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Abstract

Most hazard regression models in survival analysis specify a given functional
form to describe the influence of the covariates on the hazard rate. For instance,
Cox’s (1972) model assumes that the covariates act multiplicatively on the hazard
rate, and Aalen’s (1980) additive risk model stipulates that the covariates have a lin-
ear additive effect on the hazard rate. In this paper we study a fully nonparametric
model which makes no assumption on the association between the hazard rate and
the covariates. We propose a class of estimators for the conditional hazard function,
the conditional cumulative hazard function and the conditional survival function, and
study their large sample properties. When the size of a data set is relatively large, this
fully nonparametric approach may provide more accurate information than that ac-
quired from more restrictive models. It may also be used to test whether a particular
submodel gives good fit to a given data set. Because our results are obtained under
the multivariate counting process setting of Aalen (1978), they apply to a number of
models arising in survival analysis, including various censoring and random trunca-
tion models. Qur estimators are related to the conditional Nelson-Aalen estimators
proposed by Beran (1981) for the random censorship model.

Keywords and phrases: Aalen model; censoring; counting process; hazard function; inten-
sity; kernel; martingale; nearest neighbor.
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1 Introduction and Summary

Let T be the survival time of an individual with covariate vector Z = (Zi,...,Z,). To
assess the influence of the covariate on T, by far the most commonly used model is Cox’s
proportional hazards model, which stipulates that

1
h(t [z)Elslitr{lo—,&-t-P(TSt+At|T>t; Z =z), (1.1)

the hazard function for an individual with covariate Z = z, has the form
h(t | z) = ho(t) exp(8'2), (1.2)

where 8 is a vector of unknown regression coefficients and hq(t) is an unknown and unspec-
ified nonnegative function. This model has the major advantage that it is parsimonious
and easy to understand: The effect of the covariates is neatly summarized by the vector .
On the other hand, the form (1.2) of the hazard rate is extremely rigid.

Let S(t|z) = P(T > t|Z = z) denote the distribution of the survival time for an
individual with covariate vector z. Beran (1981) considered the more general model in
which {S(-|z)}, is a completely arbitrary family of distribution functions. Supposing
densities exist, this is the model

h(t] 2) = aft, 2) (1.3)

where we assume only that for each z, a(:, z) is a hazard function. Beran considered esti-
mation of S(t|z) and the correspondlng cumulative hazard function A(t, 2) = [§ a(s, z)ds
under a random censorship model in which for each of n individuals, the survival time T;
of an individual is observed until a censoring time C;. More specifically, suppose that the
data consists of n i.i.d. triples (Xi,61,2Z1),.-.,(Xn,8n, Z») where X; = min(T;,C}) and
& = I(T; < Cy), i = 1,...,n. Suppose further that Z does not depend on time, and
that T is conditionally independent of C given Z. Beran proposed a “local Nelson-Aalen
estimator” of A(t,z), which is described as follows. For each z, let K;(t|z) = P(X >
t,6=1|Z =2z)and K(t|z) = P(X >t|Z = z). The representation

tdK (s | 2)

Alt,z) = - o K(s-]|2)

(see Peterson (1977)) led Beran to propose the class of estimators of A(t, zo) given by

Altzo) =~ | *dKy(s | 20) (1.4)
0 K(s-|zo)

where Ki(t]z0) = X%, Wi(zo)[(X; > t, & = 1) and K(t|z0) = Ty Wi(z0)I(X: > ).

Here {Wi(zo), i = 1,...,n} is a set of nonnegative weights dependlng on the covariates

only. For instance the W (20)’s can be taken as the nearest neighbor or kernel weights used

in density estimation and nonpa.ra.metnc regression. When one uses the constant weights

Wi(zo) = 1/n for all individuals, A reduces to the ordinary Nelson-Aalen estimator (see
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Aalen (1978)). Beran (1981) showed that A is strongly consistent if one uses nearest neigh-
bor or kernel weights. Weak convergence results for these estimators were later obtained by
Dabrowska (1987). McKeague and Utikal (1990) obtained weak convergence results for esti-
mators of the type proposed by Beran, except that the local averaging is done by “binning”
the data. Their study was carried out in the framework of Aalen’s (1978) multiplicative
intensity model. -

The purpose of this paper is to introduce and study a new class of estimators for the con-
ditional cumulative hazard function, the conditional survival function and the conditional
hazard function. We informally motivate our estimators as follows. Beran’s estimators
involve a local averaging in the z direction. It seems preferable to do a “local linear fit”
in the z direction. It may be helpful to make an analogy with scatterplot smoothers in
nonparametric regression, in which we are given data {(Y;, Z;)} and we wish to estimate
E(Y|Z = z). Two standard estimators are the running average smoother and the running
lines smoother. Let L,, denote the set of indices of all the 2’s that lie in a neighborhood of
zo0. The running average smoother averages all the Y’s whose indices liein L.,. The running
lines smoother involves doing a least squares fit using the points {(Y, Z;); [ € L., }. There
are some problems with smoothers based on local averages, a notable one being large biases
near the endpoints of the z region. In addition, they do not generally reproduce straight
lines (if the data lie exactly along a straight line, but the z;’s are not equally spaced, the
smoother need not yield a straight line). For this reason, the running lines smoother is
generally strongly preferred in practice. For example, the scatterplot smoother provided in
the statistical programming language S is a running lines smoother (“loess”). For more on
this, see the discussion and references on p. 376 of Chambers and Hastie (1991).

Our estimators are developed in the context of Aalen’s (1978) multiplicative intensity
model. We now wish to give a preliminary description of our estimators of the conditional
cumulative hazard function, and this is easiest to do in the simpler context of the random
censorship model described earlier. Fix a small neighborhood Az,. Within Nz, we have

a(t, Z) ~ ﬂo(t, Zo) + ,B](t, z0)21 4+ ,Bp(t, ZQ)ZP. (15)
The integrated version of this is
A(t, Z) ~ Bo(t, Zo) + Bl(t, Zo)Zl + -+ Bp(t, Zo)Zp, (1.6)

where B;(t, z0) = J; Bi(s, 20)ds (0 < 7 < p). Imagine now that we have equality in (1.6).
We estimate A(f,zo) by a function which has jumps only at the observed death times.
Suppose there is an observed death at X(;). Let Z; denote the interval [X(;, X(;) +dt), let
R; denote the set of individuals whose covariates are in Nz, and who are at risk of dying in
the interval T;, and let n; denote the cardinality of R;. Each individual in R; is observed to
die in the interval Z; or not. Thus, we have a “response” vector of length n;, consisting of
n; — 1 zeros and a single one. If we formally regress this vector on the covariates z;, [ € R;,
we obtain an estimate of the increment of the functions B;(-, z9), § =1,...,p, at the point
t = X(;. Summing up those increments gives an estimate of the B;(-,20)’s, j = 1,...,p,
and this gives an estimate of A(-,zp). We note that if we take the neighborhood Nz, to be
the entire z-space, this procedure gives Aalen’s (1980) least squares estimator. Actually,
we do not do an ordinary regression, but rather a weighted regression, in which individuals
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whose covariates are close to zg are counted more heavily. A complete description of our
estimators is given in Section 2.

It is not too difficult to see that if instead of taking a first-order Taylor expansion in
(1.5) and (1.6), we take a zero**-order Taylor expansion aft, z) = a(t, zo), then we obtain
the estimators proposed by Beran (1981). This is discussed further in Section 2.2 below.

We note that an estimate of the conditional cumulative hazard function naturally gives
rise to an estimate of the conditional survival function S(¢| z) through the product-integral
representation

S(t] 2) = Ppg(l — dA(s, 2)) = exp{A%(t, 2)} [] (1~ AA(s, 2)), (1.7)

s<t

where A° is the continuous component of A and AA(s, z) = A(s, z) — A(s—, z) (see e.g.
Gill and Johansen (1990)). Thus, an estimate A(t|z) of A(t|z2) yields the estimate

S(t12) =TI (1 - AA(s,2)),

<t

and moreover the asymptotic distribution of (¢ | z) may be obtained from that of A(t]2)
via the functional version of the §-method (see Gill (1989)). Furthermore, functionals of
S(t|z) such as the mean lifelength and the median lifelength can in turn be obtained as
functionals of S (t]z), and in many cases (e.g. for the median lifelength) the asymptotics
for these functionals can also be obtained via the §-method.

As mentioned earlier, our development proceeds within Aalen’s (1978) framework of .
multivariate counting processes. This approach offers some important advantages. As is
well known by now, Aalen’s model encompasses a wide range of models arising in survival
analysis, for example very general forms of censoring (censoring by fixed constants, Type II
censoring, and the important special case of random censoring) and random truncation.
models; see Chapter 3 of Andersen, Borgan, Gill, and Keiding (1993) for a discussion of
these and for additional examples.

In Section 2 we formally introduce our estimators of the conditional cumulative haz-
ard function, the conditional survival function and the conditional hazard function, and
discuss the choice of weight functions, giving emphasis to nearest neighbor and kernel
weights. In Section 3 we state results which give sufficient conditions for weak convergence
of our estimators. Specifically, these are Theorem 1, which pertains to weak convergence of
the conditional cumulative hazard and the conditional survival functions; and Theorem 2,
which deals with weak convergence of our estimates of the conditional hazard function.
These two theorems are abstractly stated and pertain to an arbitrary family of weight
functions. Section 4 gives results which state that the sufficient conditions of Theorems
1 and 2 are satisfied by the nearest neighbor and kernel weights. In that section we also
discuss some technical points relating to the rate of convergence of the estimators. Since
these points are important we give a very brief summary of our discussion here. In “stan-
dard” density estimation and nonparametric regression the mean integrated squared error
of nearest neighbor and kernel estimators with an optimally chosen smoothing parameter is
of the order of n~%/5. On the other hand, for histogram-type estimators with an optimally
chosen bin width, the mean integrated squared error is of order n=2/3. For the more difficult



problem of regression in a counting process setting, the best available rate for histogram-
type estimators was obtained by McKeague and Utikal (1990), whose estimators have an
integrated squared error which is almost O,(n~'/?). As one would expect from the results
in the “standard” setting, one can achieve a better rate using nearest neighbor or kernel
smoothers, and indeed the estimators we propose have an integrated squared error which
is almost @,(n~*/%). Further remarks on the rate of convergence appear in Section 4.3.

In Section 5 we illustrate the procedures of this paper on a data set involving survival
among diabetics. The survival times in this data set are both left truncated and right
censored. Section 6 contains the proofs of our theorems. In that section we shall see that
a by-product of our approach is a proof of weak convergence of Beran’s estimators under
the multivariate counting process setting described in Section 2 (cf. Theorems 3 and 4 and
Part (I) of the proof of Theorem 1).

There are several motivations for the development of our estimators. First, we believe
that our estimators will provide useful alternatives to estimators derived from the Cox
model. Second, our estimators may be used to determine whether a more restrictive model
such as the Cox model gives an adequate fit to the data. This is done by comparing
estimates under the fully nonparametric model with the estimates under the more restrictive
model, and carrying out a formal test of goodness of fit (assuming that the distributions of
the required test statistics can be obtained). See for example McKeague and Utikal (1991).

The initial motivation for the development of our estimators was that they were needed
to carry out the steps in the fitting of an “additive risks model” that will be studied in a
sequel. A fundamental problem with estimators based on local fitting is that they do not
work well in high dimensions. This is because of the well-known “curse of dimensionality”:.
neighborhoods with a fixed number of points become less local as the dimension increases.
To overcome this problem one can consider the additive risks model

h(t]2) = aolt) + calt,21) + - + ot 2, (L8)

which is more restrictive than the fully nonparametric model (1.3), but has the advantage
that it is easier to understand when the dimension is high. To ensure the identifibility of
model (1.8) we assume that E[e;(t, Z;)] = 0 for j = 1,...,p. Estimation of the cumulative
functions A;(t,z;) = Js;(s,2;)ds, j = 1,...,p, is done via a “backfitting algorithm”
that is similar to the one described in the framework of ordinary regression by Hastie and
Tibshirani (1990). Here we give a brief description of the algorithm for p = 2. Let Ao
be the ordinary Nelson-Aalen estimator of Ag(t) = f; ao(s)ds that is obtained under the
model h(t | z) = ao(t). Let A" be initial estimates of A;, j = 1,2. We fit the model (1.8)
by estimating A,, acting as if A; and Ag are known to be equal to A§°’ and Ao respectively.
This gives an estimate A{). The next step is to estimate Az in model (1.8) acting as if
A; and Ag are known to be equal to Aﬁ” and Ag respectively. This gives an estimate AQ’.
Now we repeat this procedure, using Aﬁ” and Ag” instead of Aﬁ"’ and A§°’, and iterate
“until convergence”. The point is that each step of the algorithm is carried out using the
fully nonparametric approach based on model (1.3) with p = 1.



