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ABSTRACT

A new criterion for sequential testing, the conditional generalized probability likelihood
ratio sequential (GCPLRS), is introduced for the closed sequential tests of composite hy-
potheses. Compared with fixed sampling size test rule, equally powerful sequential test rule
improves efficiency by reducing expected sampling size, but its maximum sampling size is
usually substantially greater than the size of fixed sampling size test. For instance, the max-
imum sampling size for Wald’s PLRS test rule is infinity. An important feature of this new
criterion is that, the maximum sampling size of sequential test rule applying this criterion
is about the same as the size of equally powerful fixed sampling size test rule, while its
efficiency in term of expected sampling size is close to the efficiency of Wald’s PLRS test
rule.

For practical purpose, the GCPLRS criterion is modified according to each family, for
families of parametric distributions. In this paper, modified versions of GCPLRS criterion
for several parametric families are given. GCPLRS procedures for various tests (one-sided
test, two-sided test, group sequential sampling test) and estimation are scrutinized. In the
case of sampling from dichotomous distribution, an approximation formula for absorption
probabilities of random bridge on GCPLRS boundaries is given for easy computation of

deflection factors which is critical for design of GCPLRS procedures.

Key Words and Phrases: generalized conditional probability likelihood ratio; GCPLRS; PLRS;

sequential test; sequential estimation.
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1 Introduction

Sequential analysis, as a method of statistical inference motivated by the urgent need of
improving efficiency of industrial inspections in the World War II, was introduced in early 40
this century. Early theoretic work in this field was laid down as Wald’s probability likelihood
ratio sequential (PLRS) test (see Wald(1947)) and various versions of its modifications.

It is well known that Wald’s PLRS test has an open end which causes very large variance
of expected sampling size, thus is unpractical for many testing practices in which maximum
sampling size is an important factor for design of tests. Various modifications of Wald’s PLRS
had been made to make up this deficiency by authors such as Bross(1952), Armitage(1957),
Spicer(1962), Alling(1966), Choi(1968), Breslow(1970) and etc..

In all those modifications, the continuous region for Wald’s PLRS which is usually
bounded by two parallel lines with an open end, was truncated and reshaped by some straight
lines or curves. “As Armitage(1957) remarked, once the classical open type of scheme is
abandoned the range of possible tests becomes embarrassingly wide”(see Spicer(1962)). In
all those modifications, maximum sampling size is still substantially greater than the size of
equally powerful fixed sampling size test rule. In application, maximum sampling size for
sequential test is often an important constraint for test design, e.g. the availability of ex-
perimental material or limit of time for experiment. A question arises that, “How to design
a rule which is efficient in terms of expected sampling size as well as in terms of maximum
sampling size”. Obviously, any test rule having maximum sampling size less than m should
be less powerful than the fixed sampling size test of size m.

To answer above question, this paper introduces a new criterion for sequential tests of
composite hypotheses. This criterion is based on a new concept which is different from the
concept Wald’s PLRS test is based on. This criterion is promising for its efficiency in terms
of maximum sampling size as well as expected sampling size. The sequential test derived
with this criterion has maximum sampling size which is same as the size of equally powerful
fixed sampling size test rule. The power function of this test is about same as the power
function of the fixed sampling size test. For the purpose of easy implementation of test,
this criterion is modified according to each family of parametric distributions for different
families. Modifications make implementation much easier while keeping the merits of the

original criterion.



2 GCPLRS: A New Criterion for Sequential Test

We introduce a new criterion, GCPLRS, for closed sequential tests of composite hypotheses
for (one dimension in this paper) parametric distributions. The general idea of GCPLRS
test procedure is that, first design a fixed sampling size test of size m, then change it into a
closed sequential test (which has maximum sampling size m) to improve efficiency (in term

of reducing expected sampling size) while keeping the power function (almost) unchanged.

2.1 An Introductive Example

Let X; = 1,2, iiid P(X; = 1) = Py(X; = 0) = 1 — p. To test hypotheses Hp : p < z
Hi : p > %, we first consider fixed sampling size test. Suppose it is required that significance
level o < 0.05, and testing power 8 > 0.90 to reject any p > %. The appropriate sampling size

and critical value are m = 38 and sp = 25. Denote this test rule as §p and let S, = 37_; Xi.

The power function Bs,(p) = P,(Sss > 25) is increasing in p, thus

1
max fs(p) = B, <§) — 0.0365 < 0.05,
p<3

min s (p) = Bs, (%) — 0.929 > 0.90.
P23

Any test procedure, either fixed sampling size or sequential, may be interpreted as a random
path hits (or passes over) some barrier sets. Let S = ((1,51),(2,52), ) be a random path
from dichotomy population, where S, = Y%, X;. We may imagine that sampling is ever
going, thus random path S is observable, and we make decision for hypotheses test after early

part of S is seen. A rule for testing above hypotheses should be:

accept Hp if S hits B~ before hits B;
accept Hi if S hits B* before hits B™;

where B~ and B1 are some two barrier sets. For example, the fixed sampling size test rule

6o above has two barrier sets

BE ={(387.7) j=07"'a24},
Bg’={(38,j): j=25,---,38}.

Next we consider a sequential test rule §; for same hypotheses. Suppose barrier sets for
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6; are

By ={(i,j): j=i—14 for 14 <i< 38},
Bf ={(i,j): j =30 for 25 <i < 38}.

Clearly as shown in Fig 1, once S goes across j = 25 at step n (< m), it can not go down
to hit By; once S goes right across j = i — 14 for i < m, it can not go up to hit B} at step
m. Therefore S hits By before hits B iff S hits By before hits B}. The power functions

for rules 8y and 6, are ezactly same because

:B5o(p) = PP(S38 2 25)
= P,(S hits Bf before hits By)
= P,(§ hits Bf before hits B)
= o). M)

Let Ty and T be sampling sizes needed for making decision in §p and &; respectively. It is
clear that E,T; < E, Ty (To = m). Hence rule §; is better (more efficient) than rule 6.

We consider another sequential test rule §;. Suppose B; and BY, as shown in Figure 1,
are barrier sets for 6,. B; and B} are constructed such that the probability that S hits By
is very small given S, > so; the probability that S hits B is very small given S,, < so.

Hence power functions for rule é; and rule §y are about same because

Bs,(p) = P,o(8 hits B before hits By)
~ Pp(g hits B} before hits B3)
= :352 (p) (2)

Let T; be sampling size needed for making decision in 6é,, clearly E,T> < E,T;. Hence 8, is
better (more efficient) than &; if the tiny difference between fs,(p) and 85 (p) are ignored.

Comparison of rules 8, 61, 65 illustrated in Fig 1 clearly indicates 8, is superior to & and é;.

2.2 Criterion of GCPLRS

In example in Section 2.1, the rules é;, 6; are in fact GCPLRS test procedures (with different
deflection factors) for one-sided hypotheses Hy : @ < 6y v.s. Hy : 8 > 6o. In general, a
GCPLRS test procedure is acquired in two steps as follow.
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First Step: To design a fixed sampling size test (denoted as &). For any test, experi-
menter has one’s own requirement for sensitivity of test (in terms of significance level for
null hypotheses, rejection power for alternative), under the restrictions of time and costs
for experiment (in terms of sampling size, expected sampling size or maximum sampling
size). Suppose after the overall consideration of these factors, experimenter has decided the

sampling size m and critical value so for the fixed sampling size test. This rule & is:

accept Hy if S, < so;
accept Hy if Sy, > so;

where S, = S,.(Xy,- -+, X,) is sufficient for 8. Without loss of generality, assuming for any
s and n, Py(S, > s) is nonincreasing in 4.
Second Step: To design a sequential test rule (denoted as §) which satisfies two requirements:
1. B5(0) ~ Bs,(0);
2. Eg¢Ts 1s smaller than m as much as possible;
where f5,(0) and fB5(0) are power functions for rules 8y and 8, and T} is sampling size for 6.
Assume B~ and BY are barrier sets for random path S. B~ and B for § are obtained by
criterion of GCPLRS defined as below.

Definition 2.1 Assume S, is a sufficient statistics for 0 and EyS, = cnl for any n, where

c is some known positive constant (c is called incremental scale of {S,,n =1,2, }, in
usual case ¢ =1). The Generalized Conditional Probability Likelihood Ratio (GCPLR) for
Sn = s, given S, = {em, denoted by L(n,s;m,§), is defined as

maxy,>¢ P"(S, = s)

L(n, s;m,§) = (3)

maX,<¢ P7(S, = s)
where P"(Sn = 3) = P(Sn = slSm = ncm) and n = ]_,2, ce-,m.

