is comparable to exp{—Sn@*(i)} (be-
cause it is comparable to area/length). Projecting the line segment connecting v, and
v, onto the unit circle Q_ gives the set P_ (122 . . . in); since vy and vy both have lengths
comparable to exp{Snp*(i) — S.3(i)}, the length of the projection P_(i11z...1s) is
comparable to exp{ S, (i) — 2S.¢*(i)}. O

Proposition 4.2 There exists an integer n > 1 sufficiently large that

Snth — 25,0 < 0 on AN (42)

and

Sptp —3S,p >0 on AN, (43)
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Proof: (a)First observe that as n — oo the ratio a(®a(i))/ B(®,(i)) converges to co
uniformly on AN. This is a consequence of Propositions 3.1 and 3.3. Proposition 3.3
guarantees that the image of the quarter circle Q. under the mapping ®,(i) consists
of points all with Euclidean norms comparable to exp{Sn¢(i)}, and Proposition 3.1,
equation (18) guarantees that this image is an arc of an ellipse of length < CrreSne®
for some r < 1. Consequently, the area of the angular sector bounded by the arc
$,(1)Q4 and the two line segments joining the endpoints of this arc to the origin
is bounded above by C'r"e2$+¢() for a suitable constant C' < oo independent of n
and i. But the area of this angular sector is also given by (7/4) exp{Sn#(i)}, by the
determinant formula. Therefore,

exp{S. (i) — 2S.¢(1)} < C"r".

This implies the first statement of the proposition.

(b)This is where the “Distortion Hypothesis” 2 is used. This hypothesis implies
that for a certain constant 0 < s < 1 the singular values of the matrices T; satisfy
o(T;)?/B(T;) < s. Hence, for every sequence i € AV and every integer n > 1 the
singular values of the matrix @,(i) satisfy a(®,(1))?/8(®~(i)) < s*. The estimates
for o(®,(i)) and B(®.(i)) given in Corollary 3.5 and Proposition 3.7 now yield the
second statement of the proposition.

O

Corollary 4.3 If i is any o—invariant probability measure on AN then

3/god,u</¢d,u<2/cpdu<0.

Proof: The first two inequalities follow immediately from the shift invariance of the
probability measure y and the result of the preceding proposition. The last of the
three inequalities holds because ¢ < 0 on the space AN of infinite sequences. 0

Corollary 4.4 Let § > 0 and 8, > 0 be the unique real numbers satisfying P(ép) =0
and P(6.(¢ —2¢)) =0. Then
0<6<bé. (44)

Proof: The existence , uniqueness, and positivity of § have already been established
(see Proposition 3.2). The existence, uniqueness, and positivity of é, are proved as
follows. By the preceding proposition there exists n > 1 such that S,( —2¢) < 0
on AN. Thus, there exists a unique 6, > 0 such that P(6.5,(¥ — 2¢)/n) = 0. But for
any 0, P(05,(1 — 2)/n) = P(8(6 — 2)).

14



To show that § < 6., we use the second statement of the last proposition together
with the monotonicity of the pressure functional. Take n sufficiently large that S, —
25,0 > Spe on AN : the monotonicity of pressure implies that

P(6,Snp/n) < P(8.(Sntp — 25n¢p)/n) = 0.

But P(0S,p/n) is a continuous, nonincreasing function of 0; therefore, the unique
value 6 of 0 such that P(6S,p/n) = 0 must be smaller than 6. 0

Proposition 4.5
0<éd<l (45)

Proof: By the preceding corollary, § < &, where §, is the unique real number
satisfying P(6,(1) — 2¢)) = 0. Hence it suffices to show that &, < 1. We will
accomplish this by showing that 6, is no larger than the Bouligand dimension of W;
since W is contained in P its Bouligand dimension cannot be larger than 1.