2 The Model and the Estimators

2.1 Counting Process Formulation

Let N™(t) = (Nl(")(t), ..., Ni(t)), t € [0,1], be an n-component multivariate counting
process with respect to the filtration F® = {F™(¢) : ¢ € [0,1]}. Formally, this means
that for each 7 the sample paths of Nt-(") are step functions, zero at time zero, with jumps of
size +1 only; no two component processes can jump simultaneously; and for each ¢, N,-(")(t)
is F(™(t)-measurable. Intuitively, we think of Ni(n)(t) as a process that counts the number
of failures for the i** subject during the time interval [0, ] over the study period [0,1]. The
o-field F(™(t) is thought of as containing all the information that is available at time i.

For each i, let Z(™(t) = (Z,-(I")(t),...,Z,-(:)(t))', t € [0,1] be a predictable covariate
process, and let K(")(t) be a predictable {0,1}-valued process, indicating (by the value 1)
that the 7% subject is at risk at time ¢. Informally, “predictability” means that the values
of Z{™(t) and Y;")(t) are fixed given what has happened just before time t. Let AM(3) =
(AP, .., AB(@)Y, t € [0,1] be the random intensity process of N®. Thus, MM (t) =
NM@) = fEA(u)du, i = 1,...,n, t € [0,1] are orthogonal locally square integrable
martingales with respect to F(™. A mathematically rigorous treatment of the theory of
counting processes and martingales, and related notions used in this paper is given in
Chapter II of Andersen et al. (1993).

We consider the nonparametric regression model

M) = Y ()alt, 25(), i=1,...m (2.1)

where of-, z) is an arbitrary nonnegative deterministic hazard function, and our objective
is to estimate a(-, 2) on the basis of the observations (N,~(n), Y,-("), Z,(")), t=1,...,n.

The model of random right censorship described in Section 1 is a special case of this
setup. In the notation of Section 1, for each ¢ define N,-(")(t) = I(X; <16 =1) and
Y™ (t) = I(X; > t). It is well known that N™ () = (N{P(t),..., N®(®)), t € [0,1] is
a multivariate counting process with each individual process N,-(") having intensity process
A™(t) = Y(t)h(t| Z:) where h(t]|z) is given by (1.1); see e.g. Chapter III of Andersen
et al. (1993). In this case, model (2.1) corresponds to

h(t| Z;) = at, Zi(t)), i1=1,...,n

which is identical to model (1.3). As mentioned earlier, other important models in survival
analysis fit into this counting process setting. In Section 5, we review how the random

truncation model fits into this framework.
To ease the notation we shall suppress the superscript n in the rest of the paper.

2.2 A Class of Nonparametric Estimators

Fix zo = (zo1,...,%0,) € RP, and define A(t,20) = [;(s,2z0)ds and S(- | z0) =
Ppo,j(1 — dA) to be conditional cumulative hazard function and the conditional survival
hazard function, respectively, under model (2.1). We wish to estimate A(t, 2o), S(t|20),
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and a(t, zo) as functions of ¢, t € [0,1]. Then letting 2o range over the covariate space, we
obtain estimates of A, S and «a as functions of (, z).

Estimation of A(-, zo) and S(- | z0) We consider the first-order Taylor series expansion
a(t7 Z) = ﬂO(tv Zo) + ﬂl(t, ZO)ZI +-+ 5p(t1 Zo)Zp + T(ts z, ZO)- (22)

If r(t, 2, z9) was identically equal to zero over the whole z-region, we would have
Nit) = [ i) (Bols,20) + Buls, 20)Za(s) + -+ + Byls, 0) Zig(s)) ds + M(1),
te[0,1], i =1,...,n, or in a matrix form
N(t) = /0 "U(s)dB(s, zo) + M(t), te€[0,1] O (23)

where N(t) is the multivariate counting process, M (t) is an n x 1 vector of locally
square integrable martingales, B(t, zo) is the (p + 1) x 1 vector of the integrated regres-
sion functions B;(t,2z0) = Ji Bi(s,20)ds (j = 0,...,p), U(s) = Y(s)(1,27(s)), Y(s) =
diag(Yi(s),...,Ya(s)), and Z*(s) = (Z(s),.-.,Zn(s))'. We can then estimate B(t, 2) by
minimizing

(dN(t) - U(t)dB(t, 20)) (dN(t) — U(1)dB(t, 20))
for each t € [0,1], which yields Aalen’s (1980) least squares estimator

Ba(t,20) = [ JE)(U ()U(s) U'(8)dN(s), te o1,

Here J(t) = I(rank(U(t)) = p + 1) is the indicator that U(t) has full rank and we use the
convention that for a square matrix A, A~ represents the inverse of A if A is invertible and
the zero matrix otherwise. Thus, the estimator of B;(:, o) increases only at the points ¢
at which one of the counting processes V; has a jump.

In general, (¢, z, 2o) is not equal to zero for all z, and thus simply fitting a linear
model is not appropriate. However, if we restrict ourselves to a small neighborhood of zq,
r(t, 2, 20) is close to zero. With this in mind we define, for each subject ¢, a predictable
weight function Wj(t, zo), which at time ¢ assigns to subject i heavy weight if Z;(t) is close.
to zo and small weight otherwise. Minimizing

(dN(t) ~ U(8)dB(t, 2)) W(t, 20) (dN(t) - U($)dB(t, 20))
for each t € [0,1] gives the estimate
Ba(t, z0) = /0 " 7(s) (U'(s)W(s,20)U(s)) U'(s)W(s,20)dN(s), t€[0,1]  (2.4)

where J(s) = I(U (s)W (s, 2o)U (s) is invertible) and W = diag(W4, ..., W,). Finally, we
define a locally weighted least squares estimator of A(t, zg) by

An(t,20) = (1, z;)Bn(t, Zq)- (2.5)
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The conditional survival function S(t|z2g) in (1.7) is estimated by

Sa(t | 20) = Piosg(l — dAx) = [T (1 — Ada(s, 20)) (2.6)

s<t

where the second equality follows from the fact that A.(:,20) is a step function.

Remark Assume that one replaces (2.2) with a zero'*-order Taylor series expansion
a(t, z) = aft, z0) + r(t, 2, 2o). (2.7)
Then, by minimizing
(dN(2) - Y ()AL z0)) W(t, z0) (dN () ~ Y(1)dA(t, 7))
for every t € [0,1], where Y (t) = (Yi(t), .., Ya(t))', we obtain the estimator

A(t, zo) / (ZW s, 20)Yi 760) Zicy K( ?0)50()2(21\;( )

In the special case where the data consists of right censored observations and the covariates
are independent of time, A is equal to (1.4), the estimator introduced by Beran (1981). In
Section 6 we show that A, and A are asymptotically equivalent as n — co. However, A,
and A behave quite differently for small or moderate size samples. Because equation (2.7)
ignores the role played by the slope function oz (t, 2o), A tends to flatten out the covariate
effects within the neighborhood of zo. This in general will cause a bias, which may be
severe when zg is close to the boundary of the z-region. This effect was observed in
simulation studies not reported here. In practical terms, the inclusion of the linear term in
the estimation procedure in effect enabled us to use larger neighborhoods of zo.

Estimation of The Conditional Hazard Function To estimate a(t, zo) for fixed
2o, we shall smooth A,(t, ze) over ¢ with a kernel function. Let K be a bounded density
function supported on [—1,1] and satisfying

(2.8)

/ 11 wK (u)du = 0 (2.9)

and let {b,} be a sequence of positive numbers. Define

an(t, 20) = b‘l,[ / k( b—nS)An(ds,zo) (2.10)

where An(t, 2o) is given by (2.5) and (2.4). In Section 3 we state theorems that assert (under
regularity conditions) that a,(t, zo) is a consistent estimator of a(t, zo); the theorems also
give the rate of convergence.



2.3 Nearest Neighbor Estimates and Kernel Estimates
Different choices of the weight functions W;(t, zo) yield different types of estimators. Fol-
lowing are some natural examples that may be used in practice.

Nearest Neighbor Estimates Let {k,} be a sequence of positive integers. For k-nearest
neighbor (k-NN) estimates the weights are defined by

Wi(t, z0) = w(itﬁné(—t—))/iw(@;}gi@), 1<:<n (2.11)

J=1
where w(-) is a density function in R” that vanishes outside the unit ball {u € R? : |u| < 1}
and R, is the Euclidean distance between zo and the kth nearest of Z1(t), .-, Zn(t)-

Kernel Estimates For kernel estimators, the weights are defined by

Wi(t, zo) = w(i"—"-h—nzﬂ)/;w(ﬂ—_}fﬂ) 1<i<n (2.12)

where w(-) is a density function in R” and An > 0 is the “bandwidth parameter”.

An advantage of the k-NN estimates is that they are locally adaptive: when the covari-
ates have small density at zo, observations around zg are sparse, but Ry, is then larger. For
this reason, nearest neighbor estimates are usually preferred; for example the S function
“loess” mentioned in Section 1 is a k-NN estimate; see pp. 29-30 of Hastie and Tibshi-

rani (1990).

3 Weak Convergence of the Estimators

In this section we study large sample properties of the estimators defined in Section 2.
Throughout the paper we shall assume that Z takes values only in [0,1]?, and that
SUD(s,z)efo,1]x (0,11 105 z)| = B < co. We also adopt the convention that 0/0 is 0.

3.1 Notation and Assumptions
Fix 2o = (zo1, .-+ %op) € [0,1]7 and denote Z~ = (Z1,..-,Zn) . Define

Gls,20) = Wils, 20)Yi(s)[SiaWils: 2)Yi(s), i=1,-00m
c(s) = (c1(s,20)---s6n(s, o))’
C(s) = diag(ci(s,20),---,¢n(s Zo))
P(s) = C(s) - e(s)e(s)
Tz = {te[01]: inf, det(Z2~ PZ*)(u) > 0}

Ji(s) = I(s €Tz)

(3.1)

for all s and all i. The ¢;(s, zo)’s are essentially the weights assigned to the n individuals,
taking into account who is at risk at time s (those individuals who are not at risk are given
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a weight of zero). To be more precise, we need to look at the set 7z,, and when thinking
about the definition of this set it is very helpful to first consider the case where the covariate
is one-dimensional. In this case, the condition det(Z"PZ “)(u) > 0 is the condition that

n 1 ci(8,20)(Zi(8) — Tley €5(8, 20) Z;(s))? > 0. Note that if 37_; Wi(s, 20)Yi(s) = 0, then
ci(s,2z0) = 0 for all i (by our convention that 0/0 = 0), which means that s cannot
be in Tz,. Thus, if s € Tz,, we have ¥7_, Wj(s, 20)Y;(s) > 0, so that ¥7L, ci(s, 20) = 1.
Therefore, if s € Tz,, then %, ¢i(s, 20) Zi(s) and iy ci(s, 20)(Zi(s) — =1 €5 (s 20)2Z;(s))?
represent the weighted mean and weighted variance of the Z;(s)’s. For the case where
the covariate is multidimensional, if s € Tz,, then Z*(s)'e(s) = L, ci(s, 20)Zi(s) and
Z*(s) P()Z°(5) = Yoy ci(s, 20) Zi(3)Zi(5) — (Sl ci(5, 20) Zi()) (Ler ci(5, 20)Zi(5))
are the weighted mean and weighted covariance matrix of Z1(s),. .., Zx(s).

The main results of this section are proved under the following two sets of conditions.
Condition A is needed for the results pertaining to the estimators of the conditional cu-
mulative hazard function and the conditional survival function, and Condition B is needed
to obtain the asymptotics for estimators of the conditional hazard function. Although it
would seem at first sight that these conditions are forbidding and unintuitive, in fact this
is not the case, and in Section 4 we give relatively straightforward verification that the
conditions are satisfied by the k-NN and kernel estimates. The limits in Conditions A
and B are taken as n — co.

