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Abstract

Estimation of a covariance matrix, ¥, is a notoriously difficult problem; the standard unbi-
ased estimator can be substantially suboptimal. We approach the problem from a noninforma-
tive prior Bayesian perspective, developing the reference noninformative prior for a cqvariance
matrix, and obtaining expressions for the resulting Bayes estimators. These expressions in-
volve the computation of high-dimensional posterior expectations, which is done using a recent
Markov chain simulation tool, the hit-and-run sampler. Frequentist risk comparisons with pre-
viously suggested estimators are also given, and determination of the accuracy of the estimators

is addressed.
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1 Imtroduction

Suppose that Xi,..., X, are i.i.d. N,(0, ¥), and consider the problem of estimating the p x p

positive definite ¥ under the losses

Li(£, 2) = tx(L7Y) — log |S2 7Y - p, (1)
Ly(E, T) = tr(3x71 - 1)2, (2)

where ¥ denotes an arbitrary estimator. The first loss was advocated by Stein (1956) and is usually
called entropy loss while the second is typically called quadratic loss. The corresponding frequentist

risk functions will be denoted by
Ri(%, £) = ExLi($,5), i=1,2 (3)

Analogous losses and risks can be defined for the problem of estimating ¥ ~1; see Section 3.1.

The usual (unbiased) estimator of X is the sample covariance matrix

%s - %;X’X’t ~ % (=, n), 4)
where W,(2, n) is the Wishart distribution with scale matrix ¥ and n degrees of freedom. This
estimator, and S/(n + p + 1), are the best scalar multiples of S for Ly and Ls, respectively (see,
e.g., Haff, 1980). It was, however, pointed out by Stein (1956, 1975) and Dempster (1969) that
the eigenstructure of ¥ tends to be systematically distorted by these estimators unless p/n is quite
small. The problem is especially bad when ¥ 2 I. Starting with Stein’s Rietz lecture (1975),
several major efforts have been made to overcome this distortion. The literature includes Stein
(1975, 1977a, 1977b), Efron and Morris (1976), Haff (1977, 1979, 1979b, 1980, 1991), Olkin and
Selliah (1977), Sharma (1980), Sugiura and Fujimoto (1982), Sharma and Krishnamoorthy (1983,
1985a, 1985b), Takemura (1984), Dey and Srinivasan (1985, 1986), Lin and Perlman (1985), Dey
(1988), Loh (1991a, 1991b) and Perron (1992). Note that dramatic gains in risk are achievable.
Simulation studies (cf., Lin and Perlman, 1985, and Haff, 1991) seem to suggest that the
estimators of Stein (1975) and Haff (1991) are particularly successful in adequately “shrinking”
the eigenstructure of S. Both estimators are approximately Bayes (especially that of Haff) but



require incorporation of an isotonizing step in their computation to avoid overshrinkage of certain
eigenvalues. Also, no approach to shrinkage estimation of ¥ has produced reportable measures of
the accuracy of 3. This is a serious limitation.

Because of the centrality in statistics of the covariance matrix estimation problem and because
of the limitations of the existing estimation methods, it seemed desirable to attempt a fully Bayesian
approach to the problem based on use of reference (noninformative) priors. These priors seem to be
remarkably successful in many multivariate problems in producing estimators with simultaneously
good Bayesian and frequentist properties (cf., Berger and Bernardo, 1992a, b, c, and Ye and Berger,
1991). Also, they tend to yield very satisfactory measures of accuracy, through the posterior
covariance, or posterior expected loss.

Section 2 contains the development of the reference prior for this problem. Rather surprisingly,
the reference prior turns out to be remarkably simple. Indeed, it is the prior proposed by Chang
and Eaves (1990), which was based on the simpler (but less satisfactory) reference prior algorithm
in Bernardo (1979). Not unexpectedly, however, computation with this prior is not possible in
closed form; thus Section 3 develops an efficient computational scheme. Section 4 compares the
reference prior Bayes estimator to the estimators of Stein (1975) and Haff (1991). Section 5 discusses
determination of the accuracy of 3.

Note that there have been previous partial Bayesian approaches to estimation of X. These
include the empirical Bayes analyses of Efron and Morris (1976) and Haff (1980). Conjugate priors
have also been used (cf., Press, 1982), but these do not achieve the type of eigenvalue shrinkage
that seems most desirable. A flexible and very appealing general class of prior distributions for
Y has recently been introduced by Leonard and Hsu (1992). Their approach allows for a wide
variety of subjective shrinkage patterns, but it is not clear if the shrinkage pattern we seek can be
reproduced in this way.

The common noninformative prior for the problem has been the Jeffreys prior
1(Z) = (det £)~ P+ 2gy;, (5)

This prior was developed by Jeffreys (1961), for p = 1,2, and by Geisser and Cornfield (1963),
Geisser (1965) and Villegas (1969) for arbitrary p. Use of the Jeffreys prior tends to simply repro-

duce classical answers, however, and hence also fails to appropriately shrink the eigenvalues.