P7(S, = s), the conditional probability of S, = s given S,, = ncm, doesn’t depend on 4
since S, is sufficient for §. Now we regard n as a new parameter, and {P7(-), n € A} are

probability measures for a family of random bridges
{8m = (81,1 5m) : S = nem, n € A} (4)

where A is an appropriate set (e.g. A = (—o00,00), or A = {all integers}). Assume

g(n) = P(S, = s) is increasing for 7 < = and decreasing for 7 > £ (this is true for



many distributions). Then we have

(3)

max P"(S, = s)
n>¢

Pre(S,=3s) £>¢,
Pf(Sn = 3) ,f_c < f;
P{(S.=3) Z>¢,

P(S,=s5) <& (6)

n<

max P'(S,=3s) = {
Hence

L(n,s;m,f) = P{(Sp=s 2 <L 6 (7)

P#E Sn=s s
{ S £>¢,

Pnc(Sp=s) mnc —
In (5), (6) and (7), notation P"(S, = s) is abused to denote density if S, is continuously
distributed.

Definition 2.2 The GCPLRS Test rule é for testing Hy: 6 < 0 v.s. Hy : 0 > 6, is

accept Hy if S hits B} before hits By ;
accept Hy if § hits By before hits BY;

where

BfY = {(n,s5): s, = inf{s:log L(n,s;m,&) > a}}, (8)

a

By = {(n,sa): s =sup{s:log L(n,s;m,€) < —b}}. (9)

L(n,s;m,£) is GCPLR defined in (8) and a,b > 0.

Each GCPLRS test rule 4 is decided by operating parameters m, £, a and b. m is the
maximum sampling size for §, is same as the fixed size for §y. £ is the slope of center line for
GCPLRS boundary, £ = 2 in which s, is critical value for §. It is much harder to choose
a and b. If a and b are both large (enough), then power function of é is same as the one of
fixed sampling size test rule &y, but the expected sampling size is not reduced much from
m. Smaller are a and b, smaller is the expected sampling size for §. But if @ and b are too
small, the power function of § could be changed too much from that of 8. For GCPLRS
test, a and b should be as small as possible, but keep the power function of GCPLRS test

about same as the power function of corresponding fixed sampling size test.



3 DModifications of GCPLRS according to Distribu-
tions

Experimenter implementing GCPLRS test rule might find out that formula (8), (9) generat-
ing barrier sets B} and B; are not practical because they are not easily computable thus it
is hard to choose proper a and b. To avoid this difficulty, we modify GCPLRS, according to
each family, for families of parametric distributions. We will still call each modified version

the GCPLRS.
Definition 3.1 Assume that L(n,s;m,{) is GCPLR for parametric family {f5,0 € O} as

defined in (3). Let I(n,s;m, &) = =log L(n, s;m,¢) (or = L log L(n, s;m, ), it depends on
distribution). We call G(u,v;€) the “ratio function of {fs,0 € ©}” if

[(n,s;m,€) =~ { e (10)

where € is a parameter, u and v are two variables for G(u,v;§), c is a known incremental

scale for {fs,0 € O}.

We will see later, ratio function G(u,v;¢) is defined on 0 < u <1, —o0 < v < 00. If
h(v) = G(u,v; ) is monotone increasing for v < uf, monotone decreasing for v > uf (this is

usually true), then min, G(u,v;§) = G(u, &u; €).

Definition 3.2 Assume G(u,v;§) is the ratio function of {f5,0 € ©}. Then ¢} (u) is the
“upper boundary function of {fy,0 € ©}” for GCPLRS if it is an unique solution satisfying

(11)

{ Gy, o} (u); €) = q,
©F(u) > Eu;

@5 (u) is the “lower boundary function of {fs,0 € ©}” for GCPLRS if it is an unique solution
satisfying

{ G(u,py (u);€) = b, (12)
oy (u) < &u;

where 0 < a,b < 7, T is some positive constant or infinity.

In above definition, we have abused notation in (11) and (12) such that we denote G(u, vo; £) =
cif G(u,v;€) < c(or > ¢) for vo— € < v < vo and G(u,v;€) > ¢ (or < ¢) for vy < v < vy +¢.
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Definition 8.3 The upper boundary for GCPLRS, denoted by B}, is defined by
BY ={(n,a,)}r, where a,=mcp! (%) . (13)

The lower boundary for GCPLRS, denoted by By, is defined by

n

By ={(n,b.)} -, where b,=mcpy (E) . (14)

B} UB; is closed for random path S in the sense that S passes over BY UB; with probability
one. For testing Hy : 0 < 0 v.s. Hy : 0 > 0y, the GCPLRS test rule § is:

accept Hp if S passes over before B passes over Bj; (15)

accept Hy if § passes over before B passes over BY. (16)

We will derive modification of GCPLRS, according to each family, for several families of para-
metric distributions. The aim for each individual modification is to obtain ratio function
G(u,v;§), and to show existence of boundary functions ¢} and ¢; . For the families of bino-
mial distribution and hypergeometric distribution, there is detailed discussion in Xiong(1990)
about steps to derive G(u, v; ), properties of G(u,v;§), existence and properties of ¢} and
¢p . For other families which will be discussed later in this paper, steps to derive and to

investigate G(u, v; {) are about same thus omitted, only the results will be given.

3.1 For Binomial and Hypergeometric Distributions

To derive modification of GCPLRS for binomial distribution and hypergeometric distri-
bution, first we consider binomial distribution. Let {f,, 0 < p <1} be a family of mass
functions of binomial distribution B(k,p), where k is fixed and known. We will derive ratio
function G(u,v;¢) for this family.

Let X; ~ B(k,p) ii.d. forz=1,2,---. Suppose k is known and S, = Y%, X;. Then S,
~ B(nk,p); forn <m, 0 < s < ngmk

P"(S, =s) = P(S, =s|Sm =mkn)
nk\ {(m—n)k
(3)("11"7—3). (17)

()



where parameter n € {Z;,---, % 1}. Thus the GCPLR is,for 0 < £ < 1

mk?’ PR

(m—n)k
-
L(n, sym, f) = (n:rfr:,)k
maX,<¢ %"%?Eil
mkn

(mkn){(mk—mkn)!
_ maX,s¢ (mkn—3)!(mk(1—n)—nk+s)! (18)
- {(mkn)(mk—mkn)! ‘
maXy<e (mkn—s)(mk(1~n)—nk+s)!

Let I(n,s;m, k,§) = - log L(n, s;m, k,£), then

G(E,:2%;¢) = >¢,
_G(ﬁaﬁ;f) ﬁgga

l(n)s;ma k,é‘) ~ { (19)

where 0 < { <1 and for 0 < u < 1, max{0,u — 1 + ¢} < v < min{l — £, u}, let

E—v u—v
+(u—v)log——(1_£)u +

Glu,v36) = vlog o +(E—v)log 7=

1-¢é—u+vw
(1 =81 —u)’

for 0 < u <1, v <max{0,u—1+¢} or v > min{l — £, u}, let

+(1—¢—u+v)log (20)

Glu,vi€) = Elogg+(1 - §)log 7.

(21)

Since 22 = log% and ?;Tf = (5_—§1:)_u > 0, so G(u,v;€) is convex in v, min, G(u,v;¢) =
G(u,€u;€) = 0. Thus for 0 < a,b < flog% + (1—¢)log ﬁ, the upper boundary function
¢4 (-) exists such that G(u, o} (u);€) = a, @F(u) > fu; the lower boundary function ; (+)
exists such that G(u,p; (u);€) = b, ¢f(u) < éu. GCPLRS boundaries B} and Bj are
given by (13) and (14) in which ¢ = k.

Now we consider Hypergeometric distribution. Assume sampling without replacement
from a dichotomous population of size N, proportion of *defects” p, each time take k samples.
Let X; be the number of defects in the elements sampled at ith time, and S, = Y%, X;.
Then S, has hypergeometric distribution H (nk; pN, N); and conditioned on S,_;, X, has
hypergeometric distribution H (nk;pN —S,_1, N—n+1),forn=1,---, [%] Suppose m is a

positive integer smaller or equal than % Then for n <m, 0 < s < gmk
P"(S,=3s) = P(S,=s|Sn =mknp)

10



nk\ {(m-n)k
( L ) (mkn—s) . (22)

= mk )
mkn
1 mk—1

where parameter € {=¢, -+, 25,1}, We may see that conditional probability in (22)
is same as the one in (17) for binomial distribution. Thus the GCPLR, the ratio function
G(u,v; ), the GCPLRS boundary for hypergeometric distribution are exactly same as those

for binomial distribution because all of those are derived from the same P"(S, = s).

3.2 For Normal Distribution

Suppose {f,, —00<p<oo} is a family of normal density functions N(g,o?). Assume o2 is
fixed and known. We will derive modification of GCPLRS according to this distribution.