CONDITION A
Let {a,}¢ be a sequence of positive numbers. These will be connected with the smoothing

parameter of the estimators; for example, when kernel estimators are used, a, will be taken
to be the bandwidth and when %-NN estimators are used, a, will be taken to be equal to

kn/n.
(Al) P(Tz, =[0,1]) — 1.

(A2) There exists a nonnegative measurable function g;(s, z) indexed by é > 0, and
defined on [0,1] x [0,1]?, such that

1 n
/(; l(nan)1+5 Y (s, zo) — gs(s, zo)Ids 20
=1

for § = 0 and for some é > 0.

(A3) v | 1132 s, 20)(als, Zi(s)) — als, ) Jds 2> 0.

(A4) ma, /0 1 Z; (s, 20) (s, Zi(s)) — (s, 20)) 'ds 0.
(A5) na,ci(s,20) = 0p(1) uniformly in s and :.

-1

(A6) \/TW"/: Jl(s)(Z‘(s)'c(s) - zo)l(Z'(s)'P(s)Z*(s)) (Z"(s)'c(s) - zo)ds £ 0.



CONDITION B
Let {b,}$° be the sequence of positive numbers used in (2.10) and assume that b, — 0. Let
{a,}{° be a sequence of positive numbers such that a, — 0.

(B1) P(Tz, =[0,1]) = 1

(B2) There exists a nonnegative measurable function gs(s, z) indexed by 6 > 0, and
defined on [0, 1] x [0, 1], such that for each t € [0, 1]

t4bn
oo, I

for 6 = 0 and some § > 0.

(B3) /5= /t e

BY [ S (s, 20) (als, Zi(s)) — als, 20)) ds = O,(82) for each ¢ € [0, 1].

t=bn 1—1

na,)* Zcf“”‘s(s,zo) - gs(s, zo)'ds = 0,(bn)
=1

o)(a(s, Z(s)) - a(s,zo))lds F,0 foreachte [0, 1].

:'_

(B5) nanci(s,z0) = Op(1) uniformly in s and 2.

+bn

(B6) naan/ Jl(.s)(Z"(s)'c(.s)—zo)l(Z"(s)lP(.s)Z"(s))“1 (Z'(s)'c(s)—-zo)ds .

bn

3.2 Main Theorems

We now state our main results. The proofs are given in Section 6. Let D[0,1] be the
standard Skorohod space on [0, 1].

Theorem 1 Let A,(t, 20) and Sn(t]|zo) be defined by (2.5) and (2.6), and let {a,}5° be a

sequence of positive numbers such that na, — oco. Then, under conditions (A1)-(A6)

Vs (An(, 20) = A(+, 20)) = U(,20) in D[0,1] (3.2)
and
V@ (Sa(- | z0) = S(- | 20)) == 5(-| 20)U(,20) in D[0,1], (3.3)

where U(-, z9) is a continuous Gaussian martingale with mean zero and variance function

v(t) = /: go(s, zo)a(s, zo)ds.

Theorem 2 Let a,(t, zo) be the estimator of the hazard function a(t, zo) defined by (2.10).
Assume the sequence {b,}$° of positive numbers appearing in (2.10) satisfies nbZt> — co
and nb2t® — 0. Let {a,}$° be a sequence of positive numbers such that a, ~ bi,. Suppose
also that a(t, zq) is twice differentiable with respect to £, that D = supygpq 1 |ex; (t, zo)l < o0,
and that go(t, 2o) is continuous in t € (0,1). Then, under conditions (B1)-(B6),

\/nagb, (an(t, 20) - oft, zo)) 2, N(0,02) for every t € (0,1),
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where

o? = go(t, z0)(2, 20) /_11 K*(u)du. (3.4)

4 Asymptotics for Nearest Neighbor and Kernel Es-
timates

In this section, we study large sample properties of the k-NN estimates and kernel estimates
defined in Section 2 for the important special case where

e The observations (N1,Y1,2Z1),--.,(Nn, Ya, Z5) are iid.
o The covariates Z;’s are time independent.

o Each predictable indicator process Y; has paths which are left continuous and of
bounded variation.

Theorems 3 and 4 state that the sufficient conditions (A) and (B) are satisfied when we
use k-NN and kernel weights, respectively, so that the conclusions of Theorems 1 and 2 are
satisfied when we use these weights. ‘

Since the weight functions used in (2.4) no longer depend on time, we shall use the
notation W;(z) instead of Wi(t,z). We note the trivial fact that if ¥; has finitely many
jumps (as will be the case in all the situations of interest to us), then Y; is of bounded
variation. The following regularity conditions are also assumed throughout this section.

(R1) For each s € [0, 1], a(s, 2) is differentiable with respect to z at 2o and the derivative
satisfies

{ SUPse(o,1] ||§—§-(s,zo)ll <
la(s, 2) — (s, 20) — (§2(5, 20)) (2 — 20)| < K1 |1z — 2ol[?

where g—;— = (562“?’ ey 53%)' and K, is a constant that is independent of s.

(R2) For each s, the subdensity function
o°
= —— < = .
$12,5) = gz P21 € 2, 1i6) =1 (1)

of the subdistribution function P(Z; < z, Yi(s) = 1) exists. In addition, there is
a constant M that is independent of s such that

|f(232,8) = f(21,5)| < M|z2 — z1]] (4-2)
for all (21, 5), (2z2,s) € [0,1]7 x [0,1].

We note that (4.2) implies that f(z,s) is bounded on R? x [0,1] since f(z,s) = 0 for

z ¢ [0,1].
Define
H(s,z) = P(Yi(s)=1]| Z; = z). (4.3)
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4.1 Asymptotics for k-NN Estimates

Theorem 3 Assume the setup described in the beginning of this section. Let Wi(z) be the
kernel weight function defined by (2.11) where w(-) is a bounded density function satisfying

(i) forl=1,...,p, wis a symmetric function of u; when all the other arguments are

fized.
(it) w(w) =0 for all ||uf| >1 (4-4)
(iii) w(cu) > w(u) forany0<c<1 andu € R". (4.5)

Assume that Z1,...,Z, have a common continuous density function f(z) that is positive
and continuvous at zo. Suppose further that the function H(s,z) defined in (4.3) is continu-

ous in z at 2o for each fized s and satisfies él[%)qu(s’ 20) > 0. Leta, = kn/n, b, = (k,,/n)%

and

g5(s,20) = (ﬁ—)H&/w”&(u)du. (4.6)

S, Zo)
(1) If kn — o© and kPt4/nt — 0, then na, — oo and (A1)-(A6) hold with g5 given.
by (4.6).

(2) IfkP+3/n3 — co and kP*5/n® — 0, then nb2*® — oo, nb2*> — 0, and (B1)-(B6) hold
with gs given by (4.6).

4.2 Asymptotics for Kernel Estimates

Theorem 4 Assume the setup described in the beginning of this section. Let Wi(z) be the
kernel weight function defined by (2.12) where w(-) is a bounded density function satisfying

() exljuji<r) < w(u) < cal(jjuy<-) for some positive constants r, ¢ and c; (4.7)
(ii) forl=1,...,p, w is a symmetric function of u; when all the other arguments are
fized.

Suppose that Z,...,Z, have a common density function f(z) that is positive and con-
tinuous at zo. Suppose further that the function H(s,z) defined in (4.3) is continuous at
z = zg for each fized s and satisfies inf,epo 1) H(s,20) > 0. Let an = hE, by = hn, and

1 2
%(%2) = FEG T / W (u)du. (4.8)

(1) If nh2 — co and nh?** — 0, then na, — oo and (A1)-(A6) hold with g5 given
by (4.8).

(2) If nh?*® — co and nh?*® — 0, then nb2*® — oo, nb2*® — 0, and (B1)-(B6) hold
with gs given by (4.8).
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4.3 Remarks on the Rate of Convergence

We now discuss the rate of convergence of our estimators and we restrict our comments
to the estimation of the cumulative hazard rates (Theorem 1 and Part (1) of Theorems 3
and 4); moreover, to keep the notation as simple as possible, we discuss only the case
p = 1. By “rate of convergence” we shall mean the sequence {(na,)~'/?} appearing in the
statement of Theorem 1. Clearly, we wish to take a, to be as big as possible, subject to
satisfying the conditions of the theorems. Our discussion is mostly in terms of the kernel
estimates (the situation for k-NN estimates is entirely analogous).

To properly understand our results, it is necessary to briefly review some facts concern-
ing the “ordinary” framework of nonparametric regression, i.e. the framework in which we
have independent pairs (Y}, X;) all having the same distribution as the generic pair (Y, X),
and we wish to estimate the regression function m(z) = E(Y | X = z). In that setting, the
bandwidth parameter h, of the kernel density estimator my,(z) controls the bias and the
variance of the estimator: increasing h, decreases the variance but increases the bias. To
choose the bandwidth optimally, in the sense of minimizing the mean squared error, one
wishes to balance the variance and the square of the bias, and this is done by choosing Ay
to be a certain constant times n~1/5. For this choice of h,, the variance and the square of
the bias are constant multiples of each other, i.e. neither is negligible relative to the other,
and the root mean squared error of the kernel regression estimator at a point is of the order
of n=%/5. (For an informal derivation of this see Section 3.1 of Hardle (1991), where some
further references are given.) For this reason, the asymptotic distribution of m,(z) has the
form

¥ (ma(z) — m(z)) = N (u(z), v(z)) (4.9)

where p(z) # 0. It is easy to see this heuristically; a formal proof is given in Section 4.2 of
Hardle (1990). It is very difficult to use a result such as (4.9) to form confidence intervals
for m(z) because the limiting mean p(z) is not zero and in general is hard to estimate.
To get a limiting distribution which is normal with a mean of 0, one needs to take the
bandwidth parameter to be of a smaller order than n~'/%; see Schuster (1972). For this
reason, a number of authors recommend “undersmoothing”, i.e. taking h, = o(n~1/%); see
Section 4.2 of Hardle (1990), and Sections 4.4 and 4.5 of Hall (1992).

The assumptions of Theorem 4 of the present paper require that A, = o(n~1/%), giving
a rate of convergence just slightly under n~%/°, and the remarks above indicate that. this
is the best rate that one can expect to achieve in weak convergence results of the form
(3.2) and (3.3). If one takes the optimal rate for mean squared error, one can expect to
get convergence to a Gaussian process with a nonzero mean. (See Stute (1986, p. 641)
for a result in this direction, in the context of the ordinary framework of nonparametric
regression.) The focus of the present paper is on weak convergence results. We note that
it is extremely unlikely that one would be able to calculate asymptotic expressions for the
mean squared errors of the estimates A,(¢,zo) and Sa(t] 20) in our level of generality.

As mentioned in Section 1, Dabrowska (1987) obtained weak convergence results of the
form (3.2) and (3.3) for estimates of the type proposed by Beran (1981), for the random
censorship model of survival analysis. Her assumptions on the bin width are the same as
ours, i.e. her results are valid as long as h, = o(n™/5).

Returning to the ordinary framework of nonparametric regression, if we use estimates
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obtained by binning the data, i.e. estimates of the histogram type, the asymptotics are
different. The optimal bin width h, is of the order of n~!/® (smaller than n~1/%), and
the asymptotic root mean squared error is of the order of n~1/3, A precise version of
this result in the context of density estimation is given in Diaconis and Freedman (1981).
Thus, if we consider the framework of regression in a counting process setting, then by
analogy, one does not expect to be able to do as well with histogram-type estimators as
with estimators formed by kernel methods. In fact, in their study of histogram versions
of Beran’s estimators in a counting process setting, McKeague and Utikal (1990) obtain
asymptotic results of the form (3.2) and (3.3) with h, = o(n~1/?), for an overall rate of
convergence just slightly under n=/4,

5 TIllustration on Survival in Diabetics Data

Here we apply the nonparametric regression method described in Section 2 to study survival
among insulin-dependent diabetics in Fyn County, Denmark, using data collected by Dr.
Anders Green from Odense, Denmark. This data set consists of 1499 patients who suffered
from insulin diabetes mellitus (“diabetes” for short) on July 1 1973. The data were obtained
by recording all insulin prescriptions in the National Health Service files for this county
during a five month period covering the above date, and subsequent check of each patient’s
medical record at the general practitioner and, when relevant, hospital. Each patient was
then followed from July 1 1973 until death, emigration, or January 1 1982, whichever came
first. On January 1 1982, there were 254 observed deaths among 783 male diabetics and
937 observed deaths among 716 female patients. Of interest is the mortality of diabetics,
taking into account the potential risk factors. Here we shall focus on the effect of age at
diabetes onset on the duration of disease. The date of onset of diabetes is defined to be
the first time the physician established the diagnosis.