To show that 8, is less or equal to the Bouligand dimension of W it suffices to
show that for any small p a covering of W by p—balls (intervals) must have at least
O(p~*) elements. Consider the collection of arcs C = {P_(i) : i € A*(ep)}, where
A*(p) is as defined by (12), but with ¢ replaced by ¥ — 2¢p., and where ¢ is a constant
whose value will be specified shortly. For any p > 0, > 0, C is a covering of W by
pairwise disjoint arcs of lengths comparable (<) to exp{Sn% —25,¢*} (by Proposition
4.1), each having nonempty intersection with W. By the definition of the set .A*(ep)

b

Sntp — 28n¢™ > log(ep);

hence, if € is chosen sufficiently large, each arc in the collection will have length > p.
Hence, any covering C' of W by arcs of length p must have cardinality at least 3 that
of C, because any arc in C' can intesect at most 3 of the arcs in C.

By Proposition 2.1, the cardinality of C is comparable to p~%+*, where §.. is the
unique real number satisfying P(8u(¥ — 2¢4) = 0. Now recall that the pressure
function commutes with the involution *, and 1 = 1* because (i) depends only on
the initial entry of the sequence i; consequently, 6, = by

a

Proposition 4.6
b=d=d(T1,Ts,...,Tk) (46)

Proof: Recall that d = d(T3,T5,...,Tk) is defined to be the infimum of the set of
all s > 0 such that "4 a(®,(i))° < co provided this infimum is < 1. We will show
that the inf is in fact equal to 8. By the preceding proposition, 0 < é < 1.
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Let A*(p) be defined by (12) with ¢ as defined in (28). For any i € A*(p) of length
n, the value of a(®,(i))* is comparable to p°, by Corollary 3.5 and the definition of
A*(p). For any p > 0, X ax > 2 as(,) - Moreover, by Proposition 2.1, the cardinality
of A*(p) is comparable to p~°. Thus, choosing p small, one finds that 3" 4. > O(p*%).
Letting p — 0 shows that if s < § then

3 a(®,(3))* = oo.

A#

To complete the proof we must show that for every s > 6, 34« a(®,(i))* < oo.
For this we will argue that for some constant C' < oo,

Sa@. )y <CY, ¥ 2

A n=1 A*(2-")

This last sum is finite, because the cardinality of A*(2™") is comparable to oms,
Choose any i € A*; there exist a unique integer n > 1 and unique sequences
i’ € A*(27") and i” € A*(2""!) such that i’ < i < i”, where i < i’ indicates that
i’ is an extension of i. Moreover, the difference [i”| — |i'| in lengths is bounded by
a constant C' independent of i, because by Proposition 3.2 ¢ is strictly negative on
A* and so the partial sums S, decrease by a definite negative amount with each
increment of n . Consequently, for a given pair i’ € A*(27"),i" € A*(27""!) there
are at most K sequences i such that i’ < i < i”. Finally, because ¢ < 0 on .A* and
o(®,)* = exp{sSnp} on A*, for any pair i,i’ such that i’ € A*(27™") and i’ =i,

o @ () < 27"

Therefore,
D a(@,(1))° < K9y Y 27 < oo,
A* n=1 At(z—n)
(|
Proposition 4.7 Let u be a unit vector in Q_ such that
U € P_(tmim—1-.. 0ks1); (47)
u ¢ P_(tmim—1.-.%%) (48)

for some i = iliz‘. .. € A% where 1 < k < m, or such that (47) holds with k =0 and
(48) holds with k = m. Then

|9 (i)u| X exp{28k0(i) — Sme(i) + Smip(i) — Skp(1)}- (49)

Here < indicates that the implied constants are independent of i,u,m, and k.
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Proof: This is a consequence of Propositions 3.3 and 3.7 of the preceding section.