The work most closely related to this study is that of Haff (1991), which proposes an estimator
based on a variational form of the Bayes estimator. In the derivation of Haff’s estimator, however,
a term in the expression for the Bayes estimator is (purposely) ignored, so that it is unclear if the
result actually corresponds to a Bayes rule or what the implied prior distribution might be. We

do, however, observe considerable similarity between our estimator and that of Haff.

2 The Reference Prior for a Covariance Matrix

2.1 The Fisher Information for a Covariance Matrix

We will use the following notation. The entries of a matrix A will be denoted by A[; ;, and At
|A| and tr(A) will denote the transpose, determinant and trace of a square matrix, A, respectively.
Denote the matrix operator which arranges the columns of a matrix into one long column as vec().
The Kronecker product of two matrices, A and B, will be denoted by A® B. The covariance matrix
¥ can be decomposed as ¥ = O'DO with O an orthogonal matrix with positive elements for the
first row and D a diagonal matrix, D = diag(dy,...,dp), with dy > dy > -+ > d, > 0. Write

0 = (012013 -01p)(023+ - -O2p) * - -(Op-1,p) De, with O;; being a simple orthogonal matrix such

as
( i j \
I 0 0 0 0
7 0 coso;; 0 —sino;; 0
O;; = O;5(0i5) = ’ ’ ; (6)
0 0 I 0 0
j 0 sin 0;5 0 COS 045 0
\ 0 0 0 0 I )

where —7/2 < 0;; < w/2, and D, being a diagonal matrix with diagonal elements +1 (see Ander-
son, Olkin, and Underhill, 1987). Let (dX¥) denote [li<; doij, (dD) denote TTY_, dd;, (dO) denote

i=1
[li<; doij, and (dH) denote the conditional invariant Haar measure over the space of orthogonal

matrices O = {O : O'0 = I} (see Anderson, 1984, for definition).



Lemma 1 . The Fisher information matriz for X, w.r.t the reparameterization (D, O), is of the

form

I(D) 0
I(D, 0) = 0 10y ) (7)

with I(D) = diag(1/2d3,...,1/2d2). (Note that the explicit form of I(O) will not be needed.)

Proof. See Appendix A. O

Lemma 2 . (i) The determinant of the Fisher information matriz of ¥ is
[1(2)] o |5+, (8)

(i1) The relationship between the Fisher information matriz w.r.t the parameter % and (D, O) is

_[a® 1, o(x)
10, 0)= |55 7 |55 53] (9
and
@) o |[e-a)| @y (10)
i<y
-p—l p .o
o [T IJ cos’*? oz-j:| [H(di—-dj) (dD)(DO). (11)
| i=1 j=i+1 t<g

(iii) The determinant of I1(O) in Lemma 1 is

2 2

p—1l p o ‘ P

[I(0)| x [H H cos? 1 Oij] |:]:[(dz —d;) H d;‘(l’—l)_ (12)
i=1 j=it1 i<j i=1

Proof. Equation (9) is trivial; for (8), see Press (1982, p.79); for (10), see Farrell (1985, p.74);

and for (11), see Anderson, Olkin and Underhill (1987). Part (iii) follows from the representation

Y =0'D0O. O



2.2 The Reference Prior

Bernardo (1979) initiated an information based approach to development of noninformative priors,
called the reference prior approach. A review and discussion of the current status of the approach
can be found in Berger and Bernardo (1992c). The motivation for developing the approach was
the acknowledged problems of the Jeffreys prior in higher dimensions. Even Jeffreys would often
alter Jeffreys prior in multiparameter problems to remove perceived inadequacies. The reference
prior approach seeks to overcome these difficulties by breaking up multiparameter problems into
a series of conditional one-parameter problems, for which reasonable noninformative priors can be
determined. The approach has proven to be remarkably successful in overcoming the inadequacies
of Jeffreys prior in multiparameter problems (cf., Berger and Bernardo, 1989, 1992a,b,c, Ye and
Berger, 1991).

In the following theorem, the reference prior for X is given. The Jeffreys prior is also given
for comparison purposes. Note that the reference prior can depend on what is called the “group
ordering,” which is typically simply a listing of parameters according to perceived “importance.”
Note, also, that the reference prior here was first given in Chang and Eaves (1990), although their
derivation utilized the early version of the reference prior algorithm in Bernardo (1979), which was

improved in Berger and Bernardo (1992a, b, c).