We first note that this data set is right censored since some patients either were still
alive on January 1 1982 or had early emigration. It is also left-truncated because a diabetic
may be included in the followup study only if he or she was alive on July 1 1973. More
precisely, for patient ¢, let X; = survival time (the period from diabetes onset to death),
C: = time elapsed from diabetes onset to emigration or January 1 1982, 6 = I(X; £ Cy)
(the indicator function saying that a death is observed if §; = 1), and T; = length of the
period from diabetes onset to July 1 1973. Then a triple (T;, min{X;, C;}, ;) is observed
only if patient ¢ is included in the study and T; < X;. Nothing is observable for patient
i if T; > X,, i.e. if patient i died before July 1 1973. In addition, the age Z; at onset of
diabetes was recorded for each case 1.

Since the chance of survival may vary with sex, we do separate analyses for the male
and female groups. Let I; denote the index set for the female group. Assume that
(T;, min{ X;, Ci}, 6i, Z:;), ¢ € Iy are independent and identically distributed. Assume fur-
ther that the truncation time T; and the censoring time C; are conditionally independent
of the survival time X; and that T; < C; with conditional probability 1, given that Z; = z.
For each ¢ € I define

NP®) =I(T; < Xi <t, 6 =1)
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and

Y™ (t) = I(T; < t < min{X;, C;}).

Then (N™(t), i € I), t € [0,00) is a multivariate counting process with each N
having intensity process A (t) = Y, (¢)h(t| Z:), where

h(t]z)EAlitr{lo—L%P(t<X§t+At[X>t;Z=z)

is the conditional hazard function of the survival time X, given that Z = z. (See, e.g.
Section III.3 of Andersen et al.). Therefore this model falls into the counting process
framework described in Section 2. We assume the same probability model for the male
group.

Note that we are using date of first diagnosis of diabetes as the time origin since we are
interested in studying survival of a patient after diagnosis of diabetes. If one is interested
in comparing mortalities between patients of the same age, i.e. use date of birth as time
origin, then the survival time is defined to be X' = X + Z. It is not hard to see that no
additional computation is needed for obtaining the survival function of X ". (For fixed z,
the conditional survival function P(X > t|Z = z) is obtained by shifting the function
P(X > t|Z = z) to the right by z units). We also note that, given Z = z, a patient has
no risk of dying before age z, and hence one should not try to compare P(X 'St Z=2z)
and P(X' > t|Z = z,) for t < max{z1, 2}

The Fyn county diabetes data have been studied by many authors (see e.g. Green et
al. (1985) and Andersen et al. (1985)). Most authors focus on comparing mortalities and
thus use date of birth as time origin. For the reason described in the end of the previous
paragraph, Andersen et al. (1985) analyzed a subset of this data set that included those
who had diagnosis established before age 31 years, using models of the proportional hazards
type. It is intuitive that the effect of the covariate Z may depend on the time variable. For
instance, a patient who is diagnosed as having diabetes at age 30 is more likely to die after
40 years than after 20 years. But for a person who has diagnosis established at age 10, the
chance of dying after 40 years may not be very much different from that after 20 years.
So on intuitive grounds, one can question the appropriateness of the classical Cox (1972)
model. The data analysis in Andersen et al. (1985) confirms that this model does not give
a good fit to the data. They also showed that the hazards for female and male diabetics
are not proportional. The completely nonparametric regression method proposed in this
paper provides a natural alternative inference method for the Fyn county diabetes data.

For each group, we computed the estimate S,(t | z) (see (2.6)) of the conditional survival
function S(t|z) = P(X > t|Z = z) using the weight function given by (2.11) with
w(u) = 1I(=1 < u £ 1) and k = 30% x sample size. Figures 1 and 2 give plots of S(t]2)
as a function of ¢ with z = 5,10, 15, ..., 80 for female and male groups respectively. Figure 3
compares 95% simultaneous confidence bands of the conditional survival function S(t|z)
between female and male patients for z = 10,25,40 and 70. Figure 4 compares the plots
of the estimated median survival time versus the covariate z between the two sex groups.

As mentioned earlier, one expects to see the general trend that S(f]z) decreases as
z increases. Figures 1 and 2 reveal this trend for both sex groups, and also show that
this trend does not behave in a uniform way. The influence of z is much more significant

15



over some z-intervals than over others. For instance, the survival probabilities for female
diabetics drop dramatically as z goes from 30 to 45, but the changes that occur as z varies
from 5 to 30 are less significant. A similar conclusion can be drawn for male patients.
Figures 1 and 2 also indicate that there is an interaction between the influence of age
z at diagnosis and duration t of disease. For the female group, Figure 1(a) shows that
for z < 30, the influence of z is more significant over the range 20 < ¢t < 30 than it is
over the range t < 20 or 30 < t < 38. (This effect was also mentioned on page 925 of
Andersen et al. (1985) in which a slightly different time variable was used.) We do not
draw any conclusion for the range ¢ > 38 since the nonparametric estimator S,(t| z) is not
stable in its right tail. For 30 < z < 45 (Figure 1(b)), the influence of z is very significant
and the magnitude of this influence goes up dramatically as ¢ increases. For example,

Sn(10{30 . Sn(30]30 . .
Sn(19|45; = 222 = 1.18 compared to E(('éﬁlTs%. = 34 = 4.0. For 45 < 2 S 65 (Flgl:ll'e 1(c)),
the influence of z is also significant, but the interaction between z and t is more difficult to
discern. When z > 65 (Figure 1(d)), the influence of z is essentially insignificant. Similar
effects of z are found (Figure 2) for male diabetics except that the interaction between the

effects of z and ¢ is less serious.

Comparison of 95% confidence bands of conditional survival function S(-|z) between
female and male patients (Figure 3) shows that the survival probabilities of female diabetics
are consistently higher than those of male diabetics for the different levels of z. The same
conclusion is reached by looking at the estimated median plots (Figure 4) for the different
sexes.

6 Proofs of the Theorems

Proof of Theorem 1 It is helpful at this point to review the definitions given in (3.1).
Recall that A(t, 2o) is defined by (2.8). Let us write

Altzo)= [ * J(s)e(s) dN(s), (6.1)

where J(s) = I(X, ci(s, 2o0) # 0). Note that J(s) is the indicator that is required to be 1
when doing a weighted average in the definition of the Beran-type estimator (6.1), and J(s)
(defined right after (2.4)) is the indicator that is required to be 1 when doing a weighted
least squares fit. Define A(s) = (ha(s, 2o), - - - ha($, 20)) by

h(s) = P(s)2"(s)(2"(s) P(5)27()) ™ (20— Z"(s) e(s)), (6.2)

and also define ;
R™(t, z0) = /0 J(s)h(s) dN(s).

The key to proving Theorem 1 is to first establish the decomposition
- t ~ '
An(t, 20) = A(t, 20) + B™ (2, 20) + /o (J(s) = J(5))e(s) dN (s). (6.3)

Under Assumption (A1), the probability that J(s) is equal to J(s) for all s € [0,¢] tends
to 1 as n — oo, so that for the asymptotics, it is immaterial whether we use J or J. The
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term R(™(t, zo) represents the effect of doing a “local linear fit” instead of doing a “local
average”.

To obtain (6.3), we recall definitions (2.5), (2.4), the definition of U(s) following (2.3),

and write
An(t1z0) = (1,28)Bn(t,zo)
/ " T(5)(1, 20) (U() W5, 20)U(s)) " U(s) W(s, 20)dN(s)

[ 76)1,2) ((z-l(ls)'> Y(s)'W(s,zo)Y@)(lvZ'(S)))—l (Z"l(’s)')

X Y(s)'W(s,zo)dN(s)
= [96025) (( 57y C(s)(1,2°(5))) N ( z*l(ls)') C(s)dN(s)  (6:4)
= /ot J (S)(l’zé’)( (s; 'o(s) z*(c,e(;)c,*(zs;(;?'(s))—l (z*(cs()s')c,*(s)) dN(s)
_ /tJ()()dN +/ h(s)'dN(s)

= At z0) + / (s))e(s) AN (s) + R™(¢, zo).

To see the sixth equality in (6.4) consider first the case p = 1. In this case (suppressing the
argument s), the matrix inverse in the fifth line of (6.4), when it is a genuine inverse, may
be written as

( 1z )“1 3 1 z'cz~ -Z"¢c
Zc Z2°CZ T Z7cZ - Z%ccZ" \ —cZ" 1

1 z'CzZ* -Z%c
- zvpz\ -cZ* 1

Moreover, this inverse is a genuine inverse if and only if Z*(s) P(s)Z*(s) is invertible
(since p = 1 this is simply the condition that Z*(s)' P(s)Z*(s) # 0), so that J(s) =

1(Z*(s)' P(s)Z*(s) is invertible). We also have Ji(s) < J(s) from the definitions of J1(s)
and J(s). To see the sixth equality in (6.4) for the case p > 2, we use the formula

(A B) (A 11 A-1BE-1B'A™! —A-IBE-I)
B D) ~ ~-E-1B'A! E!

where E = D — B'A™!B. See e.g. Problem 2.7 on page 33 of Rao (1973).
To prove the first assertion of Theorem 1, we shall show that

(I) ,/na,.( A(-, 20) — 2 — U under (A1)-(A53), where U is defined in the state-

ment of Theorem 1 an
(I1) /A supseio,y |R™ (2, 20)| > 0 under (AL)~(AS).
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We first prove (I). Note that

t t n

Vg ( [ T()e(s)dN(s) = At 20)) = Vg ( [ T(5) 3 ei(s, z0)dNifs) - /ta(s,zo)ds)

0 i=1

= XM(t, 20) — X{M (¢, 20) + X$V(t, z0)

where
( Xf")(t,zo) = /na, / Xn:c, (s, 20)dM;(s)
XMt z0) = \/_/ 1 — J(s))a(s, z0)ds
X:g”)(t,zo) = nan/(; Zc, s,zo)( afs, Zi(s)) — a(s,zo))ds

and M;(-) = Ni(-) — f; Yi(s)a(s, Zi(s))ds (1 < ¢ < n) are orthogonal locally square inte-
grable martingales. By the version of Rebolledo’s martingale central limit theorem stated
as Theorem 1.2 in Andersen and Gill (1982), we have

xM( 2 / Z nanci(s, 20)dM;(s) £, U(-,2z0) in D[0,1] (6.5)
i=1
if following two conditions hold.

(i) For each t € [0, 1],

KXY = [ 3 (JOVama(s 20) Kls)als, Zi(s))ds

t
£, / go(s, zo)a(s, zo)ds;
0

oo
....

(i1) (Lindeberg Condition.) For each € >0,

[ 32 (s vmats, 20)) ¥ils)als, Zd) (J(s)Vimma(s, z0) > €)ds L0,

=1

Before going further, we note that for any three sets of functions di(s), zi(s), yi(s), ¢ =
1,...,n, we have

gd o] = '_1 (\/— dilad) (Vailu) < (gd;a:?)m(gd;yf)u ’

pointwise, by the Schwarz inequality (we have omitted the argument s). This implies that

n

/Ed |z::] < / (Zd;c >1/2(§diy,-2>1/2 < (/idw?)l/?(/‘zdiy?)l/?’ (6.6)

=] =1 i=1
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and in particular, if the functions are defined on [0, 1} and 3°7_; d; = 1, then
1.n 1.n 1/2
0 i=1 0 i=1
We now proceed to verify (i) and (ii). To check (i) we write
1
X, )0 = [ gols, z0)es, zo)ds]

< nay -/: J(s) > ci(s, zo) s)la 8, Z;(s)) —a(s,zg)lds

1

+ [ 7(5)] 32 nanck(s, 20)¥i(s)as, 20) — dols, zo)as, zo)|ds

+ [ (= T(aols, zo)als, z0)ds

< nbn(sgp mia‘xc;(s,zo))-/(;1 éc;(s,zo)la(s,zi(s)) —a(s,zo)ld.s

+ B/1 | Zn: na.c(s, z0) — go(s, zo)lds + /t(l — J(5))g0(s, z0)x(s, 20)ds

< nan(supmaxc, s,29)) {/ Zc, ( i(S))—a(S’zo))zds}

+ B/o lg na,ci(s, zo) — go(s, zo)lds + /0 (1 = J1(s))go(s, zo)a(s, zo)ds

[N

£,0

by (A5), (A4), (A2) and (A1), where the last inequality follows from (6.7). Hence (i) holds.
We now check the Lindeberg condition. For any € > 0, we have

/ ; Mq(s,zo))2ﬁ(s)a(s, Z,-(s))I(J(s)\/thﬂc,-(s,zo) > e)ds
< '[ nan i (s, zo)a(s, Zi(s)) (J(s)\/iﬁf als, zo))dd

1 n
< Znan)y " [ (nan)* S (s, 20)ds
0

§
€ i=1

L0

from (A2) and the assumption that na, — oo. Hence (i) holds. This proves (6.5).
It follows directly from (Al) that

1
sup |X{"(t, z0)| < v/naa / (1 = Ji(s))e(s, zo)ds = 0. (6.8)
tef0,1] 0
Moreover, (A3) implies that
sup | X{M(t, z0)| = 0. (6.9)
tef0,1]
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Therefore (I) follows from (6.3), (6.8), and (6.9).

