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Abstract

In this paper, Bayesian inference for a class of Poly-Weibull distributions is dis-
cussed. These distributions include the distributions with polynomial failure rates,
and also arise when the data is the minimum of several Weibull failure times from
competing risks (with known Weibull shape parameters). A general recursive formula
is developed for exact computation of the posterior probability density function, pos-

terior moments and the predictive reliability.
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1 Introduction

1.1 Background

It is well known that the cumulative distribution function for any positive and continuous
random variable from survival data may be expressed as F(t) =1 — exp{—- N h(:v)d:v}, 0<
t < oo, where h(t) = F'(t)/[1 — F(t)] = —R'(t)/R(t) is the failure rate function at time ¢.
The function R(t) = 1 — F(t) is the reliability or probability of survival of a product or a
patient until time ¢ and the failure rate may be interpreted as the instantaneous failure rate,
or the conditional density of failure at time ¢, given the product has survived until time ¢.

A constant failure rate leads to the exponential distribution. The Weibull distribution is
most commonly used distribution that allows increasing or decreasing failure rates. Unfortu-
nately, even this model is often inadequate, as nonmonotone failure rates are not uncommon
in practice.

Many of the commonly considered nonmonotone failure rates have bathtub shapes. For
example, Prentice (1975) introduced a generalized F distribution; Hjorth (1980) proposed a
three parameter family with increasing, decreasing and bathtub shaped failure rates; Stacy
(1982) considered a generalized gamma family; Beetz (1982) and Own, Subramanian and
Saunders (1986) considered mixtures of Weibull‘distributions. A reasonably comprehensive
account of the models for bathtub shaped failure rates can be found in Rajarshi and Rajarshi
(1988). For the related area of extreme value analysis, the use of a two-component extreme
value distribution, e.g, Fiorentino, Versace and Rossi (1985) and Arnell and Gabriele (1988),
has appeared in the hydrological literature.

Another possible approach towards developing more flexible models is to generate a class
of distributions by considering low order polynomials as the failure rate function. The linear
polynomial, h(t) = a + bt, generalizes the exponential distribution and has been applied

by Kodlin (1967), Vaupel and Yashin (1985), and Bain (1974). This model allows for an



initial positive failure rate, h(t) = a, while A(0) = 0 for most other increasing failure rate
situations, such as Weibull distribution. The Rayleigh distribution is also a special case of
the linear failure rate model (¢ = 0), and its application to life testing can be found in
Polovko (1968). A quadratic failure rate, h(t) = a+ bt + ct?, is the lowerest order polynomial
which allows for a nonmonotoni(.: failure rate, and has been discussed by Bain (1974, 1978),
and Gore et. al. (1986). More generally, Krane (1963) has considered a model with failure
rate h(t) = X7, a;t, (a; > 0) for the analysis of survival data.

In this paper, we will consider a generalization of the above distributions, namely the

class of Poly-Weibull distributions whose failure rate functions have the following form:

h(t) = i(t/@-)ﬁa 1)

where the B}s are known positive constants and the #’s are unknown constants. This model
was first considered by Canfield and Borgman (1975) to model the situation where failure
can be associated with an extreme random phenomenon such as the largest flaw or impurity.
Many complex failure rate functions can be formed by proper choice of the parameters 6;
and §;. For example, the Poly-Weibull distributions with m = 2 is called the Bi-Weibull
distribution. The distributions with linear failure rates are special cases of the Bi-Weibull
distribution. A Bi-Weibull distribution with a bathtub failure rate results if min(8;, 82) <
1 < max(f, f2). For m = 3, a bathtub failure rate results if 8y < 1,8; = 1 and B3 > 1.
The Poly-Weibull distribution can also arise from other scenarios, such as competing
Weibull risks. Consider the situation where possible causes of death for individuals in a pop-
ulation are grouped into m(> 2) classes of competing risks (cancer, heart disease, etc.). If
the survival times under the m risks are assumed to be independently W(4;, 5;) distributed,
then the survival time of the patient has a Poly-Weibull distribution. Of course, the popu-
lation in question need not be a human or animal population but may consist of products

liable to m causes or modes of failure. For example, in reliability one might have a system of



m components arranged in series, with failure of one or more components leading to failure
of the system. It is frequently reasonable to assume that these m causes affect the product
independently, and have (Weibull) W(8;, 5;) distributions. In manufacturing, it is common
to encounter failure due either to manufacturing error (“early” failure) or wearout; this leads
to the Bi-Weibull distribution. Note that the Poly-weibull distribution arises in these set-
tings only if the cause of failure is unknown. This is often the case in reliability contexts,

but is less common in survival analysis. For other references concerning competing risks, see

David and Moeschberger (1978), and Basu and Klein (1982).