Let X; ~ N(p,0?) i.id. fori =1,2,--.. Suppose o2 is known and S, = 3", X;. Then
Sp ~ N(np,no?); for n <m

P"(S,=38) = P(S,=s|Sn =nmo)
_ 1 e-uz,.if_',%,f )o? (23)

\/27rn(1 — Lo

Thus the GCPLR is

L(n’ S; m’ 6) = !s—§n6!2 (24)
e_2n(1—%)c ;3; <
Let I(n, s;m, €) = & log L(n, s;m, €),
(_!_...l'_g)2 3
g —mo - >,
l(n,s;m,§) = 25_9___1 s ¢
(=28 s <&
22(1-%) ne —
G(Z, =, =S¢
- { (m nmasé‘) nsa € (25)
-G(Z,25¢8) =< &
where —co <€ <o00; for 0<u<1 and —co<v<oo
Glu,v;8) = L) (26)
wvis) = 2u(1 —u)'

11



. 8G - e 1 C£Y G : . .
Since $Z = JT?‘T) and 55 = Ty > 0, so G(u,v;§) is convex in v, min, G(u,v;{) =

G(u, £u; €) = 0. Thus for 0 < a,b < oo, by (11), (12) and (26), boundary functions are

ot (u) = tu+/2au(1 — u), (27)
o7 (u) = bu—2bu(l —w), (28)

where 0 < u < 1. GCPLRS boundaries are given by (13), (14) in which ¢ = 0. Thus we

have Bf = {(n,fna + 04/2bn(m — n) ’}:=1 and By = {(n, €no — o4/2bn(m — n) '}ll.

3.3 For Poisson Distributions

Let {fy,0<A<oo} be a family of density functions of poisson distribution P()). We will

derive G(u,v;§) for this parametric family.
Let X; ~ P(A) iid. fori=1,2,--- and S, = 3%, X;. Then S, ~ P(n)). For n < m,
0<s<gm

P"(S,=3) = P(S,=s|Sn =nm)
EETY e
s m m
Thus the GCPLR is

maxys¢ (") (1 — 2y

L(n, s; = .
(n, ;m,f) maXy<e (n;n)(l _ %)nm_s (30)
Let I(n,s;m,€) = Xlog L(n,s;m, ), then
slog g+ (E-2log ity 2>
l(n,s;m,€) =~ , ,
—{;log 25+(€_m)log (1_5)5} £ <¢
{ G(Z,%6) 2> 31)
G(E, 28 25§
where 0 < { < oo, for0<u<1, 0<v<¢§
Glu,vi6) = vlog T+ (€ = v)log (32)

12



for0<u<1,v¢[0,f let
G(u,v;§) = oo. (33)

Since 2 —v = log‘-l(e;l‘% and %;- = (_f:{v)—'v > 0, so G(u,v;€) is convex in v, min, G(u,v; ) =
G(u,€u;€) = 0. Thus for 0 < a,b < oo, the upper and lower boundary functions ¢} (-) and
@5 (+) are implicit functions given by (11) and (12). GCPLRS boundaries B} and B; are

given by (13) and (14) in which ¢ = 1.

3.4 For Exponential Distribution and Gamma Distribution

We derive modification of GCPLRS for Exponential distribution first, then generalize it to
Gamma distribution. Suppose {f),0< A< oo} is a family of density functions of exponential
distribution £(X).

Let X; ~ E(A) iid. for:=1,2,--- and S, = X, X;. Then S, ~ I'(n, ). For n < m,
0<s<p(m—1)

P"(S, =38) = P(Sp=35|Sn=n(m-1))
Dm) 5™} ((m = 1)y — )
P(m)(m—n)  ((m-Dgmt -

(34)

Thus the GCPLR is

n )m—n—l
T —
MaXy>¢ — T

L(n,s;m,§) = (35)

(.,I___'.n__l.)m—n—l

maXy<e —pm-1

Let I(n,s;m,£) = —L=log L(n, s;m, §), then

I(n,s;m,€) =

log£ + 725 log B + (1 — 727) log =22 it £>¢,
~{log¢ + Z27log BT + (1 2p)log FBL} it £<6;
— G(m 17 m— 1;6) if

—~G(== ) if

m—1"? m—l’

> &,

<& (36)

Sle 3w

where 0 < { < oo, for0<u<l, 0<v<{

G, v3€) = ulog 2 + (1~ u) log “{—_—)E @

13



for 0 <u<1,vé[0,£ let

G(u,v;€) = oo. (38)

Since &2 -;(—‘éf_%’, %Ei = ("_“22(2'52%_“)“ > 0, so G(u,v;£) is convex in v, min, G(u,v;§) =
G(u,€u; €) = 0. Thus for 0 < ¢,b < oo, the upper and lower boundary functions ¢} (-) and
@; (+) are implicit functions given by (11) and (12). GCPLRS boundaries B} and Bj are
given by (13) and (14), but in which a, = me} (#I)’ b, = myp, (m 1) forn=1,---,m-1
and a,, = b, = &(m —1).

Now we consider the family of Gamma distributions, {I'(p, ) : 0<p < 00,0< A< 00}.
Suppose p is known, ) is unknown. Let X; ~ I'(p,A) i.i.d. fori =1,2,--- and S, = Y%, X..

Then S, ~ I'(np,A). Suppose mp—1>0,forn <m, 0 < s < n(mp — 1)

PU(S,=3s) = P(S,=s5|Sn=n(mp—1))
_ P(mp) "7 !((mp— 1)y — s)mmir—1 (30)
I(np)T((m — n)p) ((mp — 1)p)me-1 '

Thus the GCPLR is

(1= g )P
maXy>¢ 7mp—T1

(40)

(,7_ _m;__l)(m—n)p—l *
maXn<e T

Let I(n,s;m,{) = mpl_l log L(n, s;m,£), then

G(=2E- ; if £>¢,
I(n,s;m,€) = { o merit) . >¢ (41)
G(mp 19 mp_lvg) if n S 67
where G(u,v;£) is given in (37) and (38). GCPLRS boundaries B} and Bj are given by
(13) and (14), but in which a, = (mp — 1)¢} (;’;;Ll) = (mp — 1)y} (#)

3.5 Boundaries for Shrunk Random Paths and Random Bridges

One of reasons for modifying GCPLRS is to make the test rule more conceptually visible.
We will illustrate the relations of ratio function G(u,v;€) (or boundary function ¢} and
©y ), boundaries B} and B; and random path S in a intuitive way.

In Figure 2, we illustrate GCPLRS boundary functions ¢} and ¢; which are implicit

functions of G(u,v;¢{) = a and G(u,v;§) = b, for families of distributions we have discussed

14



so far. In that graph, for all boundary functions of four families of distributions, we set

deflection factors a = b = 0.15, and set slope of centerline ¢ = 0.5.

Definition 3.4 A shrinkage transformation of graph with factors (#, mlc) is such that the
1

horizontal (time) axis shrinks with factor -- and the vertical (state) axis shrinks with factor

1

me”

Definition 8.5 Define shrunk random path

#=((52). 22,

Given %;' =1, define shrunk random bridge

i (5 2) o (B 22) o). @

Clearly under shrinkage transformation, we have one-to-one relations as follows:

5'(—)5'*; S'm«—)g,’;;
Bf « ¢t By & ;.

Under shrinkage transformation, ¢, ¢; are boundaries for shrunk random path S* which is

defined on time t = L, 2 ...: Shrunk random bridge 5* is defined on time t = L 2 ... 1,
m?’m n m?’m? )

Clearly boundary functions ¢} and ¢, are defined on [0,1]. Under this transformation, the
GCPLRS test rule 6 defined in Definition 2.2 should be

accept Hp if §* passes over 7T before passes over ¢j

accept Hy if S* passes over ¢, before passes over 7.

4 GCPLRS Test and Estimation Procedures

In this section, we will scrutinize GCPLRS procedures of sequential tests (one-sided and
two-sided) and sequential estimation. These procedures will be illustrated with examples in
dichotomous populations. For other distributions, procedures are essentially same.
Designing a GCPLRS test procedure for one-sided hypotheses is to construct an enclosed
boundary which are decided by operating paramenters m, £, a and b, where m is the maxi-
mum sampling size; £ is the slope of center line for GCPLRS boundary, or the cutoff values

at time ¢ = 1 assuming shrunk random path S* is the observation for the test; a and b are
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deflection factors determining the degrees that boundary functions ¢} (-), ¢; (-) deflect from
the center line v = {u. The GCPLRS test procedure for two-sided hypotheses is in fact to
construct two such enclosed boundaries. The GCPLRS estimation procedure is in fact to
construct a number of such enclosed boundaries. In this section, we will show how to choose
maximum sampling size m, GCPLRS boundary centerline slope £, deflection factors ¢ and
b for various GCPLRS testing and estimation procedures.

We assume through out this section, S, is the sufficient statistics of first n observations
for 0 such that FyS, = cnf (¢ known), and for any s and n, Py(S, > s) is nondecreasing in

6.

4.1 GCPLRS Test for One-Sided Hypotheses

Assume we are interested in testing one-sided hypotheses Hy : 0 < 0y v.s. Hy : 0 > 8.