We now prove (II). Let a,(s) = (als, Z4(s)),--- (s, Zn(s)))". Using the fact that
hi(s, z0)Yi(s) = hi(s, 2o) for each ¢, we see that

SRR (¢, 20) = \/—/ s) dN(s) = B (t, z0) + RE(t, z0) + RSt o),

where

R{M(t, 20) \/_/ Ji(s)h(s) an(s)ds
Rt zo) \/—/Jlsh Y dM (s)
RP(t,20) = \/nan / (J(s) = Ji(s))h(s) dN(s)

We shall show that sup,¢p ) |R (t zo)| £, 0forj =1,2 and 3. Consider R )(t zg). For

every s € Tz,, we have P(s)1 = (C(s) — ¢(s)e(s ) = ¢(s) — ¢(s) = 0, which implies that
h(s)'1 = 0. Thus,

IRM(, z0)| = IW/ Ji(s)h(s) (tn(s) = a(s, z0))ds|

< Jnan /0 {72(5)(z0 = 27(s)'e(s)) (2°(s) P(s)27(5))” 2°(s) P(s)?}
X {P(s)%(an(s) — la(s, zo) )}lds

( / ()P 27(5) (2°(5) P(6)27(5)) ™ (20 = Z7(s)'e(s)) | ds)

1 (6.10)
(/ “Pl’ a,(s) — la(s, z0) )” ds)

< (\/ﬁc_z:/o Jl(s) zo — Z'(s)'c(s)) (Z"(s)'P(s)Z"'(.‘s))_1 (zo — Z‘(s)'c(s))ds)

X (ﬁ/ﬂl (an(s) - la(s,zo))lC(s) (an(s) — la(s, zo))ds)i.

where the second inequality follows from (6.6), with d; = 1. Together with (A6) and (A4),
this implies that sup,go,) |R(1")(t, Zo)| £o.
We now consider R( )(t 2o). Since for every i, /nazJ1(s)hi(s) is a bounded predictable

process, we see that R( )(t zo) is a locally square integrable martingale. By the version of
Lenglart’s inequality stated as Theorem L1 in Andersen and Gill (1982), for each 7 > 0
and € > 0, we have

IN

V=

p( sup [R(t,20)] > ) < 75+ P((BF EP)W) > o)
t€{0,1

Now

(B, RSN (1) = nan / () 3" B (s, z0)Yils)als, Zi(s))ds

=1
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’

< Bra, [ " J1(s)h(s) h(s)ds

= Bra, [ 5i(5)(0 = Z°(5)'els) (Z7(s) P)Z7(5) " Z(5) P(s)
X P(s)Z’(s)(Z“(s)’P_(s)z*(s))'1 (20— 2Z7(s)'e(s))ds (6.11)

< B(nan max sup c;(s,zo)) /01 J1(s)(zo — Z'(s)'c(S))l

v s€{0,1}
x (2°(s) P(s)2*(5)) ™ (20— Z"(s)'c(s)) ds,

where in the last step we have used the fact that for any vector
z'P(s)P(s)z = (z'P(s)?)P(s)(P(s)?2)
(&' P(s)?)C(s)(P(s)? )
(ma,x sup ¢(s ))(:c’
( )=

1
2
1
2

IN A

s€0,1]

max sup ¢ (s,20))x P(s).

s€[0,1)

Hence (A3) and (A6) imply that sup,¢p ) IRgn)(t, 2o)| £, 0.

Finally, we see that sup,ejg ) IR (¢, zo)] £, 0 from (A1) and the fact that Ji(s) < J(s).
This proves (II), and completes the proof of the first part of Theorem 1.

The second part of Theorem 1 is a direct consequence of Part (1) together with the com-
pact differentiability of the product integral (see Theorem 8 of Gill and Johansen (1990))
and a functional version of §-method (see Theorem 3 of Gill (1989)), in which we make the
slight modification of replacing v/n by \/na..

Proof of Theorem 2 Consider the identity (6.3), and recall that under (B1), the prob-
ability that the third term on the right side of (6.3) is identically 0 over [0,1] tends to 1.
Fix ¢t in (0,1), define

&(t,zn) = / dS Zo)
ba b" (6.12)
t—s )
n —_ n)
(8, zg) = bn/o K ( - )R®™(ds, z0)
and write
1 n t—s
- - ° = A (n)
an(t, zO) - bn L K( bn )An(dS,zo) - a(tvz()) + Cn(tszo) +r (t,zo)

where the probability that sup,ep[¢a(u, 20)| equals 0 tends to 1. We will show that
(1) Vranba(&(t, zo) — alt, z0)) > N(0,0?), where o? is defined by (3.4); and
(II) Vnanbar(™)(t, 29) == 0.
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Theorem 2 then follows immediately.

We first prove (I). We have

a(t,z0) = El"/l J(f)K(t—-s) n (3, 20)AMi(8) = Galt, 2o)
b, Jo J(S)KZ b_n )th(svzo)a(S,Ze(s))ds.

-,
|
—

For large n we have

o= (L [ K(E2)afott

n

\/nanb (&(t Zo) - (X(t Zo)) X(n)(l) + Inl — 4n2 _ V nanann(t5z0)7

> ci(s, zo)dM;(s), T € [0, 1]

=1
n

XO)(r) = (nan/ba)® /o JoK(: b—ns)
);Q s,zo)( als, Zi(s)) — oft, zo))
)ds} (t, 20)

n

{ I = (nan/ba)? /:J(S)K(tl;s
Lo = (nan/bn)%{/ol(l—.f(s))f((tb

We shall show that

n

Iy 240 forj=1,% and X®™(1) -5 N(0,0}). (6.13)

Consider I,;. Let

Va = (nan/bn)%/ (s)K( )lilc,(s zo)( (5, Z:(s)) — of s,zo))lds

Vaz = (nan/b 3 A J(S)K(T) (a(s,zo) —a(t,zg))dsl

and note that
lInll S an + Vn2- (614)

Since K (u) vanishes outside the interval [—1,1] and M = sup, K (u) < o0, we have

G

K(t :s)f(s)ds <M /::" f(s)ds
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for every nonnegative function f. Hence, in (6.14), Vi £, 0 by (B3). Recalling that
D = sup,epo | (s, 2z0)|, we have for large n

Vip < (nan/bn)%\a;(t,zo)/olf{(tb“s)(s—t)ds\+D(nan/bn)%/01K(t
1 " - 1 t+bn
< (nan/bs)}|on(t, z0)B2 /_ 1uK(u)du.+MD(nan/bn)7 /t_b,, (s — t)2ds

= 0+O(\/nbp+5) — 0.

Therefore I,,; £,0. We also have I, £, 0 from (B1).
To that prove X(™(1) -2, N(0,0?), we apply Lemma A.4 of the Appendix to X(W(7) =
Jo $%, Hi(s, zo)dMi(s), 7 € [0,1], where

Hi(s, zo) = J(s)(nan/b)K( )c,(s z), i=1,...,n.

S

I_); )(3 —t)ds

Thus we need to check the following condltlons.

(1) (X, X™)(1) = of.
(2°) For each ¢ > 0, /01 in(s,zo)I(H;(s,ZO) > €)Yi(s)a(s, Zi(s))ds £o0.

To verify (1°), we write

(X, XYy (1) = /1 nan (tb )zn:c?(s,zo)a(s,z,-(s))ds

_ /J(s)nan (t - )écf(s,zo)(a(s,zi(s))—a(s,zo))ds

t—s

+./; J(s)Elsz( - )(nanzn;c?(s,zo)-—go(s,zo))a(s,zo)ds

1 1 ,t—s
+/0 J(S)EK ( b )go (s, z0)a(s, zo)ds
= Il+Iz+I3.

In the above expression,

h < [ () S ds zole(s Zi) - ols zo)lds

b n i=1

< et A +:;c (s, zo)|a(s, Zi(s)) — (s, zo)lds
< 1242 (na,,ma.xsupc,(s,zo /il:n;c.(s,Zo)Ia(s Z(s )) a(s, zo)|ds
= 0,(1/b, ){/ . gc,(s zo)(a(s Z(s)) —a(s,zo)) }I/Z{Aiin d.s}l/2

= 0,(1/8)(05(82) (25012 = O4(5:)
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where the first equality follows from (B5) and (6.6) and the second equality from (B4).
Also,

BM? /t+bn
t

. nan 3 (s, 20) — 9(s, 20)|ds = Op(1/b)op(ba) = 05(1)

—bn =1

|| <

(recall that B = sup |a(s, z)| < oc), and I £, 42 by (B1) and the assumption that
go(s, 20) and a(s, zo) are continuous in s. Therefore

(X, XN (1) = I + I + Is = go(t, zo)a(t, zo) / K*(u)du = o2,
We now prove (2°). For the § > 0 in (B2), we have
1 n
[) 3" Hi(s, zo)I(Hi(s, 20) > €)Yi(s)afs, Z(s))ds
i=1
< -1—/15:H-2+6(s z0)Yi(s)a(s, Zi(s))ds
= 66 0 par i s %«0/41 y 4y

=17 J(s)((na,,/bn)%)”‘sf{“&(%n—s) éc?'*’s(s, 20)Yi(s)a(s, Zi(s))ds

& Jo
B tbo &
< = ((nan)‘%b;l“g/z)(na,.)H"S b 3" (s, zo)ds
t=0n =1

= 0O ((nan)_% b;I_S/z) Op(bn)
= O,((mi")F)

where the second equality follows from (B2) and the assumption that g(s, zg) is continuous
in s. The last term converges to 0 in probability since nb2** — co. Therefore (6.13) holds

and we have proved Part (I).
We now prove (II). For (™ (t, zo) defined by (6.12), we have

S

nazb,r™(t, z0) = (nan/bn)% /: J(s)I((%-—)h(s)'dN(s)

(n)

= M+ (1) + 78

where
[ = (nan/b)F /0 1 Jl(s)K(t;S)h(s)'an(s)ds,
L) = (naaftn)} [ R6K(52))aM (), € 0,1)
krg'ﬂ = (nan/bn)? /OI(J(S)—Jl(s))K(tI;s)asdfh(s)'dN(s),

and we recall that a,(s) = (a(s, Z1(s)),. .., as, Zn(.é)))' and h(s) is defined by (6.2). We
shall show that r§"), rgn)(l) and r;(,") all converge to zero in probability. Using the fact that

24



for s € Tz, we have h(s)'1 = 0, we see that

) = B [ REK () (@nls) — Lals, z0))ds
< MYE [T R(6)|h(s) (@nls) - La(s, 20))ds
< MyE( [T 56 (- 26V ) (276 POZ ) (0 - 260 els))ds)

n —bn

X (_/::n (Oln(.s) - la(s,zo))
= 0,(/52) (o,,(m))l/2 (05(82))

= 0p(1) 0

[

1Y

! 2

C(s) (a,,(s) —la(s, zo)) ds)

L
2

where to obtain the second inequality we reason as we did to obtain (6.10), and to obtain
the second equality we use (B6) and (B4).