The second hypothesis implies that ém_k(aki)u = Ty Tiggo - - - Lim is in P,.. Con-
sequently, by Proposition 3.3,

1@ (D) = |@4(1)@rmi(0¥1)ul X exp{Ske()}@m-r(o Tul

On the other hand, the first hypothesis implies that there exists a unit vector v in
P_ such that o ) )
w=T'T7" ... Ti;LU =&, (") y;
hence, by Proposition 3.7

lu| = 1 < exp{—Snep(i) + Skp(i) + Smib(i) — Sep (YT, LT v,

tm "~ tm—1 Tkl

which, along with the representation of ®,(i)u given above, proves the proposition.
O

5 Efficient Coverings of A

Let A be the self-affine set with affinities A, As, ..., Ax where A;z = Tiz + a;. We
assume that the linear transformations 7} satisfy the hypotheses 1-4; thus, the results
of the preceding sections are applicable. We assume also that the vectors ay, as, ..., ax
are such that the strong open set condition is satisfied, i.e., that there exists a bounded
open set U such that A;U, AU,..., AxU are pairwise disjoint compact subsets of U.
These assumptions have the following consequences:

Dpin = ‘{;‘}‘ distance(A;U, A;U) > 0; (50)
A = U4 4, AL, (51)
n=1 A"

The strong open set condition implies that {UanAi; ... Ai,U}np1 is a nested sequence
of nonempty compact sets, so the intersection is a nonempty compact set. It is clear
that the intersection satisfies (1), so it must be A, by the uniqueness of self—affine sets
with given affinities. Observe that each of the sets A;, A;, ... A;,U contains a point
of A.

Let z. be a distinguished point of U. For sequences i,i'’ € A* of length greater
than or equal to n define

Un(i) = A,‘lAi2 e A,'"U;

(1) = Ay, ... ATy

UG) = UnG) ifn =il

z(i) = z,(i) if n =|i;
D(i,i") = distance(U(i),U(i")), 1,i' € A"

17



In this section let ¢ : A* — R be the completion of ¢ : AN = R defined by (31).
Then since translations have no effect on diameters, for any sequence 1 of length n,

diameter(U(i)) = eSneld), (52)

Observe that the sets U(i) are nested: if i < i’ then U(i’) C U(i). For any collection
C of finite sequences with the property that every infinite sequence has a prefix in C,
the collection {U(i) : i € C} is an open covering of A.

Let A*(p) be as defined in (12); thus, A*(p) consists of all finite sequences i such
that diameter(U,(i)) < p but diameter(U(i)) > p for all 1 < k < n, where n denotes
the length of i. Then A*(p) has the covering property described above, so for every
p > 0 the collection {U(i) : i € A*(p)} is a covering of the SA set A by sets of
diameters no larger than p. The main objective of this section is to show that these

are efficient coverings of A.
For i € A*(p) define

F,(i) = {i' € A(p) : D(i,¥') < p}- (33)
Proposition 5.1 For each v > 0 there ezists n = n(v) < 6 such that
#{i€ A(p) : #F,(i) 2 p77} = o(p™"). (54)

The remainder of this section will be devoted to the proof of this proposition.

Henceforth, let p = ps,, and for any real-valued continuous function f defined
on AN let f = [ fdp. We will adopt the following notational convention: for any
finite sequences i,i’ the lengths of i,i’ will be denoted by n,n'. For any 1 > p > 0,

n, = (log p)/®.

Lemma 5.2 To prove (54) it suffices to prove that for any € > 0 statement (54) is
valid when A*(p) is replaced by

Bup)= (i€ A(p): ¥ f = o, and V¢ € [0,1], [Spaf() — tnf| Smpe}  (55)

This follows immediately from Proposition 2.2.
For any two sequences 1,1’ define

m(i,i') = max{j : i; =1}}. (56)

Suppose that i € B.(p) and i’ € F,(i). By the definition of m = m(i,{’) the (m + 1)th
coordinates of i and i’ differ; hence, the points z(c™i) and z(c™i’) are in different
“first generation” images A;U of U. Thus, their distance satisfies

Dpip < distance(z(0™1), z(¢™i')) < diameter(U). (57)