One-Sided GCPLRS Test Procedure:

Step 1. Design a fixed sampling size test which satisfies the sensitivity requirement of test.
Determine sampling size m and critical value sq. If S, is discretely distributed, choose sq
be nonsupport of S,,.

Step 2. Design a sequential sampling test rule by using ratio function G(u, v;£) to generate
enclosed boundary. Determine operating parameters: m is the sampling size in Step I;
§ = 22 choose a and b as small as possible, but keep the power function of GCPLRS test

about same as the one of fixed sampling test rule.

Example 1. Suppose in a batch of products, the proportion of defects is p, and there are N
products in this batch. To test hypotheses Hq : p < 0.1 v.s. H; : p > 0.1, assume sensitivity

of test is required

max P,( reject Hy) = Py1( reject Hp) < 0.05, (44)
PSU.
n;ar; P,( reject Ho) = Poo( reject Hg) > 0.95. (45)
p2U.

Suppose N = 100, conduct a GCPLRS test, assume sampling one by one without replace-
ment.

Solution:

Step 1. Let S,, be the number of defects in m sampled products. Then S,, has hyperge-
ometric distribution H(m;pN, N). For this test, reject Hy iff S, > so. The power function

17



for this test is A(p) = Po(Sm = s0). We may determine m and so by solving equations

{ B(m) = cu, (46)
IB(p2) = i,
where p; = 0.1, a; = 0.05 and p; = 0.2, oz = 0.95. Since
S — mp so —2—mp
B(p) = ( ) (47)
= p) p)

by Central Limit Theorem, approximation of mm and so may be obtained by solving equations

(48)

30=—+01m+z095\/m m0.1(1 — 0.1),
Sg = + 0.2m + 20. 05\/m 0 2(1 02),

where z, is the ath quantile for standard normal distribution. Then one has m = 57.25 and
3o = 8.68.
Step 2. Let m = 58, then ¢ = 0.15. Deflection factors a = 0.07, b = 0.117 are determined

by (53), (54). Because random path S takes values only on integers, boundaries could be

B} = {(n,a,)}.._,, where a,= [m(pj‘ (7%)] +1;

n

By = {(nba)}ney, where bn:[m"’b— (E)];

where [z] denotes the largest integer smaller than x, ¢} (-) and ¢} () are boundary functions
given by (11) and (12) in which G(u,v;§) is given by (20), (21). Since this ratio function
satisfies (86) and (87), BY and B; can be obtained directly by Computation Method (Case
One) in Section 6.3. In Fig 3, GCPLRS boundary, power functions and expected sampling
size for this test rule are illustrated. It is clear that power functions for fixed size rule and
GCPLRS rule are approximately same, but expected sampling size for GCPLRS rule is much

smaller than the fixed size m when parameter p is either substantially smaller or bigger than

p=¢

4.2 Determine Deflection Factors for GCPLRS Boundaries

As illustrated in Section 3.5, boundary functions v = ¢} (u) and v = ¢, (u) form a closed

boundary for shrunk random path 5*. Deflection factors a, b determine the degrees of
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deflection that upper boundary v = ¢} (u) and lower boundary v = ¢, (u) are away from
center line v = fu. Smaller are a and b, closer are v = ¢} (u) and v = p; (u) to v = £u,
earlier $* passes either over v = @y (u) or over v = £u, smaller is the expected sampling size
for test.

It is important to choose suitable deflection factors for construction of GCPLRS bound-
aries. Since the main purpose of sequential test (compared with fixed sampling test) is to
improve efficiency of test (in term of expected sampling size), so one tends to choose smaller
a, b. But improvement of efficience is not supposed to be traded off by decreasing sensitivity
of test. Accordingly proper deflection factors a, b for GCPLRS boundaries should be small as
possible while keeping the power function of GCPLRS test about same as the power function

of fixed sampling size test. There are two methods to choose deflection factors.

Method One: To compute directly the absorption probabilities on the upper and lower
boundaries for random path 5*. Then choose a, b as small as possible, of which, GCPLRS

test has power function about same as the power function of fixed sampling size test.

Method Two: To get approximation of absorption probability on the upper boundary
for random bridge S’g‘_, and to get approximation of absorption probability on the lower
boundary for random bridge S'a, where {; and {_ are such that {_ < £ <&, é_ =€~ €.
Bigger are a and b, smaller are absorption probabilities for random bridges. Then choose a,

b, of which, absorption probabilities are small but not too small.

Method One is obvious; and Method Two is justified by following theorem.

Theorem 4.1 Let P ((Pb_lS'E < (,O;I'lgg ) denotes the probability random bridge S’E‘+ passes
+ +

over boundary v = ¢, (u) before passes over boundary v = ¢} (u); Let P (tp;"lgz < ()ob_IS'E )
denotes the probability random bridge 5’2‘_ passes over boundary v = @} (u) before passes over

boundary v = ¢, (u). Assume for 0 < p <1
P (sob‘ls; < #als ) <p and P ((PZ’ISE- <oy 13 ) <p (49)
+ + - -
Then for any 6 € ©
(1= p)Bo(0) < B(0) < (1 —p)Bo() + p (50)

where Bo(0) (= Po(Sm > Em)) is the power function of fired sampling size test rule &; B(0)
(= Py ((,oj|_§. < go,,'lg.)) is the power function of GCPLRS test rule §.
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Proof of this Theorem is given in Section 6.1.

The first method gives the exact absorption probability distribution on barrier sets for
random path §. Accordingly exact power function and expected sampling size for GCPLRS
test are available. But this method is not always practical (or convenient) because it requires
intensive computation. Computation of absorption probabilities is sometimes either very
tedious or difficult.

The second method is practical provided a simple approximation formula for absorption
probability on GCPLRS boundaries for random bridge is available. Exact power function
and expected sampling size of GCPLRS test are not available by this method, but the power
function of GCPLRS test is about same as the power function of fixed sampling size test.
With this property one may design a GCPLRS test rule met one’s requirements. For sampling
from dichotomous population (one-by-one, with or without replacement), approximation

formula for absorption probability on GCPLRS boundaries for random bridges are

} 1— ,
P (gtls; < oils;) | o™ e H(a,1-6), (51)

P (‘Pb_|.§z =< ‘P:|§g> ~ m—;?r'ltn'e_bm H(b,¢&) (52)

where H(k,n) is called the asymptotical coeflicient w.r.t. G(u,v;n) = . log values of
H(x,n) are given in Table 1. This formula is further discussed in Section 6.2. Given p, we

may compute deflection factors a, b by

1 1 1 1-
a = ;n-{log;+Elog%+logH(a,l—§)}, (53)
b = %{log%—i— %logé(—léf)—m} logH(b,f)}. (54)

In Example 1, we have m = 58 and ¢ = 0.15. Let p = 0.02. Then a = 0.06885 + M{%M,
b = 0.06885 + Bﬂsﬁl. With trial and error by using Table 1, it is not difficult to get
solutions a = 0.07, b = 0.117 (approximately). The values of a, b as solution of (53), (54)
is sensitive to the choice of p. Though serving as a guideline to choose suitable p, (50) is in
fact very conservative. For Binomial and Hypergeometric families, |85(6) — 8(6)| is usually

less than £. This could be a working criterion for choosing p.
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4.3 GCPLRS Test for Two-Sided Hypotheses

Suppose we are interested in testing two-sided hypotheses

Hy:0 =20y v.s. H110>00’U.S. H, : 0 < b,.

Two-sided GCPLRS Test Procedure:

Step 1. Set up two one-sided hypotheses H| : § < 0y v.s. H; : 6 > 6y and Hf : 0 > 6,
v.s. H{ : 0 < 6. The relations of the original two-sided hypotheses and the two one-sided
hypotheses are:

H, is favored iff both Hj and H{ are favored;
H, is favored iff both H} and H{ are favored;
H, is favored iff both Hj and H{ are favored. (55)

Step 2. For each one-sided hypotheses, design a fixed sampling size test which satisfies the
sensitivity requirement of test. Determine sampling sizes m’, m" and critical values sj, sf.
Step 3. For each one-sided hypotheses, design a GCPLRS test rule. Determine operating

’ 3”
parameters: m/, m"; & = 2%, &' = 225 o/, b and o”, B".

cm’'?

Example 2. In the context of Example 1, suppose we want to test two-sided hypotheses

of three decisions:
Hy:p=01ws Hy:p>01ws Hy:p<0.l. (56)
Assume sensitivity of test is required that

Po1( accept Hy) = 0.95;

prznoi.rlls P,( accept H;) = Poas( accept Hy) > 0.95;

min P,( accept Hy) = Poos( accept Hz) > 0.95. (57)

p<0.05

Assuming N = 500, conduct a GCPLRS test by sampling one by one without replacement.
Solution:

Step 1. Testing the hypotheses of three decisions is equivalent of testing hypotheses
H|:p<0.1vs Hj:p>0.1and testing Hj : p > 0.1 v.s. H] : p < 0.1 simultaneously start

with same observations. The combined test is done if the equivalent tests are both done.
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Step 2.  Design a fixed sampling size test rule for H} v.s. Hj which has sampling size
m' and critical value s,. The test rule is such that reject H} iff S,» > sj. The sensitivity

”requirement for this test is

max P,( reject Hy) = Poa( reject Hy) < 0.025, (58)
pPSV.
min P,( reject Hy) = Pos( reject Hy) > 0.95. (59)
p2u.