To prove that ri(1) £, 0, we apply Lenglart’s inequality to {”: For every 7 > 0 and
e>0

P(sup [H(r)] > ) < 5 + P(07, 7)) > ) (6.15)
We have
oA = 2 6K () L K zo¥ls)als, 2
< E e [ (o)) hls)ds
< C’lfz (nan max aselttg]c,-(s,zo)) /ti‘:" Jl(s)(zo - Z*(s)'c(s))'

, _1 , (6.16)
x (2°(s) P(s)27(s)) " (20— 27(s) c(s))ds

= 0,(1/ba)05(1)05(1/naxb2)
= o,(1/nb?*?) s 0.

To obtain the second inequality in (6.16) we reason as we did to obtain (6.11). The second

equality in (6.16) follows from (B5) and (B6), and the last assertion follows since nbt3 — oo

by assumption. Therefore, (1) £, 0 by (6.15) and (6.16). Finally, r{ £, 0 from (B1).

Therefore
Jnanbar® =M 4+ 7 {0(1) + M 2o

To prove Theorem 3, we shall first need to state some known results concerning k-NN
estimators in nonparametric regression and density estimation. These are stated as the
next two propositions.
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Proposition 6.1 Assume that (Y, X), (Y, X1,),...,(¥; X»,) are i.i.d. random vectors
taking values in R x IRP, and that X has a continuous density function g(z). For each
z € B, define m(z) = E(Y|X = ) and mq(2) = T, Wi(2)Yi, where Wi(z) =
w(%)/zglew(z—;i—[i), R, is the Euclidean distance from x to the kth closest of
X1,..., X, and w(:) is a bounded density function on IR’ satisfying Hu|[Pw(u) — 0

as ||u|] — oo and (4.5). Let o € RP such that g(zo) > 0. Assume that m(z) and
Var(Y | X = @) exist in a neighborhood of ®o. Assume further that m(z) is continuous
at o and Var(Y | X = @) is bounded in a neighborhood of ®o. Then, if kn — o0 and
kn/n— 0

ma(@o) —= m(o).
Proof This is Proposition 1 of Collomb (1980).

Proposition 6.2 Let X1,..., X, be i.i.d. RP-valued random vectors with bounded density
function g(z). For each ¢ € I, define gn(z) = ;}%;:Z?___l w(%) where R, is defined
as in Proposition 6.1 and w(-) is a bounded density function on IRP satisfying ({.4), (4.5)
and w(—u) = w(u) for all uw € RP. Then, if k, — co and k,/n — 0, we have

gn(x) = g(z)  at every continuity point T of g. (6.17)
When w(u) = ﬁ](”u[l < 1) with ¥(p) = fju1du = 21?2/ (pT'(p/2)), (6.17) is the

statement

kn

7(p)nRn

Proof Let # € R? and ¢ > 0. By Theorem 1.1 of Moore and Yackel (1977), there exist
7 > 0 and a finite set of positive numbers a, ..., anm such that |g-(x) — g(2)| > € implies
that either |fu(e, a;) — g(2)| > 1 or |ga(2, a;) —g(2)| > 7 for at least one j in ,...,M},
where x

{ fal,0) = ke T (557

n -X;
gn(mva) = nh,,l(a)p i=1 %I(Iﬁn(a) l < 1)a
ha(c) is determined by k,, = anh,(@)?, and the choice of 7 and ey,...,anm is uniform in
n, ¢, and the sample point w. This implies

RN g(®) at every continuity point x of g. (6.18)

M M
P(la(2) — g(2)] > &) <3 P(|fal=, @3) — 9(2)] > 1) + 3 Plgn(=, @3) = 9()| > 1) = 0,

J=1 j=1
where the convergence statement is a consequence of Theorem 3.1.2 of Rao (1983). Thus,
ga(2) = 9(=).
The following result is needed to prove Theorem 3.
Lemma 6.1 Under the conditions of Theorem 3, we have

(1) (n(lcﬂ/n)&;'i)z L ci(s, 20)(Zi — 20) = 0p(1)  uniformly in s € [0,1], if kn — 00
and k2t /n* — 0, '
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(2) (n(kn/n)m;%) T, ci(s,20)(Z: — zo) = 0,(1)  uniformly in s € [0,1], if kn — o0 and
kP+3/n% — 0.

Proof We only prove Part (1) of the lemma since the second part is proved in an identical

—i\ 1
way. Denote o, = (n(lcn/n)'T&)4 Then

S o) 7z = o = Wilz0)Yi(s)(Zi — zo)
Qan ; Ct( ’ 0)(Z: 0) n Z;';l Wj(Zo)}/j(S)
4 i Z; — F4) Zi — 29
—= Y w(Z )N (5 )
= i (6.19)

We first show that if &, — oo and k,/n — 0 then

sup |3 Wi(zo)Yi(s) — H(s, z0)| =+ 0, (6.20)

s€[0,1] " ;=1 :
where H(s, zo) is defined by (4.3). Foreachi =1,...,n, write ¥;(s) = Yi (8)—Yis(s), where
Yis(s) and Yj(s) are left-continuous nondecreasing random functions. By Proposition 6.1,
for each s € [0, 1]

| X Wi(z0)Yia(s) = Ha(s, 20)| = 0

i=1

| Y Wi20)Yia(s+) — Ha(s+, 20)| = 0

=1
where H,(s,2) = E(Yia(s)| Z1 = zo) and we have used the fact that E(Yi(s+)| 21 =
zo) = E(limio Y (5 + 1/k)| Z1 = 20) = limpco E(Y (s + 1/k) | Z, = 20) = Ha(s+, 2o)
by the Bounded Convergence Theorem. Thus, by Lemma A.3 stated in the Appendix,

sup | Y- Wi(z0)Yia(s) — Ha(s, 20)| == 0.

s€f0,1] " i=1

Similarly, we have

sup | 3" Wi(zo)Ya(s) - Hy(s, z0)| = 0
s€f0,1] " i=1
with Hy(s, zo) = E(Yis(s)| Z1 = zo). Therefore (6.20) holds since H(s, zo) = H,(s,20) —
Hb(‘s’zO)'
Note also that IIRE Yio w(-giﬁ:—z‘-’-) converges in probability to f(2o), by Proposition 6.2.
) Rgcall that I'?,,1 1s tpe Euclidean distance from 2z to the k,ﬂ" closest of Z1,...,2Z,. Let
(Z1,%(5));. -+ (Zka, Y, (8)) be the ky points among (Z1,Y1(8)); - . -, (Zn, Ya(s)) such that
Z; lies in the ball centered at zo and of radius R,. Then, for 4; C {z : ||z — zo|| £ 1}
(i=1,...,k) and y1,..., ¥k, € {0,1}, a direct calculation shows that the joint conditional
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distribution function P(Zl € Ai, f’i(s) = Y1y.. -, Z., € A, f/k"(s) = Y, | Bn = 1) is
given by

ﬁ P(Z,‘ € A;, Y;(S) = y,-)
i=1 G(T‘)
where G(r) = P(||Z; — zo|| £ r). So given R, = r, (Z1,Y1(8), - -+, (Z1n, Yia(s)) are
conditionally independent and identically distributed. This also implies tha,t the conditional
subdensity function of P(Z; < z, Yi(s) = 1| R, = r) is given by 7(;(—72, where f(z,s) is
defined by (4.1).

Fix | € {1,...,p}. For each s € [0,1], denote by 7a(s) the [** component of the
numerator of (6.19). Then since w vanishes outside the unit ball,

¥ Za — zo1
(s an-l Z ( ) (s)(——R—n—)

=1

We note that Iw(z £iz%o )Y;(s) (—ZJR'—"L)I is bounded by a constant, say C1, which is indepen-

dent of s. By Theorem 2 of Hoeffding (1963),

P(1a(s) = E(na(s) | Ba) > ) = E(P(nn(sﬁ—E(nn(s)an) > ¢ | Ba))
= exp{_m((-;—,}r)e(kn)cl) }

21-p)
o ()
Cl nRP

— 0 uniformly in s € [0,1],

where the convergence follows from (6.18) and the assumption that k, — co. Similarly
P(1n(s) = E(na(s) | Ra) < =€) = P( = 1(s) = E(=1a(s) | Ra) > €) =0
uniformly in s € {0,1]. Thus
1a(8) = E(a(s) | Ra) == 0 uniformly in s € [0,1]. (6.21)

Moreover,

[Era(s) | R = k(o) (w(Z 27 (Bi22) | m2)
] [T ) G
= k"a"R"’/w(u)uzf(zo + Rnu,s)dul

= ke a"R“‘/w(u Juir{ f(zo + Raw, s) — f(zo,s))du‘
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2
< M knan R

- nG(Rn)
k,a,R?

- O,,( nRh )

BBy
= OP(( = > ), uniformly in s € [0, 1]

nt

[l llulldu (by (42)

where to obtain the sixth line we have used the fact that asr — 0

G(r) = 7(p)f(zo)r” + (f(2) = f(z0))dz = 7(p) f(20)r® + o(r?), (6.22)

llz—2Zoli<r

and to obtain the last line we have used (6.18). Hence, if k2+*/n* — 0,

1(8) = (7n(5) = E(7a(s) | Ba)) + E(n(s) | Ra) = 0 uniformly in s € [0, 1]
Therefore
P4\
(nlkn/m)5")* 2 (s, 20)(Z: = 20) = 05(1).
=1
Proof of Theorem 3 Before checking Conditions (A) and (B), we first show that
% 3 cils, 20)(Zi = 20)(Z: — z0) - dia.g( / wPuw(u)dy, ..., / ugw(u)du) (6.23)

uniformly in s € [0,1] if k, — oo and kn/n — 0. For each I (1 <1< p)

-h% g ci(s, z0)(Zu — za)? = gm(zo)yi(s) ('Z“_Rtﬂﬂy/j_‘;wj(zo)Y}(S)
1 i Z; — F4)) Z,‘ — 201\ 2
— > w(Z=)( ) Yi(s)
_ e B (6.24)

Ly u(E2) YW a%)

T j=1 7=1

It follows from Proposition 6.2 and (6.20) that the denominator in (6.24) converges in
probability to f(zo)H(s, zo) = f(20,s) uniformly in s € [0,1]. We next show that the nu-
merator in (6.24) converges in probability to f(zo,s) [ w(u)u?du. Then it will immediately
follow that

-]% ;c,-(s, 20)(Zit — za))? /ufw(u)du uniformly in s € [0,1].

Denote by &,(s) the numerator in (6.24). Then since w vanishes outside the unit ball,

~

kn Z,'—Zo ~ Zi — Zo1\ 2
{n(s)=—]1?2w( —20)7,(s) (B2




where (Z1,%(s)),...,(Zk,, Ys.(s)) are the k, points among (Z1,Y1(8)), -+ (Zn, Ya(s))
such that Z; lies in the ball centered at zo and of radius R,. Recall that given R, = r,
(Z1,Y1(5))s. .+ (Zk,, Y., (s)) are conditionally independent and identically distributed with
the conditional subdensity function P(Z; < z, ¥i(s) = 1| R, =) given by %%—;l (see the
third paragraph in the proof of Lemma 6.1). Hence,

E((s)|Rs) = ;zk—}’z‘-gE(w(_Z;};:z_")ﬁ(s)(ZuR—ﬂzmy

_ k. z — zo\ r21 — zo\2 f(2,9)

= nRﬁ/w( R. )( IRn ) G
k., \

= ) / w(w)ulf(zo + Ruu, s)du

Ly fze,9) /w(u)u?du uniformly in s € [0, 1],

)

where the convergence statement follows from (6.22), (6.18), and (4.2). Moreover, as
in (6.21), we have

£n(s) — E(&n(s) | Rn) £,0 uniformly in s € [0,1].
Therefore

&a(s)

- (€n(s) = E(€a(s)| Ra)) + E(€n(s) | Bn) (6.25)

— f(zo,s)/w(u)u,zdu uniformly in s € [0,1].
For 1 # m (1 <, m < p), we have

L, 5 w( B i(s) (G (Bmgien

1 & Y4 )
_ZC;‘(S, ZO)(Zil_ZOI)(Zim_ZOm) = 7. . (626)
B S Lo w( B T, Wil20)Yi(s)

It follows from Proposition 6.2 and (6.20) that the denominator of (6.26) converges in
probability to f(zo)H(s, zo) uniformly in s € [0,1]. We need to show that the numerator
of (6.26) converges to zero in probability uniformly in s € [0,1], and this is accomplished
using the technique we used to prove the convergence of the numerator of (6.19) in the proof
of Lemma 6.1 (cf. also the proof of (6.25)). Thus the left hand side of (6.26) converges to
zero in probability uniformly in s € [0,1]. Therefore (6.23) holds.