Recall (50) that Dpj, > 0. On the other hand, the points (i) and z(i) are in
the sets U(i) and U(i'), respectively, which are at distance < p, since i’ € F,(i).
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Moreover, these sets have diameters no larger than p, because i € Be(p) and i’ € F, »(1).
Consequently, by the triangle inequality,

distance(z(i), z(i")) < 3p. (58)

Keep in mind that the points z(i) and z(i’) are the images under the affine mapping
Ai A, ... A;,, of the points z(c™i) and z(c™i), respectively. The effect on distance
is a function only of the matrix part of the affine mapping; therefore, if y = z(o™i) —
z(c™'), then by (58), |®(i)y| < 3p. If we now set u = y/|y| then by (57) u is a unit
vector satisfying

@ (i)ul < wp (59)
where k = 3/Dpip -

Define k = k(i,i') to be the unique integer satisfying 0 < k < m such that
(47)-(48) hold (or just (47) if k = 0).

Lemma 5.3 There ezist constants C < oo and €. > 0 sufficiently small that for all
0 < € < &, the following is true. For all p > 0 sufficiently small, if i € B(p) and
i’ € F,(i) then

2m(i,1') — k(i,1) = n,(1 — Ce). (60)

Proof: The integer k is defined so that equations (47)-(48) hold. Proposition 4.7
gives an estimate for the magnitude of |®,,(i)u| in terms of & : together with (59) this
estimate implies that for an appropriate constant 0 < ¢ < oo independent of p > 0,

log p > 25kp(1) — Smep(1) + Smp(i) — Sk (i) + c.

(Note that Proposition 4.7 was proved for another completion ¢ than the one defined
earlier in this section; but since the result stated in the lemma depends only on
properties of ¢| AN, we may use any completion here.) We now use the fact that
i € B.(p) to obtain lower bounds for the terms 2Sk¢(i), Sm(i), etc., in terms of the
expectations @, 1: this gives

logp > (2k —m)p + (m — k) — en, + ¢

for another constant ¢ > 0 (¢’ = 16 should suffice).

Recall (Corollary 4.4) that % < 0 and that ¥/ < 3. Thus, dividing both sides of
the last displayed inequality by % changes its direction, giving n, < (2k —m) + (m —
k)(¥ /@) + n,C'e + C" where C' = —c' /g > 0 and C” = ¢/®. Since m — k > 0 and
(¥/®) > 0 the inequality remains valid when the term (m — k)(1/®) is replaced by
3(m — k). This yields

n, <2m—k+n,C's +C".
Since C" does not depend on ¢ or p, it may be absorbed into the term n,Ce, with
C = 2C", provided p is sufficiently small.
(]
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Lemma 5.4 There ezists a constant C* < oo such that for all sufficiently small p > 0
and € > 0, .
#{(1,1") : 1 € Bc(p) and i € F,(i)} < ptC, (61)

Proof: Let m = m(i,1). Since i € B.(p), the values of Sne(i) and Smp(i’) must both
be within n,¢ of m®. Since i and i’ are both elements of .A*(p), the values of Snp(i) and
Sprp(i') must both be within a constant of log p (here n and n’ denote the lengths of i
and i'). Thus, Sy_m@(c™) and Sw_mp(c™1') are both greater than (n, —m)@—2n,€
for all sufficiently small p > 0. It follows that o™i and o™i’ are prefixes of distinct
sequences j and j in A*(p'~(m/m)+2) Consequently, by Proposition 2.1, for any
given m the number of admissible pairs (j,j’) is no larger than p~28(i=(m/ne)+4e) for
all sufficiently small p.

Given an admissible pair (6™i,0™i'), consider the possible prefixes i14z .. .%2m. By
the preceding lemma, there is only one allowable string éx41%k42 - - - im for the (k+ 1)th
through the mth coordinates, where k = [2m —n,(1 — Ce)] 4+ 1 and C is chosen as in
(60). Moreover, the string ¢12; . . . i is constrained by the requirement that i€ B(p):
the sum Syp(i) must be within n,e of k. Consequently, 71iz...%x is a prefix to
an element of A*(p*/"*¢). Proposition 2.1 guarantees that the number of allowable
strings 74 . . .7 is no greater than p~5(*/ not2e) for all sufficiently small p > 0.