Similarly, design a fixed sampling size test rule for H v.s. H] which has sampling size m”
and critical value s§. The test rule is such that reject Hy iff Sm» < sy. The sensitivity

requirement for this test is

max P, ( reject H{) = Py1( reject Hy) < 0.025, (60)
p_ .
Iﬁ)i%s P,( reject Hy) = Poos( reject Hy) > 0.95. (61)
p_ .

To determine sampling size m’, m” and critical value s{, sj, follow steps in Example 1, we
have approximations m’ = 259.3, s{ = 32.8 and m" = 204.8, sj = 14.68 by solving equations
similar to (53), (54).

Step 3. For each of the fixed sampling size tests obtained in Step 1, design a corresponding
GCPLRS rule by follow steps in Example 1. Denote those two sequential procedures 6’ and
§". The combined GCPLRS rule, denoted as 8, for testing Hy v.s. Hy v.s. Hj is defined
as follow. Start to do 8’ and é” simultaneously by taking same observations sequentially.
When one test is finished, continue the other one until both tests are done. Then interpret
the conclusion for the combined test rule § according to relations of hypotheses given (55).

We let m' = 260, then ¢ = 0.126; let m” = 205, then ¢” = 0.072. By (53) and (54) and
Table.1, we have a’ = 0.0175, ¥’ = 0.027, a” = 0.0172 and 4" = 0.036. Let B}, and B;; be
the boundaries for &, and let B}, and Bj, be the boundaries for §”. B}, B, B}, B;. are
obtained by Computation Method (Case One) in Section 6.3.

To test same hypotheses in (56) under the same constraint in (57), a reasonable two-stage
test (which may be regarded as fixed size test) should be:
Stage 1. take sample of size m” = 205. Accept H; if Sz05 < 15 = s and end the test. Other
wise go to stage 2.

Stage 2. take additional m’' — m"” = 55 observations. Accept Hp if Sa60 < 33 = s§; accept Hy
lf 5250 2 33 = 86.
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Boundaries for the two one-sided GCPLRS test rules are graphed in Fig 4. By using a
method in Xiong(1992), acceptance probabilities of Hy, Hy and H;, as well as the expected
size for the GCPLRS test rule é are computed and graphed in Fig 4. It is clear as illustrated,
acceptance probabilities of Hp, H; and H, for GCPLRS rule é are about the same as those
for two-stage test rule. But the expected size of 6 is much smaller than the one of two-stage

rule when parameter p is substantially away from p, = 0.1.

4.4 Group GCPLRS Test

In real life applications, it often happens that group (multiple-stage) sequential test is pre-
ferred than one-by-one sequential sampling test for cases in which either group sequential
sampling scheme is mandatory or it costs much less than one-by-one sequential sampling
scheme.

For the case in which same numbers of observations are taken at each stage (in each
group), the criterion of GCPLRS can be applied for group sequential tests by regarding the
sufficient statistics for observations in each group as a single observation. We consider more
general case in which numbers of observations taken at each stage can be different. Suppose

k; is the number of observations taken at ith group for: =1,2,:--.

Group GCPLRS Test Procedure:

Step 1. Design a fixed sampling test rule of size m such that this rule meets the requirements
for sensitivity of test and m = Y24 k; where mg is the number of groups possibly taken.
Determine m and critical value sy for the fixed size test rule.

Step 2. With m and § = 22, design a (one-by-one sampling) GCPLRS test rule as in
Section 4.1 (or as in Section 4.3 for two-sided hypotheses), which has GCPLRS boundaries
B! and B;.

Step 3. Let ny=Y!_, k. And let W; = S,,, af = ay,, bf = b, where S, ay,, by, are from
Step 2. Let BY, = {(I,a)}, By = {(I, 5)}15,. We say W = {(1, W), (2, Wa),- -+, } is the
random path for group sequential test. Accept H; if W passes over B!, before passes over

B,.; accept Hy otherwise.

Example 3. Consider the testing problem in Example 1. To conduct a GCPLRS test by
sampling in groups, taking k; observations for each group, without replacement. Assume
N =100 as in Example 1, and k3 =20, k; =10 for l = 2,---.

Solution: Let Y; be the number of defects in the products sampled at {th group, and
let W, = Y1, Y. Let ny = ! . ki. Then S, = W, has hypergeometric distribution
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H (n;;pN,N), for [ =1,2,---.

Step 1.  From Example 1, the size of fixed size rule m should be more than 57.25. So we
take m = 60, and so = 8.5 such that (44) and (45) hold.

Step 2. Follow steps in Section 4.1, we have { = 2 = (.142. a = 0.068 and b = 0.112.
GCPLRS boundaries B} and B; can be determined.

Step 3. Then we have a} = a2 = 7, b] = by = —1; aj = azp = 8, b = b3y = 0;

a§=a4o=9,b§=b40=0;a;‘=a50=9,b:=b50=2;a§=a60=9,b;=b60=8.

4.5 GCPLRS Estimation Procedure

We propose procedures giving coverage (confidence) intervals and estimation for parameter
with criterion of GCPLRS. As we know, fixed sample size test and estimation are related
such that the hypotheses Hy : 8 = 6 is accepted iff the confidence interval for 6 captures
6o. Follow the same idea, we introduce GCPLRS estimation procedure to derive coverage

interval for true parameter.

Definition 4.1 Suppose By and By are two barrier sets for random path S. Given a random

path S, if S passes over By before or at the same time it passes over By, then we denote
31]5' < leg. (62)

GCPLRS Estimation Procedure:

Step 1: Divide © into interval (0x—1,0] k =1,---,d where §p < 6; < --- < ;. Given «
(0 < a < 0.5), define my, £ such that

ng_l (Smk > {kmk) <aq, (63)
ng(Smk < Ekmk) <a. (64)

Approximation of mj and £ can be obtained by follow steps in Section 4.1.

Step 2: Construct GCPLRS barrier sets Bf and Bj; by choosing proper a; and b; for
k=1,---,d such that

(i) For each k, V8 € © Py(Bf |5 < Br |5) = Po(Sm, = &xmy) (hence Py, (Bf|s < Bi|s) < a,
Py, (B; |5 < B{ls) < a).

(ii) For k=1,---,d

S can’t pass over B} before it passes over BY_;;
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S can’t pass over B;_, before it passes over By .

Step 3: GCPLRS estimation rule is:
(1) Fork=1,---,d

Conclude 8> 0,1 if Bf|s < Bils
Conclude 0 <0, if Bils <Bfls

(2) For the random path 5, determine (random) integer K such that

Bf|s < By |z for all k < K;;
Bi|s < Bf|s forall k > K. (65)

(3) [0k-1,0K41] is the 1 —2a coverage interval for 8. (—o0,0k41] and [fk_1,00) are 1—a
coverage intervals for 8
(4) Estimation of 8 is § = k. (this estimator might be biased)

Theorem 4.2 Assuming Step 1 and Step 2 in GCPLRS Estimation Procedure hold, then
claim in Step 3.(3) is true, namely, for any 6 € ©

Py(0x_1<0)>1—a, (66)
Pg (0 __<_ 0K+1) Z 1-— a, (67)
Po (0[{_1 S 0 S 9K+1) 2 1 - 2a. (68)

Proof:  For any 0 € O, there is ko such that 8x,_y < 6 < 0,. Since by is increasing in &,
then by difinition of K in (65)

P (0 < 01{-1)

IA

Py (Oy—1 < Ok—1)

Pr(ko+1< K)

Py (BZ;,+1|S' = Bl:o+1|5')

Py, (BZ;+1|§ < 31:0+1|§)

o; (69)

IAIN

AN

and
Py(0x+1<0) < Pp(0xyr <Ok)
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Py(K +1 < ko)

Py (Bl:o—1|5' = BE-l'S‘)

Py, (Biy-1ls < Bi,-1l3)

a. (70)

INIA

(A

Therefore one has

Py (0x-1 <0 < 0k41) 1 — Py (0x-1 < 0)— Py (0k41 < 0)

1 - 2a. (71)

v

Example 4. Consider the problem in Example 1, we are interested in deriving 1—2a = 0.90
confidence interval for § (= p) such that the length of interval is 0.2. To conduct a GCPLRS
estimation by sampling one-by-one without replacement.