Now we prove Part (1) of the theorem. We have

'%Z',PZ'(S) — _I%chi(s, 20)(Z; — z0)(Z; — zo)l - Riﬁ (,Z:; ci(s,20)(Z; — 20)>
X (;c;(s,zo)(zi - ZO)>’ (6.27)
_ -];—igq(s’zO)(Zi — 20)(Zi — 20) — i}z(op((n(kn/n)%)“%))z
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7%1-2_ i ci(s, 20)(Zi ~ 20)(Zi — %0) — 0 ((k”)-%)

n =1

i diag(/ufw(u)du,...,/uiw(u)du) uniformly in s € [0,1],

and each integral in the last line of (6.27) is positive. Here, the second equality follows
from Part (1) of Lemma 6.1, the third equality from (6.18), and the convergence statement
from (6.23). This implies (Al).

To verify (A2), it suffices to show that for a, = k./n and for every 6>0

51[1p] l(nan)l""S > c2(s, 20) — gs(s, z0)| 0. (6.28)
s€lo0,1 i=1

Let w(-) = w**(-)/ [ w***(u)du and Wi(zo) = @(—Z—'ﬁz—"-)/zg‘:l zb(gli-;ﬁ) Then since

#(+) is a density function that satisfies the regularity conditions needed to apply Proposi-
tions 6.1 and 6.2, we have

()™ Sty = S (B2 /(Su(Z2) "

n i=1 =1 . Xn: w(ZJ ~ ;:01)
- () [ ben]| B | fen
= (nRi’l J_;w( R, )> (6.29)
£, (7(p)f(z0))1+6H(s,zo)[fﬁéi)o)] /w2+6(u)du uniformly in s € [0, 1]

= ()P H(s, 20) [0 (w)du,

where the convergence of the factor in the first set of brackets in the second line of (6.29)
follows from the arguments leading to (6.20) and the convergence of the numerator and
denominator in the second set of brackets follows by Proposition 6.2. Thus,

n n n 24-6
RO sz = KL WY [ (L Wizo)¥i()

=1 =1 =1

146
P, (_H_‘V_(B)_).) / w**¥(u)du uniformly in s € [0, 1]

(37 Z0
and hence (6.28) holds.
By regularity condition (R1),

+ Op(R3)

|35 ci(s, 20) (a5, Z2) — als, )| < |<%§(S,Zo)>li&‘(3,zo)(zi—Zo)

i=1 i=1

= op((n(kn/n)%")_%> + O,,((kn/n)%) uniformly in s € [0, 1],
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where the last statement follows from Part (1) of Lemma 6.1 and (6.18). Thus

L

\/;;/01 lic;(s,zo)(a(s, Z;) - d(s,zo))lds =0, ((kﬁﬂ/n")#) +0, ((k,’;“/n‘*)zp) 2.0
i=1
when k?**/n* — 0. Therefore (A3) holds.

Since (R1) implies |a(s, 2)—af(s, 20)| < ||z—z0||(supse[0,1] H%(s,z@l“[fﬂlz—zd]) =
M ||z — zo|| with My = sup,eo1132(5, 20)|| + Killz — 2ol < oo,

\/—\Zlc, S, 20) ( (s,Z;) — afs, zo))2| < \/;;Mlilc;(s,zo)HZ;—onz
= VkOy(R))

= 0O, ((k,‘;"'4 /n4)%) uniformly in s € [0,1]
where the first equality follows from (6.23) and the second equality from (6.18). Together
with the assumption that k2*%/n* — 0, this implies (A4).

Now we check (A3). Note that for every  and s
VV;(ZQ)K(S) < k'"- Supu w(u) . (6.30)

e WHRTG) ™ 08 L 3 u(222) S W00

Furthermore, by Proposition 6.2 and (6.20), the right-hand side of (6.30) converges in
probability to y(p) supy w(u)/H(s, zo) uniformly in s € [0,1] and

¥(p) sup w(u)/H(s,zo) <~(p) sup w(u)/( inf H(s,zo)) < 0.

s€f0,1]

knCi(S, ZO) = kn

Therefore
knci(s, zo) = Op(1) uniformly in ¢ and s € [0, 1].

Finally, since
Vkadi(s)(27(s) e(s) - zo),(Z'(s)'P(s)Z'(s))_l (Z7(s) e(s) — 2o)

= 1) ()" (/) Ll 202 = 20)

X (-}%szs)'P(s)z*(s)) - ((n(kn/n)kf)% S s, 20)(Zi - zo)),

=1

!

(A6) immediately follows from (6.18), Part (1) of Lemma 6.1, and (6.27).

The proof of Part (2) of the theorem uses Part (2) of Lemma 6.1 and is completely
parallel to the proof of Part (1).

To prove Theorem 4, we use some well-known results from the areas of nonparametric
regression and density estimation. These are stated in the next two propositions.
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Proposition 6.3 Assume that (Y, X), (Y1, X1),...,(Yn, X4) are i.i.d. random vectors tak-
ing values in Rx IR?, that E|Y| < oo, and that X has a density function g(x). Let m(z) =

E(Y|X = &) and ma(2) = Ll Wi(2)Yi, where Wi(z) = w(‘—"-;—n&)/zg‘ﬂ w(—z—%i) and
w(+) is a density function satisfying (4.7). If hy — 0 and nh} — oo, then

ma(x) i m(z) at every continuity point & of g and m.

Proof The proof is identical to that of Theorem 2.1 of Devroye (1981) except that one
replaces the words “for almost all @(y)” with “for every continuity point @ of g(-) and

m(-)".
Proposition 6.4 Assume that Xi,... . X, are i.i.d. RP-valued random vectors with den-
sity function g(z). Let gn(z) = 'nleE Y1 w(ifgf-) where w(-) is a bounded density func-
tion such that lim)u|—e ||u|Pw(u) = 0 and w(—u) = w(u) for all w. If hn — 0 and
nh? — oo, then

gn(T) £, g(z) at every continuity point = of g.

Proof This is a direct consequence of Theorem 3.1.2 of Rao (1983).
The crucial result needed to prove Theorem 4 is the following.
Lemma 6.2 Under the conditions of Theorem 4, we have

(1) (nh2=HY4TL, ci(s, z0)(Z:i — 20) = 0,(1) uniformly in s € [0,1], if nh} — oo and

4 .
nh?t — 0;

9) (nhP*)2Y™ . ci(s, 20)(Zi — 20) = 0,(1) uniformly in s € [0,1], if nh} — oo and
n 1=1 P
nh?*t3 — 0.

Proof By applying Proposition 6.3, Lemma A.3 stated in the Appendix and the arguments
leading to (6.20), we see that if nhf, — oo and h, — 0, then

sup | Z: Wi(zo)Yi(s) — H(s, 20)| == 0. (6.31)
Write
s L W)= =)
2 alszo)(Zi = 20) T Wi (20)Y;(9)
lea (Zi—20 Z;—zo
L S e(Z )N (T
= = . (6.32)

L S u(E2) Y w00

i=1

Then, by (6.31) and Proposition 6.4, the denominator of (6.32) converges in probability to
F(z0)H(s, zo) uniformly in s € [0, 1]. Next we show that the numerator of (6.32) converges
in probability to zero uniformly in s € [0,1].
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Recall that Z; = (Zil,...,Z,-p)' and zg = (201,...,;:0,,)'. For fixed [ (1 <1 < p), let
ni(s8) = w(gﬁfﬂ)ﬁ(s) (Ei}.l.‘,",‘fﬂ) and &,(s) = L =%, &ni(s). Then the I component of the
numerator of (6.32) is &,(s). Recalling the definition of f(z,s) given in (4.1), note that

Z— 20 2] — 29

Bl = | [u(520) (Fg ) =9z

= |hn / w(w)w f(zo + hntt, s)dul

= Jhe [ wuu(f(zo + hat5) = f(z0:5))du]
< o [w(w)lul - |f(z0 4 hett, ) = f(z0,5)ldu
< BM / w(w)||u]|2du

where the last inequality follows from (4.2). Therefore E(£n1(s)) = O(h2) uniformly in
s € [0,1]. Moreover,

B = [wr () () fe iz
= hi? / wi(w)u} f(zo + hnus, s)du
= O(h*?) uniformly in s € [0,1].

Thus
BE(s) = Var(a(s) + (E&a(s))
= War(tu(s) + (Bem()) |
= L(B(e) - (Ben)) + (Bu()
~ L(ot?) - 0ht)) + O(ht) waitormly in s € 0.1]
Therefore E((nhg—4)%§,.(s))2 = 0(1/(nk2)}) + O((nh5+*)?) and E((nhﬁ“)%‘&n(s))z =

O(h2) + O(nh%*®) uniformly in s € [0,1]. The conclusions of both parts of the lemma now
follow immediately.

Proof of Theorem 4 Before checking Conditions (A) and (B), we first show that

%zﬂ:q(s,zo)(z,- — 20)(Zi — 2o) £, dia.g(/u%w(u)du,...,/ugw(u)du) (6.33)

n =1
uniformly in s € [0,1] if h, — 0 and nhZ — oo. For each / (1<1<p)

n

LYl ) -0 = iM(Zo)K(S)(Z“}; ) /S Wila%()

n =1 i=1 j=1
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= é:lw(Zih—nZo)(Zni;zoz)z}/;(s)/;w(Zj};zO)éwj(zo)yj(s)
/u?w(u)du{gm(zo)ﬁ(s)ﬁ%gﬁ}(zi}; ZO)}

= T Z; — Zo\ < - (6.34)

7 2 u(F) B W)

j=1

where ®(u) = ulw(u)/ [ ufw(u)dy, and Wi(zo) = w(gﬁﬂ)/zg‘ﬂzﬁ(gﬁﬂ). Note
that w(-) is a density function that satisfies the regularity conditions needed to apply
Propositions 6.3 and 6.4. By applying Proposition 6.4 and the arguments leading to (6.31)
to both numerator and denominator of (6.34), we see that

—hl—2 > ci(s, z0)(Zu — z01)? /u?w(u)du uniformly in s € [0,1].

n =1

For [ # m (1 <1, m < p), we have

1 n
1 & L T8, Wilz0)Yi(s)(Za — 201)(Zim — Zom)
—_ C;(S,Z)Zil—z)zim—zm)= = n
] ; o)( o)( 0 T Wi(20)Yi(s) (6.35)
1 & (Zi— 20 Zq — zor ( Zim — Zom
~ ';h_giﬂw( I )Y"(S)( h. )( ho )
- 1 & (Z;— 20\ ¢
— Y w(F) W% ()
n ;=1 n j:l

It follows from Proposition 6.4 and (6.31) that the denominator of (6.35) converges in
probability to f(zo)H (s,20). So one only needs to show that the numerator of (6.35)
converges in probability to 0. Let

1ui(9) = () (B (2 22), = eeeon

Then 7(s) = 2 iy 7ai(s) is the numerator in (6.35). Since

B = | [o(C) ) )z 8)dz|
| / w(w)urum f(Zo + hath; $)du]

/ w(w) ] - |f (20 + Bty 8) = F(20,9)ldw

[ wl)urn] - Milbwulldu - by (42)

< Mh, [w(w)|lu|du

VAN

IA

and

E(nii(s)) = _}:1? /w2(z ;nZO) (Zl ;ﬂzol)z (zm -’:nZOm)zf(z, s)dz
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w?(w)ulul f(zo + hau, s)du

C x|~

,(1/h2) uniformly in s € [0,1],

we have

E(ng(s)) = Var(nn(s)) + (Enn(s))z
= ;lz—Va.r(nnl(S)) + (ETInl (3))2
= e - (Bra9)") + (Bra)’

- %(O(l/h’,’,) — 0(h2)) + O(h2)

= O(1/nh%) + O(h;/n) + O(k7)
— 0 uniformly in s € [0,1]

if h, — 0 and nh? — co. Thus 7.(s) £, 0 uniformly in s € [0,1]. Hence (6.33) holds.