1.2 The Likelihood Function

‘"The survival function of a product corresponding to the failure rate function (1) is R(t) =

T Ri(t) = exp{—— pIyi (t/é’j)ﬁj}, t > 0, and its density is given by

F(t185,05,5 =1, m) = 30 B (-3 (£)"}, >0 @)

i k=1
To avoid identifiability problems, we assume that the known g]s are all distinct.
Let 0 = (61,---,0) and B = (B4, - -, Bm). Assume that r units are tested independently,
with their ages having the common p.d.f. (2). Let ¢1,---,t, be the observed failure times,
and t3,---,tr_, the observed times-on-test of units that have not yet failed. The likelihood

function is then

0 = (55 ool - 55 g

where
S(B) =+ S @
i=1 i=1

Note that simple sufficient statistics do not exist and classical approaches to the problem

are difficult.



1.3 Preview

Expanding the product and summation in (3) results in an expression with m™ terms. For
example, if m=3 and n=20, there are 32° = 3,486, 784, 399 terms. Computation via brute
force expansion is thus typically not feasible. The purpose of this paper is to show how
Bayesian analysis can, nevertheless, be done.

In Section 2, an iterative computational scheme will be developed for closed form Bayesian
analysis. Analysis for the Bi-Weibull case will be presented first. A general formula is
then introduced for the Poly-Weibull case, allowing closed form computation of the relative
posterior probability density function, the posterior moments and the predictive reliability.
This formula is recursive, with each step of the recursion corresponding to incorporation of
an additional data point, and hence is completely compatible with sequential or multistage
experimentation. The total number of computations needed is roughly 2n (";"_‘;1) + 3mn?,
which is typically much smaller than the brute force m™ computations. (When m = 3 and
n = 20, 2n(";"1;1) + 3mn? = 12,840.) Some approximations for posterior quantiles of
01, -, 0, are also proposed.

A numerical example is given in Section 3, to illustrate the efficiency of the exact com-

putation. Finally, generalization to unknown B and more general distributional forms is

considered in Section 4.

2 Closed-Form Bayesian Analysis

2.1 Prior Distributions

Assume that 6y,---,68,, are independent and that the prior density of §; is

Bibi \—(1+8;05) b;
m;(0;) = mej eXP{—EJ@}, ()

where a; > 0 and b; > 0. Thus ij has the Inverse Gamma, ZG(a;, b;), distribution. Then

the joint density of 8, is 7(0) = [T}, 7;(8;). Choice of the a;, b; will frequently be based on



engineering knowledge or knowledge of previous similar products. Methods of eliciting the

a; and b; can be found from Berger and Sun (1993) and Sun and Berger (1993).

The following notation will prove to be convenient. For j = 1,---,m, define
Ts; = S(Bj)+ b (6)
B; 8;
H_,(a:) = $1+ﬁ,a._, { Tﬁj/:l: }, z >0, (7)

where S(8;) is given by (4).

2.2 Posterior for the Bi-Weibull Case

Because of its importance and comparative simplicity, we first present results for the Bi-

Weibull distribution. Define
W(I;O) =% and W(1;1) =1t

For n > 2 and 0 < < n, define

W(n —1;0)t, if j =0,
W(n;i) = W(n—-1;6—1)th + W(n—1;0)t%, if1<i<n, (8)
W(n —1;n —1)th, ife =n.

Note that W(n;0) = [[I%, t:]?* and W(n;n) = [[I%, t:]**. Because of the recursive nature
of (8), computation of posterior quantities can be done efficiently, requiring only O(n?)

computations. For p1(< a161), /1,2(< azf2) and t(> 0), define

W (n;1)B: 65 _’I‘(al +z—"ﬂ)I‘(a2+n—z—ﬂz)

n
/Lla /1'27 ; (T, +tﬂ1 ita1— m/ﬁl(Tﬁ +tﬁ2)n_’+“2 —u2/B2

Expressions for several posterior quantities of interest are given in Table 1. These follow

from the general expressions given in Section 2.3.