Combining the results of the last two paragraphs shows that for all sufficiently
small p and any integer m satisfying 1 < m < n the number of pairs (i,i’) such that
i€ B.(p),i' € F,(i), and m(i,i’) = m is less than

exp{—8(10g p)(2(1 — m/n,) + k/n, +66)} < 2exp{—8(log p)(1 — (C + 6)e)}.

(The second inequality follows by substituting k = [2m —n,(1—C¢)]+1.) The lemma
now follows, because the number of integers m between 1 and m is O(log p), which is
smaller than p~¢¢ for sufficiently small p.

a

Proof of Proposition 5.1: By Lemma 5.2, it suffices to show that for some ¢ > 0 the
cardinality of {i € B.(p) : #F,(i) > p~7} is o(p™") for some 5 = n(y) < 6. Lemma
5.4 shows that there is a constant C' such that for all sufficiently small p,e > 0,

#{(i,) : i€ B(p) and i’ € F,(i)} = O(p~=%%).

Choose ¢ sufficiently small that Ce < +/2; then since #B.(p) ~ p~*, the desired
inequality follows, with (say) n = 6 — /3.
O

Remark: The key to the preceding argument is Lemma 5.3, which leads to Lemma
5.4. The details of the proofs obscure the roles of the various hypotheses; however,
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it should be noted that the distortion hypothesis is used in an essential way here.
Without it the estimate /% < 3 need not be valid, and without this Lemma 5.3 may
fail to hold.

6 Proofs of the Main Results

Proof of Theorem 1.1: It suffices to show that 6g(A) = d, that the d— dimensional
Hausdorff measure of A is finite, and that the Hausdorff dimension of A is at least 6.

Proof that §g(A) = d: As noted in the preceding section, for every p > 0 the
collection U(p) = {U(i) : i € A*(p)} is a covering of A by sets of diameter no larger
than p. By Proposition 2.1, the cardinality of U(p) satisfies

#U(p) < p~°. (62)

Consequently, the Bouligand dimension of A is no larger than é. By Proposition 4.5,
é=d.

To prove the reverse inequality, we use Proposition 5.1. This result implies that
for any 4 > 0 the set of U(i) in Z(p) such that there are more than p~ other elements
of U(p) at distance less than p from U(i) has cardinality on the order o(#U(p)). Thus,
for any collection of p—balls whose union contains at least one point of every U(i) in
U(p), most of the elements of ¢(p) have points covered by balls intersecting no more
than p~ other elements of U(p). Consequently, the cardinality of such a collection
must be at least O(p"#U(p)) = O(p~**+7), by (62). Now (51) and the nesting property
of the sets U(i) implies that any covering of A must contain a point from every one
of the sets in U(p). Therefore, the cardinality of any covering of A by p—Dballs has
cardinality at least O(p~%t7). This proves that the Bouligand dimension of A must be
at least § — «. Since 4 > 0 is arbitrary, it now follows that the Bouligand dimension
is at least 6 = d.

a

Proof that Ha(A) < oco: The same coverings ¢(p) can be used. Each U(i) € U(p)
has diameter less than or equal to p, and by (62) the cardinality of the collection is
=< p~%. Consequently,

Y diameter(U(i))’ < 1.

Ufp)
Since p > 0 is arbitrary, the definition of outerOB Hausdorff measure implies that
Hd(A) < 00.

a
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Proof that 6g(A) > d: Recall that the Hausdorfl dimension 6u(v) of a Borel prob-
ability measure supported by the set A is defined to be the infimum of the set of
Hausdorff dimensions of Borel subsets of A with v—measure 1. It is obvious that
any probability measure supported by A has dimension no larger than ég(A). Conse-
quently, to show that the Hausdorff dimension of A is at least § it suffices to exhibit a
probability measure supported by A whose dimension is at least 8. Consider the pro-
jection mp to A of the measure p = ps,. We will show that the Hausdorff dimension
of my is 6. For this we quote the following well-known

Lemma 6.1 If v is a Borel probability measure on a metric space X such that

lim inf 2815 (@) _ 4

m ir Tog p v — a.e. z, (63)

then the Hausdorff dimension of v is at least d.