Now we prove Part (1) of the theorem. We have

hii(z.' PZ)s) = %;a(s 20)(Z:i - z0)(Z: — Zo) — %(; ei(s, 20)(Z: — z0)>
< (el =0)(Zi = 20)
- & gc,-(s, 20)(Zi — 20)(Z:i — 20) — zlz(op((nhfl—’*)—%)y (6.36)
= el 20)Zi = 2a)(Zi = z0) —op(nh)H)

i diag(/ufw(u)du,...,/uf,w(u)d’u.) uniformly in s € [0, 1],

each integral in the last line of (6.36) is positive. In (6.36), the first equality follows from
the fact that P(s)1 = 0, the second equality follows from Part (1) of Lemma 6.2, and the
convergence statement follows from (6.33). This implies (A1).

To verify (A2), we shall prove that for every 6 >0
sup |(na,.)”"S 3 (s, z0) — g5(s, zo)I 0. (6.37)
s€[0,1] =1
This will imply (A2) immediately.
Let %(-) = w?*(-)/ [ w**(u)du and Wi(zo) = w(Zc2) /z:;.;lw(-z-gﬁ). Then,
@(-) is a density function that satisfies the regularity conditions needed to apply Proposi-
tions 6.3 and 6.4. Thus,

(nhﬁ)l+62n:m2+6(Zo)K'(S) — (nhﬁ)1+6Zn:w2+5(_z_ihlﬁ)yz(s)/(zn:w(Zj};Zo))2+6

i=1 =1 n Jj=1
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1 n = Zz‘—zo
nhy Zj:l w( hn )

1 n Zz—zo
7RE i=1w( hm ))

£, H(S,Zo)[f—i—_(;(—(;%} /w2+6(u)du uniformly in s € [0, 1]
_ H(s,20) 245
= iz /w (u)du.
where the convergence of the factor in the first set of bracket follows by the arguments
leading to (6.31) and the convergence of the numerator and denominator in the second set
of bracket follows by Proposition 6.4. Therefore,

5T / w?t(u)du

- [;mzo)x(s)] (

(6.38)

n n n 24§
S e z0) = (RS W) [ (X Wizo)¥i))

= =1 =1
1 . .
- (F(zo)Hs, 20) /w2+5(u)du uniformly in s € [0, 1]

from (6.38) and (6.31), so that (6.37) holds.
By regularity condition (R1) and (6.33),

+ Op(hy)

IA

i=1

= 0 ((nhﬁ"‘)"%) + O,(h%) uniformly in s € [0,1],

| :Zlq(s, Zp) (a(s, Z;) — afs, zg))|

where the last step follows from (R1) and Part (1) of Lemma 6.2. Thus

\/;;E/: li ci(s, 2o) (a(s, Z;) — afs, zo)) lds = 0, ((nhfj"*)%) +0, ((nhf;*"‘)%) £50

=1
if nh2t* — 0. Therefore (A3) holds.
Since (R1) implies |a(s, 2) — (s, zo)| < ||z - zoll(supse[o,ll Hg%(s, zo)H + K|z — ZoH),

we have "%, ci(s, 20) (a(s, Z))—a(s, zo))2 < My T2, (s, 20)|| Zi—zol|? for some constant
M; > 0. Hence,

\/n—fa Zn:q(s,zo) (a(s, Z) - a(s,zo))2| < \/nhiM, ‘::c,-(s,zo)HZ,- — zo|?

=1 i=1
= /nhRO,(h2)
= 0O, ((nhﬁ""‘)%) uniformly in s € [0,1],

where the first equality is from (6.33). This together with the assumption nh2** — 0
implies that (A4) holds.
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Now we check (A5). Note that for every ¢ and s

nbci(s,z0) = PREWi(za)¥i(s)) 3 Ws(za)¥i(5)

=1
¢ gy Rty - (6.39)
]
sz( = ) S W;(20)Y;(s)
nj=1 n 7=1

Furthermore, by Proposition 6.4 and (6.31), the right-hand side of (6.39) converges in
probability to sup, w(u)/{f(z0)H(s,%0)} uniformly in s € {0, 1] and

sup w(u) /{f(z0) H(s, z0)} < supw(w)/(f(z0) inf H(s,20)) < co.
Therefore
nh?ci(s, zo) = Op(1) uniformly in ¢ and s € [0, 1]
as desired.

Finally, we show that (A6) holds. By Part (1) of Lemma 6.2 and (6.36)

-1

nay() (2°(5) e(s) = 20) (Z(s) P(9)Z7(s)) (27(s)'els) ~ 20)
= RO} Y als, zo)(Zi - 20)) (5527 P(5)27(6)

=1

-1

x ((nh2=% Y eils, 20)(Z: — 20))
i=1
£, 0 uniformly in s € [0,1].

This gives (A6).

The proof of Part (2) of the theorem uses Part (2) of Lemma 6.2 and is completely
parallel to the proof of Part (1).

Appendix

Lemma A.3 Assume that fi, fa, ... is a sequence of left-continuous nondecreasing random
functions on [0,1] such that for every t € [0,1]

{ falt) 2 (1),
Falt4) = falt=) = f(4) = f(2-),

where f is a left-continuous nondecreasing deterministic function. Then

sup |fa(t) = ()] 250 asn— .
tef0,1]
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Proof Lemma A.3 is a standard result. To prove it, we need only show that for any
subsequence of {n} there exists a further subsequence along which

sup |fa(t) = f(t)| =0,

te[0,1]

and this is done by arguing exactly as in the proof of Theorem 3.5.1 of Chung (1974).
Lemma A.4 Forn = 1,2,... let N be a multivariate counting process with n compo-

nents and intensity process A™. Let H™ be a 1 x n vector of locally bounded predictable
processes. Define locally square integrable martingales by

i n
W)= [ 30 HP({N(s) — X7 (s)ds}.
0 i=1
Suppose that
1 n
(i) forall ¢ >0, / S HM () I(H® ()] > A" (s)ds - 0,
0

i=1
1 n
@) [ L H N (s)ds L o,
=1

Then
w(1) -2, N(0,6%) asn — co.

Proof We note that conditions (L,) and (12) in Corollary 2 of Liptser and Shiryayev (1980)
reduce to (i) and (i) under the setup of Lemma A.4. So Lemma A .4 follows immediately
from Remark 1 of Liptser and Shiryayev (1980).

Acknowledgements

We are very grateful to Dr. Anders Green for providing the Fyn diabetes data. We also
thank Per Kragh Andersen for facilitating the transfer of the data.

References

Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Ann.
Statist. 6 T01-726.

Aalen, O. O. (1980). A model for nonparametric regression analysis of counting processes.
Lecture Notes in Statistics 2 1-25, Springer-Verlag, New York.

Andersen, P. K., Borch-Johnsen, K., Deckert, T., Green, A., Hougaard, P., Keiding, N.
and Kreiner, S. (1985)). A Cox regression model for the relative mortality and its
applications to diabetes mellitus survival data. Biometrics 41 921-932.

Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based
on Counting Processes. Springer-Verlag, New York.

39



Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A
large sample study. Ann. Statist. 10 1100-1120.

Beran, R. (1981). Nonparametric regression with randomly censored survival data. Tech-
nical Report, Dept. Statist., Univ. California, Berkeley.

Chambers, J. and Hastie T. (1991). Statistical Models in S. Wadsworth and Brooks, Pacific

Grove, California.

Chung, K. L. (1974). A Course in Probability Theory. Second Edition, Academic Press,
New York.

Collomb, G. (1980). Estimation de la regression par la méthode des k points les plus
proches avec noyau: quelques propriétés de convergence ponctuelle. Lecture Notes in
Mathematics 821 159-175, Springer-Verlag, New York.

Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist.
Soc. Ser. B 34 187-220.

Dabrowska, D. M. (1987). Nonparametric regression with censored survival time data.
Scand. J. Statist. 14 181-197.

Devroye, L. (1981). On the almost everywhere convergence of nonparametric regression
function estimates. Ann. Statist. 9 1310-1319.

Diaconis, P. and Freedman, D. (1981). On the histogram as a density estimator: L, theory.
7. Wahrscheinlichkeitstheorie Verw. Gebiete 57 453-476.

Gill, R. D. (1989). Non- and semi-parametric maximum likelihood estimators and the von
Mises method (Part 1). Scand. J. Statist. 16 97-128.

Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view towards
application in survival analysis. Ann. Statist. 18 1501-1535.

Green, A., Borch-Johnsen, K., Andersen, P. K., Hougaard, P., Keiding, N., Kreiner, 3.
and Deckert, T. (1985). The relative mortality of IDDM in Denmark 1933-1982. Dia-
betologia 28 339-342.

Hall, P. (1992). The Bootstrap and Edgeworth Expansions. Springer-Verlag, New York.

Hardle, W. (1990). Applied Nonparametric Regression. Cambridge University Press, Cam-
bridge.

Hardle, W. (1991). Smoothing Techniques with Implementation in S. Springer-Verlag, New
York.

Hastie, T. and Tibshirani, R. (1990a). Generalized Additive Models. Chapman and Hall,
New York.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc. 58 13-30.

Liptser, R. SH. and Shiryayev, A. N. (1980). A functional central limit theorem for semi-

40



martingales. Theor. Probab. Appl. 25 667-688.

McKeague, I. W. and Utikal, K. J. (1990). Inference for a nonlinear counting process
regression model. Ann. Statist. 18 1172-1187.

McKeague, I. W. and Utikal, K. J. (1991). Goodness-of-fit tests for additive hazards and
proportional hazards models. Scand. J. Statist. 18 177-195.

Moore, D. S. and Yackel, J. W. (1977). Consistency properties of nearest neighbor density
function estimators. Ann. Statist. 5 143-154.

Peterson, A. V. Jr. (1977). Expressing the Kaplan-Meier estimator as a function of empir-
ical survival functions. J. Amer. Statist. Assoc. 72, 854-858.

Rao, B. L. S. Prakasa (1983). Nonparametric Functional Estimation. Academic Press,
New York.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.

Schuster, E. (1972). Joint asymptotic distribution of the estimated regression function at
a finite number of distinct points. Ann. Math. Statist. 43 84-88.

Stute, W. (1986). Conditional empirical processes. Ann. Statist. 14 638-647.

41



0S oY 0e 0c ot 0 - 09 oy 0g 02 1] 0

80 90 ¥0 20 00
(z=zh<X)d=(zl)u"s

o't

80 90 ¥0 20 00

(z=zhi<x)d=(zu™s

ot

o N -
o — TN
TN
o @ NN
| *, WoN
3 (/// /, RN
= L |
o & A ,./. "y
B O\ EN
3 g9=z --- AR / TN
08=2 —-— L o X 09=Z - \ SN
GL=Z ------ = §§=2 --— N\ RN
0L =2 o M 0§=2 -— Ny G
G9=2 -—-- ® Sh=2 —— ,IKL- 0\
AJ.H,....._
= (i
o
(p)1 2nB14 (0)1 eunbig
} _ }
0S ov 0g 02 o1 0 0S oY (1] 02 ] 0
o
o @
2
o |
T
Ly
&5 &
N
o &
8 S’
o
(a)1 ainbiy (e)1 aunBig

(se1aqel(] Jo sisoubeiq 1e aby ay) sI z a1aym)
sonagelp ajewa 104 (z[})u S suoljound |BAIAING [BUOIIPUOY) pajewisy



0S ov o€ 02 ol
08=z2 —-—
mﬁ E 7 A
0L =2
G9=z ---
(p)2 @b
}

0s oY 0e 0c ot

(g)g anbid

g0 90 v¥0 20 00

ot

80 90 v0 <0 00

ot

u's

(zh)

Zh<x)d

(z=

u's

(zIv)

Zh<x)d

(z=

}
0S ov o 02 ol 0
— I;ﬂaﬂ.llﬂldf.mmﬁ-/uﬂll. -
TNINN N,
NN,

f{/-/ /t... “ N I-.l
g9=2z .—-- /J///. ../...l
09=2 - /,_v/f/ \
6g=2 --— R
0§ =2 -— e
=2 —— A

(0)g @nbiy
!
0

0s oy oe

0c

oi

()2 2nBid4

(sejaqei( Jo sisoube|q e 8by 8y} sl z 918UM)
sonaqelq e 04 (z|)u™S suoiound [BAIANS [BUOHIPUOD palewiSS

g0 90 ¥0 20 00

(z=zh<x)d=(zl)u"s

ol

80 90 v0 20 00
(z=zh<x)d=(zZu"S

0l



0.8

0.4

0.0

0.8

0.4

0.0

Figure 3: 95% Confidence Bands for Conditional Survival Functions S(t|z)
(Where z Is the Age at Diagnosis of Diabetes)
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