Solution: Divide © = (0,1] into interval (6x_1,0;] k=1,---,d where d = 10, 6, = kl—‘ol- k=
1,--+,10. Given a = 0.1, define my, & such that

ng(Smk 2 fkmk) = 0.1,
P9k—1(Smk S fkmk) = 0.1. (72)

Approximation of my and & can be obtained by follow Step I in Section 4.1. Follow Step 2
in same section, GCPLRS barrier sets B} and B can be constructed by choosing proper a;
and b for k = 1,---,d. For the random path §, determine (random) integer K. Conclude

that [0kx_1,0k41] is the 1 — 2a = 0.8 coverage interval for 6. Estimation of 8 is 6 = 0.

4.6 Comparison of GCPRS rule with Wald’s PLRS rule

As we argued earlier, the efficiency of test rule should be judged not only in terms of expected
sampling size but also in terms of maximum sampling size. GCPLRS rule is most efficient in
term of maximum sampling size (same as fixed sampling size test). But what is its efficiency
in term of expected sampling size.

We know that Wald’s PLRS rule minimizes the expected sampling size when § = 6, or
0 = 6, (6o < 6,) among the rules under the constraint 4(6) < ag and 5(6;) > a; where 3(+)

is power function, 0y, 6,, ap and «; are given. Since expected sampling size is continuous as
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a function of 8, so Wald’s PRLS rule should have smallest expected sampling size when the

true 0 is in the neighborhoods of 8y and 6;.
In following example, we will compare GCPLRS rule with Wald’s PLRS rule for power

function and expected sampling size.
Example 5. Suppose X; i.i.d. P,(X; =0) = p and P,(X; =1) = 1 — p. We are interested
in testing hypotheses Hp : p < 0.5 v.s. Hy : p > 0.5. Subject to requirement

max P,( reject Ho) = Pos( reject Hp) < 0.05, (73)
PSV.
n>1(i)r%i P,( reject Ho) = Po( reject Hp) > 0.95, ' (74)
r2u.

to conduct GCPLRS test, and to conduct Wald’s PLRS test.
Solution:

To conduct GCPLRS test, follow steps as in Example 1, solving equations

{ so = 5 + 0.5m + 20.95/m0.5(1 — 0.5), (75)

Sg = % + 0.6m + 20.05\/77’1.0.6(1 - 0.6)

We have m = 266, £ = 0.55. By (53), (54) and Table 1, deflection factors a = 0.0228,
b = 0.0218. Boundaries, power function and expected size are computed and graphed in Fig
5.

To conduct Wald’s PLRS test, follow steps in Section 4.1.1 in McWilliams(1989), the
rejection boundary is Bt = {(n, a,)}%2, where a,, = [d,] + 1, d,, = h2 + s - n; the acceptance
boundary is B~ = {(n, b,)}32, where b, = [d,], d, = h1 + s - n. By the requirements in this
example, we have s = 0.55034, h, = 7.2619, h; = —7.2619. Boundary, power function and
expected size are computed and graphed in Fig 5. Wald’s PLRS boundary is infinitely long,
only part of it is graphed.

Though power functions of two rules are similar, they are compared in following way.
The better rule should have smaller power for p < 0.5, and should have bigger power for
p > 0.5. In this sense, as shown in Fig 5, Wald’s PLRS rule is better for 0.49 < p < 0.5 or
0.55 < p < 0.61; GCPLRS rule is better or as same good for other p € [0, 1].

Compare the expected sampling sizes of two rules, the better rule should have smaller
expected éampling size (disregard maximum sampling size for this moment). In this sense, as
shown in Fig 5, GCPLRS rule is better for 0 < p < 0.26 or 0.82 < p < 1; For 0.26 < p < 0.82,
Wald’s PLRS rule is better, but efficiency of GCPLRS rule, in terms of expected sampling
size, is close to efficiency of Wald’s PLRS rule. As illustrated in Fig 6, the standard deviation
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standard deviation

of sampling size of Wald’s PLRS rule is very large when true parameter p is close to 0.55.

Comparison of Standard Devitions
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Figure 6: Standard Deviations of Sampling sizes

5 Appendix

5.1 Proof of Theorems
Proof of Theorem 4.1:

B(0) = P (Bfls=B;ls)
= /°° P (Bfls < By ls | Sm = 1m) Po(Sm = ym)mdy

- 00

= /_ Z P (o} |5 < @5 Ig,-,) Py(Sm = nm)mdy (76)
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where notation Py(S,, = nm) is abused for density if S,, is continuously distributed, and
notation [°2 -mdpn is abused for summation if Sy, is discretely distributed.
But if > ¢, then

P (pf]s < sob“ls;,) > 1-—p. (77)
And if n < ¢, then
P(ptls <95ls) < o (78)

Let 8(0) = I+ II where

_/:o P (@:'g;, = ‘Pb—l.s",;) Py(Sm = nm)mdy,

I
¢ . B
M= | P(plls; < ¢ils;) Po(Sm = qm)mds.
Then
[ Q=P80 = m)man <1< [ " Py(Sm = nm)mdn
which implies (1—p)Go(6) < I < Bo(6). Similarly one has

14
0<IIL Py(Sm = nm)mdn
which implies 0 < IT < p(1—fo(8#)). Therefore one has (1—p)Bo(8) < B(0) < (1—p)Bo(8)+p.
[ |

5.2 Approximation of Absorption Probability for Random Bridge

To design a GCPLRS procedure, an important but difficult step is to determine deflection
factors. As discussed in Section 4.2, in order to make GCPLRS procedures easily applicable,
we need to provide simple approximation formula for absorption probabilities on GCPLRS
boundaries for random bridges. But there doesn’t exist an uniform formula for all distribu-
tions. For distributions resulted by one-by-one sampling from dichotomous population (with

replacement or without replacement), the approximation formula is given in theorem below.

32



Theorem 5.1 Suppose v = ¢} (u), v = ¢, (u) are upper and lower boundary functions de-
rived from ratio function G(u,v;§) which is given by (20), (21). Let S’E‘ be the shrunk random
bridge defined in (42) where S is random path by sampling from dichotomous population. Let
oF 5 (x| 5 ) denote the event that shrunk random bridge 5'2‘ upcross (downcross) ¢} (o7 ).

P (ot1s; < oilsy) ~ R eom e, 1-0), (19
1—
P (4l < 0tls;) | S5 et (o) (50)

where H(x,n) is called the asymptotical coefficient w.r.t. G(u,v;n) = &, given by

Then for large m

H(k,n) = /OIO h(z; k,n)dz. (81)

In above integration, the integrand is

( —.’E) ( i(z) )%
h(z; 5, 7) = SO ) et I i=a)e(=) (82)
[ 1-t(z))(1—=
(1 —:C) log %_(-Ll_%%

where t(z) is the implicit function of equation G(t(z), xt(z);n) = . The integration limit in

81) is xo = —L— where yo is the unique solution of G(1—n+yo,yo; 1) = K.
1-myo

This theorem is an immediate consequence of main result in Xiong(1991). The asymptotical
coeflicient H(x,7), as a function of ¥ and 75 is numerically evaluated and tabulated in Table

1. H(x,n)is defined for 0 < 7 < 1,0 < & < nlog %+(1—n) log -1-}; The proof for Theorem 6.1

and the approximation formula for other distributions discussed in Section 3 will be given
in Xiong(1993).

5.3 Computation of GCPLRS Boundaries

Suppose operating parameters m, £, a, b are given, then the upper and lower GCPLRS
boundaries B}, By may be obtained by (13), (14) in which ¢ () and ¢, (v) are implicit
functions given by (11), (12). In most cases ¢ (u) and ¢, (u) have no close form, thus not
easily computable. Anyhow, in some cases, there is simple way to compute B, B; directly

without evaluation of ¢} (u) and ¢ (u).
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Lemma 5.1 Assume G(u,v;¢) is ratio function such that
ﬁ(U,v;f) < 0 if v< <&y,

ov
> 0 if v>tu (83)

Given a,b> 0, N positive integer, let hy, I, forn=1,---,N —1 be integers such that

hn=min{k:G(%,-JkV;£) >a,k>{n}, (84)
ln=max{k:G(—]%,%;§) >b,k<§n}. (85)

If (%% + %) (u,v;€) > 0 for v > fu, then
If% (u,v;€) <0 for v < u, then

ln S l'n,+1 S ln + 1. (87)

Proof for this lemma is given in Xiong(1990). As a consequence of Lemma 6.1, one has

Lemma 5.2 Forn=1,---,N—1, if (86) holds, then

k., f G(2il ba.g) >
bt = SO itz a (88)
h, +1 otherwise
if (87) holds, then
L, +1 i G(&tt;latl. 6) > p
ln+1 — + lf ( N N 6) - , (89)
L, otherwise
where I, and hy are
hi =mink: G -1—£§ > k>¢ 90)
1 = 1min . N, N, a, ’ (
L=maxdk: (= ) >0 k<t (91)
1 =max{ k: NN , .



Computation of k,, I, is much easier by (88) and (89) than by (84) and (85). For sampling
(one-by-one or in group) from dichotomous population, G(u, v; €) is given by (20), (21), then
(86), (87) hold. Hence (88), (89) hold and hy =2, l; = —1.