Table 1: Formulas for Posterior Quantities for a Bi-Weibull Distribution
oy | O odate) | T S [T [2]
iy | O |5 310)2”’“””51’-13&’::3*“” 7

mean E(6,|data) %
E(6;|data) —ﬁg; g;
variance Var(6,|data) jﬁi:g: g; - {:;E(l) g g;}
Ver( i) 7600 00,
covariance | Cov(fs, 6,|data) ﬁ(l);g; - J(l(’fé(i )(‘)]; (00)’;; )
I::jﬁ:; R(t) = E[R(t)|data] %

2.3 Posterior for the Poly-weibull Case

2.3.1 A Recursive Formula and Notation

The key to avoiding a combinatorial explosion in the posterior analysis is the recursive
formula presented in this section. Let A” denote the set of all nonnegative integers. For

m,n € N,m > 2,n > 1, denote all the partitions (¢1,- - ,%y) of n by

mn“"{zla

Suppose that the failure times t;,-- -,

)it €N, Ezj—n} 9)

t, are observed. The recursive formula is defined by

the following two steps.



Step 1. For (1, **,im) € A1, define

tgl, if (i17i27'°'aim) = (1,0,"'70)a
W(Lsis, e yim) = oev eernns (10)

thm i (41, s ime1,8m) = (0,-++,0,1).
Step 2. For (i1, - ,im) € Api (2 < k < n), define
W(k;ir,-+yim) = 3 Wk =101, 45j01,55 — 1,ij41, -+ 2 om) £ (11)
;2>1
It is easy to see that (11) is well defined. The case m = 2 is equivalent to (8).
Note that, in sequential experimentation, each new incoming failure ¢; calls for updating

mtis 1) terms in this updating of the W's by an

the previous W's by Step 2. There are only (
incoming ¢;. Thus one does not have to cycle again through the induction, making evaluation
of the posterior in a sequential context especially inexpensive.

For a real vector p = (p1, -+, pm) (p; < Bj(a; +14;)) and t > 0, let

m JF(aJ"'Z] )
Jwt)= > Wiy in H - (Tp, +1%) u+a:-ﬂj:/ﬁ: (12)
(1,1,---,1m)€Am,n ﬁ

2.3.2 The Poly-Weibull Posterior Distribution and Moments

Theorem 2.1 The posterior density of 8, given the data, is

"0 = 755, > Wins i) T A0 { g} (13)

17'm)€Am,n k=1

and the marginal posterior density of 8; (1 < j <m) is

H;(9;)
J(0;0) (in, Z

8
i) EDm,n 077 ki

Winsin, i) (22) O T] ZEEGAR) gy

7‘-.7'(0.1' lda'ta‘) = Ttlk+1k

PROOF. The posterior density of @ is proportional to

(> ﬂﬁéﬂ}{,ﬁ a;ﬁﬁ}exp{—E e, (15)

=1 k=1 k=1 Yk



By induction, it can be shown that (15) is equal to

S W(ngineeim HHk(ak){apk}k-

(il y""im)eAm,n

Since

][ 6L HL(6,)6; " by, = T(ax + ix — *—)/ g (16)

the normalization constant for the joint posterior density of @ is J(0;0). This proves the
first part. The second part follows immediately. 0
The marginal posterior density of (6;,0;) can be written similarly. For example, the

marginal posterior density of (i, 6,) is

Hy(61)H,(65) g i Buying Bayi i BY BiT(aj+i;)
7!'(01, 02|data) W o i%):eAmnW(n, 11, ", Zm) ['0_?'1-] [eﬁz] }:I a._,+1.]

Theorem 2.2 The posterior moments are

E(0;|data) 700.0)
J(20.,); 0 J(0(;;0)72
Var(f|data) = E]( by ) )_ 5((()]_)0))]
J(0¢4;0)  J(03);0)J(0(;);0
Cov(d, data) = L2210 (()J(g-o())(z]) )

where 0(;) = {(z1,**,2m) : ¢; = Lz = 0,k # j} and 045 = {(z1, -+, 2m) : zi = 2; =
1,$k=0,k7éi,j}.

The simple proof of Theorem 2.2 is omitted.
The number of terms in the expression for J(0;0) is #(A,, »), which equals ("jnm 1) In
the Appendix we will see that the recursive formula effectively reduces the total number of

computations for a Poly-Weibull distribution from an exponential rate in the sample size n

to a polynomial rate.