Here B,(z) denotes the ball of radius p centered at the point z. Observe that the
limit may be replaced by the limit as p — 0 through the inverse powers of 2: ie.,
p=2"12"2 .. For a proof of the lemma see [8] or [3],Ch. 1, exercise 1.8.

Choose any sequence i € AN, and let 7i be the corresponding point of the set A.
For any p > 0 there is a unique finite sequence i(p) € A*(p) such that i is an extension
of i(p); it is clearly the case that xi € U(i(p)). The diameter of the set U(i(p)) is, by
construction, < p. Moreover, since y = s, is the Gibbs state with potential é¢p,

mu(U(i(p))) < o (64)

Consequently,
wu(B,(ri)) < Cp*#F,(i(p)), (65)
where F,(i(p)) is the set defined by (53).
We will now argue that for sequences i € AN “generated” by the probability

measure p, eventually #F,(i(27")) is less than 27, for any v > 0. Specifically, we
will show that for any v > 0,

plie AN : #F,(i(27") > 2" i.0.} = 0. (66)

Notice that for any n the cylinder sets I'(j), j € A*(27"), (see the proof of Proposition
2.1) partition the sequence space AN and all have (approximately) equal probabilities
(x 27%), by (64). There are approximately 2™ of these cylinder sets. By Proposition
5.1, the number of these cylinder sets for which #F,(i(2™")) > 2™ is o(2"") for some
n < 6. Consequently, p{i € AN : #F,(i(27")) 22"} = o(2-™6=") as n — oo. Since
5. 270" < oo, (66) follows from the Borel-Cantelli lemma.

It now follows from (65) and (66) that for any v > 0,

lim inf (28 TA(Ban(2)

n—00 —nlog 2

>6—~v wp—ae T

22



Since 4 > 0 is arbitrary, this proves that the Hausdorff dimension of 7y is at least 6.
O

Proof of Theorem 1.2: We have already shown that the probability measure 7u has
Hausdorff dimension at least §; since we have also shown that the set A has Hausdorff
dimension no greater than § it follows that ég(7u) = 6.

Since 7 : AV — A is a homeomorphism conjugating F' with the shift o the
F—invariant probability measures on A all have the form 7v, where v is a shift-
invariant probability measure on AN. Moreover, 7v is ergodic iff v is ergodic. Now if
v is an ergodic shift-invariant probability measure distinct from g then there exists a
Holder continuous function g : AN — R such that [gdv # [ g dp. Define

A, = {ri: i € AN such that Jim Snfl(l) = /gdz/}.
By Birkhoff’s ergodic theorem, A, is a support set for ». To show that the Hausdorft
dimension of v is less than § it siffices to show that the Hausdorff dimension of A,
is less than 6.
Let 2¢ = | f gdv — [ gdu| > 0. By Proposition 2.2 there exists a constant n < 6
such that (14) holds. For each positive integer k define a covering Vi of A, by sets of
diameters no larger than 27 as follows:

where

Vi = {U@{): 1=1122...1, € A*(27™) such that > e}

Srg(i

n
That each Vi is a covering of A, follows from the ergodic theorem and the definition
of ¢. Furthermore, by definition of A*(p) and (52), together with the estimate (14)
for the cardinality of V;,, for any 7 satisfying n < 7 < 4,

> diameterlU(i)" = O( i 27 H# V) = O( f: 2-mTmM),

Vi m=k m=k

The implied constant is independent of k. This shows that the outer 7— dimensional
Hausdorff measure of A, is finite.
a
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