Computation Method:

Assume (86), (87) hold, barrier sets BY = {(n,a.)},, and By = {(n,b,)}, can be
obtained in following cases.

Case One: S, is distributed on integers with increment 1 or 0 (e.g. one-by-one sampling
from dichotomous population). a, = [m(p;"(ﬁ)] +1, b, = [mgo{(-:;)]. Then let N = m,
compute h;,l; for i =1,---,m by (88), (89); let a, = by, by =1, forn=1,---,m.

Case Two: S, is distributed on integers with in integer increment k or less (e.g. group
sampling from dichotomous population). a, = [kmcpj‘(%)] +1, b, = [kmcpb' (-:;)] where k
is given. Then let N = mk, compute h;,l; for ¢ = 1,---,mk by (88), (89); let a, = Ay,
b, =l forn=1,--.,m.

Case Three: S, is continuously distributed (e.g. sampling from exponential distribution).
a, = cmcpj(%), b, = cmcpb_(%). Obviously exact a,, b, are not available. Assume we want
to compute a,,, b, with accuracy of % Then let N = mk where k = [rc] + 1, compute h;, [;

for : =1,.-.,mk by (88), (89); let a, = ch;:‘i, by =cl';c1L forn=1,---,m.
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Table 1. log values of Asymptotical Coefficient H(x,7)

n = 0.05 n = 0.10 n =0.15 n = 0.20 n=0.25

K log H K log H k |log H k |log H K log H
10016 | 3.204 || .0025 | 2.434 || .0033 | 1.979 [ .0039 | 1.654 || .0044 | 1.399
0031 | 3.355 || .0051 | 2.592 || .0066 | 2.140 | .0078 | 1.815 || .0088 | 1.559
0047 | 3.442 || .0076 | 2.682 [ .0099 | 2.232 || .0117 | 1.907 || .0132 | 1.651
| .0062 | 3.502 | .0102 | 2.745 || .0132 | 2.205 || .0156 | 1.970 | .0176 | 1.714
0078 | 3.547 || 0127 | 2.792 || .0165 | 2.343 [ .0195 | 2.018 || .0220 | 1.762
0093 | 3.583 || .0152 | 2.829 [ .0198 | 2.381 [ .0235 | 2.057 || .0264 | 1.800
0109 | 3.612 Il .0178 | 2.860 || .0231 | 2.412 [ .0274 | 2.088 || .0308 | 1.832
0124 | 3.637 || .0203 | 2.887 || .0264 | 2.430 | .0313 | 2.116 [ .0351 | 1.859
0248 | 3.762 || .0406 | 3.021 [ .0528 | 2.578 | .0626 | 2.257 || .0703 | 2.001
0372 | 3.838 [ .0610 | 3.105 [ .0793 | 2.666 || .0938 | 2.348 || .1054 | 2.004
0496 | 3.901 [ .0813 | 3.175 | .1057 | 2.740 | .1251 | 2.425 || .1406 | 2.174
0620 | 3.962 || .1016 | 3.242 || .1321 | 2.812 [ .1564 | 2.500 || .1757 | 2.252
0744 | 4.025 | .1219 | 3.311 [ .1585 | 2.886 || .1877 | 2.578 [ .2109 | 2.333
0869 | 4.003 || .1422 | 3.387 || .1849 | 2.966 | .2189 | 2.662 || .2460 | 2.421
0993 | 4.171 [ .1625 | 3.471 | 2114 | 3.056 || 2502 | 2.755 || .2812 | 2.518
1117 | 4.261 || .1829 | 3.568 || .2378 | 3.158 || .2815 | 2.862 | .3163 | 2.628
1241 | 4.368 || 2032 | 3.682 || .2642 | 3.277 || .3128 | 2.986 || .3515 | 2.757
1365 | 4.499 || 2235 | 3.821 [ .2006 | 3.422 | .3440 | 3.135 || .3866 | 2.910
1489 | 4.665 [ 2438 | 3.997 || .3170 | 3.603 | .3753 | 3.322 [ .4218 | 3.102
1613 | 4.889 [ 2641 | 4.230 | .3435 | 3.844 | .4066 | 3.568 || .4569 | 3.353
1737 | 5.220 || 2844 | 4.572 || 3699 | 4.193 | .4379 | 3.924 || .4920 | 3.714
1861 | 5.817 || .3048 | 5.182 || .3963 | 4.813 || .4691 | 4.551 || .5272 | 4.348
1869 | 5.874 || .3060 | 5.241 {| .3079 | 4.872 || .4711 | 4.611 || .5204 | 4.408
1877 | 5.935 || 3073 | 5.303 || .3096 | 4.935 || .4730 | 4.674 || .5316 | 4.473
1884 | 6.001 || .3086 | 5.370 || .4012 | 5.003 [ .4750 | 4.743 || .5338 | 4.542
1892 | 6.073 || 3098 | 5.443 | .4029 | 5.076 | .4769 | 4.817 || .5360 | 4.616
1900 | 6.151 || .3111 | 5.522 | 4045 | 5.157 || .4789 | 4.898 || .5382 | 4.698
1908 | 6.237 || 3124 | 5.610 || 4062 | 5.245 || .4800 | 4.987 || .5404 | 4.787
1915 | 6.333 || 3137 | 5.707 || .4078 | 5.343 || .4828 | 5.085 || .5426 | 4.887
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Table 1. log values of Asymptotical Coeflicient H(x,7)

n = 0.30 n=0.35 n = 0.40 n = 0.45 n = 0.50

k |logH k |logH k |logH k£ |logH k |logH

.0048 | 1.188 || .0051 | 1.007 || .0053 | 0.847 [ .0054 | 0.704 || .0054 | 0.571
.0095 | 1.347 | .0101 | 1.164 |} .0105 | 1.002 [ .0108 | 0.855 |{ .0108 | 0.719
.0143 | 1.438 | .0152 | 1.254 || .0158 | 1.090 |f .0161 | 0.941 | .0162 | 0.802
.0191 | 1.500 f{ .0202 | 1.315 |f .0210 | 1.150 | .0215 | 0.999 }| .0217 | 0.859
.0239 | 1.547 | .0253 | 1.362 || .0263 | 1.196 || .0269 | 1.044 } .0271 | 0.902
.0286 | 1.585 || .0303 | 1.399 |f .0315 | 1.232 || .0323 | 1.079 || .0325 | 0.936
.0334 | 1.617 || .0354 | 1.430 || .0368 | 1.262 |f .0376 | 1.109 || .0379 | 0.965
.0382 | 1.644 || .0405 | 1.457 || .0421 | 1.289 || .0430 | 1.134 |f .0433 | 0.989
.0764 | 1.786 || .0809 | 1.598 |[ .0841 | 1.428 || .0860 | 1.272 || .0866 | 1.124
1145 | 1.880 |[ .1214 | 1.693 || .1262 | 1.525 || .1290 | 1.369 |f .1300 | 1.222
1527 | 1.963 | .1619 | 1.778 || .1683 | 1.611 [ .1720 | 1.457 || .1733 | 1.312
1909 | 2.044 || .2023 | 1.861 || .2103 | 1.697 || .2150 | 1.546  .2166 | 1.404
2201 | 2.128 || .2428 | 1.948 || .2524 | 1.787 || .2581 | 1.640 |l .2599 | 1.501
2673 | 2.219 | .2833 | 2.043 || .2944 | 1.885 | .3011 | 1.741 || .3033 | 1.606
.3054 | 2.319 |[ .3237 | 2.147 || .3365 | 1.993 || .3441 | 1.853 || .3466 | 1.722
.3436 | 2.433 || .3642 | 2.265 | .3786 | 2.115 | .3871 [ 1.978 || .3899 | 1.852
.3818 | 2.566 || .4047 | 2.401 || .4206 | 2.255 [ .4301 | 2.123 | .4332 | 2.002
4200 | 2.724 || .4451 | 2.563 || .4627 | 2.422 || .4731 | 2.294 | .4765 | 2.177
4581 | 2.919 | .4856 | 2.763 || .5048 | 2.626 | .5161 | 2.503 [ .5199 [ 2.391
4963 | 3.175 || .5261 | 3.024 | .5468 | 2.891 || .5591 | 2.773 |f .5632 | 2.666
.5345 | 3.542 || .5665 | 3.396 || .5889 [ 3.269 || .6021 | 3.156 | .6065 | 3.055
5727 | 4.183 || .6070 | 4.043 || .6309 | 3.922 || .6451 | 3.816 |{ .6498 | 3.721
5751 | 4.243 |} .6095 | 4.104 || .6336 | 3.983 | .6478 | 3.877 || .6525 | 3.783
5775 | 4.308 |[ .6120 | 4.169 || .6362 | 4.049 | .6505 | 3.943 |[ .6552 [ 3.850
.5798 | 4.378 || .6146 | 4.239 || .6388 | 4.120 || .6532 | 4.015 |[ .6579 | 3.921
5822 | 4.453 || .6171 | 4.315 || .6415 | 4.196 || .6559 | 4.091 |f .6607 | 3.999
.5846 | 4.535 || .6196 | 4.398 |} .6441 | 4.279 || .6586 | 4.175 || .6634 | 4.083
.5870 | 4.625 || .6222 | 4.488 |l .6467 | 4.370 || .6613 | 4.267 || .6661 | 4.175
.5894 | 4.725 || .6247 | 4.588 || .6494 | 4.471 || .6639 | 4.368 || .6688 | 4.277
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Table 1. log values of Asymptotical Coefficient H(«,7)