2.4 Approximation for Posterior Quantiles of 6,,---,6,,

There are no nice formulas for posterior quantiles of 6y, --,60,,. One could, of course, use
numerical integration to determine quantiles of w(6;|data), if desired. However, the following
approximation seems to work quite well. Let m; and V; be the posterior mean and the
posterior variance of §;. Approximate the posterior distribution by the distribution of form

(5) which has moments m; and V;. Thus the approximation is

BBy esa b;
7rj(0j|da,ta,) ~ T&J) 0]' exp{—@}, (17)

where (@;, ZJJ) satisfy the following two equations that define the moments of (17):
T(a; —2/8;)T(&;)/T*(a — 1/8;) = 1+ Vi/md,

b = [mT(a;)/T'(a; — 1/ﬂj)]ﬁj-

Note that an approximate value of @; can be determined by iteratively solving

(18)

a;=0.5+ [ln(l + mljf) + ﬁ%ln(l — &jﬂjl— 1)]/111[1 - m]a (19)

starting from the initial value

1 1
~0__
a; = %; (3+ 1_(1+%)_0_5ﬂj). (20)

2
E
Actually, @] is typically accurate enough.

th

Finally, the approximate o' posterior quantile of 6; is given by the ath quantile of (17),

which can be shown to be

2?)]' ]1/,3_7'_ ij(c”z]-) [ 2 ]1/ﬁj
X%ﬁj(]‘ - a) B F(&J - ]'/IHJ) X%éj(l - a)

where x3(1 — a) is the (1 — a)th quantile of the x? distribution with j degrees of freedom.

di(e) = | : (21)

2.5 Predictive Reliability

Often, the predicted time to failure of the product is of considerable interest. Let T be a

future observation of the product, which is assumed to be independent of current data. Then

9



the predictive reliability is
R(t) = P(T > t|data) = /R , R(t)r(0|data)dd, t >0,

where R(t) = exp{— X7-,(¢/6;)%} and R}, = {(y1,--,ym) : y; > 0}. (Under squared error

loss, Ei(t) is the Bayes estimate of R(t), given B.)
Theorem 2.3 R(t) = J(0;t)/J(0;0), for ¢ > 0.

PROOF. Note that

Winsin, - yin) fy 67" expl—(Tp, +1%)/07)
J(0;0) oo+ '
J

j=1

R(t)w(0|data) = Z

(il 1"'1im)€Amy"

The result immediately follows from (16). O

3 A Numerical Example

Suppose that failure time of a product has the Bi-Weibull distribution with 8; = 0.5 and
B2 = 2.0. Assume that the hyperparameters for the prior distributions (5) are a; = 15.0,a, =
1.90,b; = 430 and b, = 10,575,000. (This would correspond to subjectively specified prior
means and variances of 1016 and 390963 for 6, and 3000 and 2,749,892 for ,; these could be
prior opinions for, say, failure due to manufacturing error and wearout, respectively.) The
following sample of size 20 (n = r = 20) is drawn from the Bi-Weibull distribution with
6, = 750 and 6, = 3000:

8.96, 2189.49, 384.42, 1792.82, 2891.43, 844.82, 243.04, 982.33, 1660.83, 88.32,
1037.78, 406.86, 130.21, 449.15, 129.80, 355.16, 111.81, 392.48, 304.68, 75.98.

Marginal Posterior Density and Moments
The marginal prior densities (solid curves) and marginal posterior densities (dotted
curves) of 6; and 0 are given in Figure 1. The posterior moments are given in Table 2.

The predictive reliability is shown in Figure 2.

10



Table 2: Prior and Posterior Moments of (;,6,) for a Bi-Weibull Distribution

Prior Distribution Posterior Distribution
E(6,) | 1015.94 E(61|data) | 1002.60
E(,) | 3000.02 E(6y]data) |  2466.85

\/Var(6:) | 625.27 Var(6;|data) 439.74

\/Var(62) | 1658.28 Var(6,|data) 887.46

Cov(by, 62) 0 Cov(6y,0;|data) | —75823.10

Corr(6y, 05) 0 | Corr(6,,0;|data) —0.1943

Posterior Quantiles

From Table 2, (m,V;) = (1002.60,439.74%) and (my, V,) = (2466.85,887.46%). Solv-
ing the equations in (18), using (19) and (20), yields (@,b) = (25.2535, 751.9596) and
(d2,bs) = (2.9893, 13,709,647). Figure 3 indicates the quality of the quantile approxima-
tions. The true quantiles and their approximations (21) are represented by the solid and
dashed lines, respectively. There are no noticeable differences between the true quantiles

and their approximations.

4 Generalizations

4.1 Unknown g

When B is unknown, one could, of course, perform a full Bayesian analysis by specifying a
prior distribution for #. The resulting analysis is computationally very intensive, however,
usually requiring Gibbs sampling; see Berger and Sun (1993). Another possibility is to
estimate B by likelihood methods, and use the resulting estimate in our previous formulas.

Type II maximum likelihood is typically the preferred method in these setting. Thus we

11



first integrate out 8, using the prior 7(0|8) in (5), obtaining the marginal likelihood

m 1.(73.\2i(8;)
L*(B) = /R,t L(0,B)x(0|8)d0 = I:I1 %

In (22), we have written a; and b; as functions of j;, since typically one would desire to have

J(0;0). (22)

7(0) preserve moments or other subjectively specified features of the prior information for
0. In the case of moment specifications, (18) would define the functions a; and b;. Again,

however, it is far simpler (and quite accurate) to use the approximation (20), i.e.,

~ —_ 1 1
a;(B;) = %[3 AT n%)o.sp,-]’

~ . . B
bi(8;) = [miT(a;(8;))/T(@i(8;) ~ 1/87)] -
Then the Type II MLE can be obtained by maximizing

. 3. 3.)&i(85)
Le=11 Wty O

For the example in Section 3, plots of L(B) are given in Figure 4. The Type IT maximum like-

lihood estimate is B* = (0.51,2.02); note that this is quite close to the true 8 = (0.50,2.00).

4.2 The Exponential Family

The technique of this paper can be used to analyze the case where the component failure

times are from the following exponential family:

[H'(1)/Q(0)]exp{-H(t)/Q(8)},

where H(-) is an increasing function satisfying H(0*) = 0 and lim H(t) = oo, and Q(-)
is a strictly increasing function. Note that the Weibull and Pareto pdf’s are special cases.
Details concerning this family can be found in Sun and Berger (1993). More generally, the

methods here apply to the following failure rate model:

ht) = 3" Hi(8)/Q(65).

=1

12



This includes the following useful models:

(i) Let A(t) = 6; + 05t + 03/t. This model is a generalization of gamma and truncated
normal densities. An application of the model can be found in Glaser (1980) and Cobb et.
al. (1983).

(ii) Let h(t) = 61/(1 +t) + 0,°~1, for some known B > 2. See Ranjarshi and Ranjarshi
(1988).

(iii) Let h(t) = 61/(a + t) + 05t + 03/t, for some known a > 0, considered by Gavar and
Acar (1979).

(iv) Let h(t) = 61e** + 05/(1 + t). This model yields a stochastic failure rate version of

Makeham’s curve. For details, see Ranjarshi and Ranjarshi (1988).

Appendix. The Number of Computations

We now find the total number of computations involved in use of the closed form expres-

sion. The number of terms in the expression for J(0;0) is #(An,»), which equals ("::;1)
Recall that, for each failure t; in the iteration, one must compute tfl, ce- ,tf’". From the

definition of W (k;41,-++,4m), it follows that one must compute 3°7., (TJ”) (’;:}) J products

and 3°70 ( )(’; i) (7 —1) sums. From basic combinatorial formulas, these are, respectively,
m _ m—1 _ _ _
)0 - <E ()l
PR W AVESD =\ J J m—1

£ - so=(217)

Therefore, the number of computations in the updating of W(k;---)'s is 2m(

m+k— 2) _
m—1

("‘"‘k 1) + m, and the total number computations for finding all W(k;---)s (1 < k <n)is

m—1

C () R (A

k=0

13



- 2m(m+n_1)—(m+n)+mn. (23)

m m

Suppose, now, that we are interested in all the first two posterior marginal moments of
9; (1 £ j < m), so that we also need to compute I'(a; + k — p/B;), Bf, and ngj+k_“/ﬁj,j =
l,---,m,k=1,---,n,p = 0,1,2. That needs 4mn + 3mn? computations. An additional
3m ("jn"j;l) multiplications and (";"n”jl) sums are required for J(0;0). Similarly for the other

J's. Therefore the total number of computations needed to determine these moments is

2m (m"'"_l) - (m"t") + 5mn + 3mn? 4+ (2m + 1)(3m + 1) (n+m_1)

m m—1

m-—1

= [on- % — 1+ (2m + 1)(3m + 1)] (*+"71) + 3mn? + 5mn. (24)

For example, if m = 3 and n = 20, the right hand side of (24) equals 11,799 << 3% =
3,486,784,401, the latter being the number of terms in a brute force expansion of the ex-
pression in (15). The recursive formula effectively reduces the total number of computations
for a Poly-Weibull distribution from an exponential rate to a polynomial rate. The time for
computing a gamma function and a power function are usually 6 times and 3 times thaf for
computing a sum or product or simulating a uniform (0,1) random variable, respectively.
But, since the total number of computations for computing sums or products is much larger

than that for the Gamma function, we ignore this difference.
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