n =0.55 n = 0.60 n = 0.65 n = 0.70 n=0.75

k |logH k |logH k |logH k |logH K log H

.0054 | 0.448 || .0053 | 0.330 || .0051 | 0.215 || .0048 | 0.100 [l .0044 | -0.018
.0108 | 0.590 || .0105 | 0.467 || .0101 | 0.345 || .0095 | 0.221 II .0088 | 0.091
0161 | 0.670 | .0158 | 0.543 | .0152 | 0.416 | .0143 [ 0.287 |t .0132 | 0.150
0215 | 0.725 || .0210 | 0.594 || .0202 | 0.464 | .0191 } 0.331 | .0176 | 0.189
0269 | 0.766 || .0263 | 0.633 || .0253 | 0.501 || .0239 | 0.364 | .0220 | 0.218
.0323 | 0.799 || .0315 | 0.664 || .0303 | 0.530 || .0286 | 0.391 | .0264 | 0.242
0376 | 0.826 || .0368 | 0.690 || .0354 | 0.554 || .0334 | 0.413 || .0308 | 0.262
.0430 | 0.850 || .0421 | 0.713 || .0405 | 0.575 || .0382 | 0.433 (| .0351 [ 0.281
.0860 | 0.981 || .0841 | 0.841 || .0809 | 0.699 | .0764 | 0.552 || .0703 | 0.397
1290 | 1.080 {| .1262 | 0.940 || .1214 | 0.800 || .1145 | 0.655 [l .1054 | 0.504
1720 | 1.173 || .1683 | 1.036 || .1619 | 0.899 || .1527 [ 0.760 || .1406 | 0.615
2150 | 1.268 || .2103 | 1.135 || .2023 | 1.003 || .1909 | 0.870 | .1757 | 0.733
92581 | 1.369 || .2524 | 1.241 || .2428 | 1.114 || .2291 | 0.988 || .2109 | 0.858
3011 | 1.478 || .2944 | 1.355 || .2833 | 1.235 || .2673 | 1.115 | .2460 | 0.993
3441 | 1.599 || .3365 | 1.481 || .3237 | 1.366 {| .3054 | 1.253 || .2812 | 1.140
3871 | 1.734 || .3786 | 1.621 || .3642 | 1.513 || .3436 | 1.407 | .3163 | 1.302
4301 | 1.888 || .4206 | 1.781 || .4047 | 1.678 || .3818 | 1.579 }i .3515 | 1.482
4731 | 2.069 || .4627 | 1.967 || .4451 | 1.871 || .4200 | 1.778 || .3866 | 1.689
5161 | 2.288 || .5048 | 2.192 || .4856 | 2.102 || .4581 | 2.016 || .4218 | 1.936
5591 | 2.569 || .5468 | 2.478 || .5261 | 2.395 || .4963 | 2.317 || .4569 | 2.244
6021 | 2.963 || .5889 | 2.879 || .5665 | 2.802 || .5345 | 2.731 || .4920 | 2.667
6451 | 3.636 | .6309 | 3.559 || .6070 | 3.490 | .5727 | 3.428 || .5272 | 3.374
6478 | 3.699 || .6336 | 3.622 || .6095 | 3.554 || .5751 | 3.493 | .5294 | 3.439
6505 | 3.766 || .6362 | 3.690 || .6120 | 3.622 || .5775 | 3.561 || .5316 | 3.508
6532 | 3.838 || .6388 | 3.763 || .6146 | 3.695 || .5798 | 3.635 || .5338 | 3.583
6559 | 3.916 || .6415 | 3.841 || .6171 | 3.774 || .5822 | 3.715 || .5360 | 3.664
6586 | 4.000 || .6441 | 3.926 || .6196 | 3.860 || .5846 | 3.802 || .5382 | 3.751
6613 | 4.093 || .6467 | 4.020 || .6222 | 3.954 || .5870 | 3.897 || .5404 | 3.847
6639 | 4.196 || .6494 | 4.123 || .6247 | 4.059 || .5894 | 4.001 | .5426 | 3.952
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Table 1. log values of Asymptotical Coeflicient H(«,7)

n = 0.80 n = 0.85 7 =0.90 7 =0.95 n = 0.975

K log H K log H K log H K log H K log H
.0039 | -0.146 || .0033 | -0.295 {| .0025 [ -0.491 || .0016 | -0.824 [ .0009 | -1.166
.0078 | -0.052 || .0066 | -0.221 || .0051 | -0.446 || .0031 | -0.818 |{ .0018 | -1.173
.0117 | -0.002 | .0099 | -0.183 || .0076 | -0.423 |[ .0047 | -0.808 || .0027 | -1.159
| -0156 [ 0.031 | .0132 [-0.158 [ .0102 | -0.405 || .0062 | -0.795 | .0037 | -1.139
.0195 | 0.056 || .0165 |-0.138 || .0127 | -0.390 |{ .0078 | -0.780 || .0046 | -1.116
.0235 | 0.076 |[ .0198 | -0.121 || .0152 | -0.375 || .0093 [ -0.763 | .0055 | -1.092
.0274 | 0.094 |f .0231 | -0.105 || .0178 | -0.361 }j .0109 [ -0.745 || .0064 | -1.066
.0313 | 0.111 {f .0264 | -0.090 f .0203 | -0.346 || .0124 | -0.725 || .0073 | -1.040
.0626 | 0.225 |f .0528 | 0.028 || .0406 | -0.215 || .0248 | -0.555 || .0146 | -0.821
.0938 | 0.339 | .0793 | 0.153 |l .0610 | -0.070 | .0372 | -0.371 |{ .0219 | -0.598
1251 | 0.459 |f .1057 | 0.287 || .0813 | 0.084 |f .0496 | -0.181 || .0292 | -0.372
1564 | 0.587 || .1321 | 0.428 || .1016 | 0.245 || .0620 | 0.014 |f .0365 | -0.144
1877 | 0.723 |[ .1585 | 0.577 || .1219 | 0.414 |[ .0744 | 0.215 | .0438 | 0.087
.2189 | 0.868 |[ .1849 | 0.736 | .1422 | 0.591 |{ .0869 | 0.423 | .0511 | 0.324
2502 | 1.025 || 2114 | 0.906 || .1625 | 0.778 |f .0993 | 0.639 |i .0585 [ 0.567
2815 | 1.196 |f .2378 | 1.089 | .1829 | 0.979 || .1117 | 0.868 | .0658 | 0.822
3128 | 1.387 || .2642 | 1.292 || .2032 | 1.198 |f .1241 | 1.113 | .0731 [ 1.091
.3440 | 1.603 |[ .2906 | 1.521 |l .2235 { 1.443 | .1365 | 1.383 | .0804 | 1.384
3753 | 1.859 | .3170 | 1.788 || .2438 | 1.726 | .1489 | 1.690 | .0877 | 1.714
4066 | 2.177 || .3435 | 2.117 | .2641 | 2.071 I 1613 | 2.059 | .0950 | 2.105
4379 | 2.610 || .3699 | 2.563 || .2844 | 2.532 || .1737 | 2.545 | .1023 | 2.612
4691 | 3.328 |[ .3963 | 3.294 | .3048 | 3.281 |f .1861 [ 3.321 || .1096 | 3.412
AT11 | 3.394 | .3979 | 3.361 |f .3060 | 3.349 || .1869 | 3.391 || .1101 | 3.484
4730 | 3.464 |f .3996 | 3.433 | .3073 | 3.422 | .1877 { 3.465 | .1105 | 3.560
4750 | 3.540 || .4012 | 3.509 |l .3086 | 3.500 || .1884 | 3.545 || .1110 | 3.641
AT69 | 3.621 |f .4029 | 3.591 | .3098 | 3.583 | .1892 | 3.631 | .1114 | 3.729
4789 | 3.710 || .4045 | 3.681 | .3111 | 3.674 |f .1900 | 3.724 | .1119 | 3.824
4809 | 3.806 || .4062 | 3.779 | .3124 | 3.773 | .1908 | 3.825 | .1123 | 3.927
4828 | 3.913 |l .4078 | 3.886 || .3137 | 3.883 | .1915 | 3.937 | .1128 | 4.041
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