Theorem 1 . The reference prior for the parameter (D, O) is as follows, providing the group

ordering used lists D before O and the {d;} are ordered monotonically (either increasing or decreas-
ing):

P

7r(D, 0) (dD)(d0) « [I_] I co;i—i—l %] /|D| (dD)(dO)

=1 g=i+1
« 1/|D| (dD)(dH)

=TT - dj)] (d%). (13)

i<

x 1/

The Jeffreys prior is

n5(D, 0) (dD)(d0) o« T[(di—d;)/|DI (dD)(dH)
x [37% (dX). (14)



Proof. See Appendix B. O

Corollary 1 . The resulting posterior distribution are

etr(—1271S)

R(ZIS) (d5) o ——r d
R(EIS) (@) 122+ TLic;(di - d)) ()

x etr(—%OD—lOtS)/|D|7"+1 (dD)(dH); (15)
rH(ZIS) (d9) etr(_%z—IS)/m[ﬂz”—l (%)

« I~ ) etr(~50D70'S)/\D|*5* (aD)(dH), (16)

i<j
where etr stands for exp(tr()).

Proof. Simply multiply the prior and the likelihood. O

Note that the posterior in (15) is proper, having all moments of order less than n/2 (including
negative moments), because it is bounded by an Inverse Gamma distribution. Compared to the
Jefireys prior, note that the reference prior seems to put considerably more mass near the region
of equality of the eigenvalues; thus it is intuitively plausible that the reference prior would produce
a covariance matrix estimator with better eigenstructure shrinkage.

Sometimes ¥~!, rather than X itself, is of interest. Note, however, that the reference prior for
%1 will be the same as that for 3. This follows from the fact that =1 = O*D~10, and that the
reference prior for the group ordering that lists first the ordered {d;'}, and then O, is the same as
that listing {d;} followed by O. (It can be shown that a one-to-one transformation of an element
of the group ordering does not change the reference prior.) Similarly, if it is the eigenvalues of X
that are of interest, the reference prior again turns out to be given by (13). It is methodologically

pleasant that this same reference prior emerges for any of the usual quantities of interest.

3 Computation of the Bayes Estimators

3.1 Bayes Estimators for 3 and X!

To find the Bayes estimators for ¥ w.r.t the loss functions L; and Lj, one merely minimizes the

associated posterior expected losses.



Lemma 3 . The Bayes estimator for ¥ w.r.t the posterior 7(X|S) and under Ly is
o7 = B9z (17)
the Bayes estimator under Ly is
vec(63) = [E"(Els)(E‘l ® 2'1)]—1 vec [E”(EIS)E‘I] . (18)

?r(E]l"Sl"’) — I\&?"(ms)rt,

Both 6] and 65 are orthogonally invariant in the sense §;

it = 1,2, provided
the prior is orthogonally invariant in the sense t(T'LT?) = n(X), where T is an arbitrary orthogonal

matriz. Also, for such priors, the Bayes estimators are diagonal when S is diagonal.

Proof. See Appendix C. O

Corollary 2 . The Jeffreys prior Bayes estimator for the covariance matriz under Ly is the usual
unbiased estimator S/n.
Proof. Straightforward computation. O

Often, estimation of £ 7!, rather than X, is desired. The literature in this field includes Efron
and Morris (1976), Haff (1977), Sharma and Krishnamoorthy (1985b), Sinha and Ghosh (1986),

Krishnamoorthy and Gupta (1989) and Krishnamoorthy (1991). The commonly used loss functions

are the natural analogues of (1) and (2), namely

L7 27 = tr(2718) — log |[£71%| - p,
Ly(S7Y 7 = t2(E71n - D)2

As in Lemma 3, these two loss functions result in Bayes estimators of £~ given by, respectively,
-1 -1
[E"®195) " and [ETEI(@ )| vec [ETEIS)T]

Efron and Morris (1976) and Haff (1977) used a slightly different loss function,

tr[(571 - B71)28],

g1 —1 -1, —
L™ 275 8) ="




this would result in the Bayes estimator E™(¥19)[2~1/tr(2-1)]. Haff (1977) also considered the loss
function

L(E™, 7 = tf(871 - 2712,

where @ is an arbitrary positive definite matrix; this would result in the simple Bayes estimator

EW(EIS) [E_l].

3.2 Exponential Matrix Transformation

In computing the expectations in (17) and (18), it will be convenient to transform from the space
of positive definite matrices to all of Euclidean space. We do this, as in Leonard and Hsu (1992),
by defining X* =log X, or ¥ = €*", in the sense that

Y= i(i)*)i/i! : (19)

=0

Writing ©* = OD*0%, with D* = diag(d{,...,d;), di > d3 2,--+,> dj, and O orthogonal, it
follows that ¥ = ODO?, with D = diag(dy,...,dp), d; = €%, 1 < i < p. By Lemma 2, the

Jacobian of this transformation is

@%) o [](di-dj) (dH)(dD)
i<y
|DIT](d: — d;) (dH)(dD*)
i<j
|2| Hi<j(di - dj)
[lic;(d} = d5)

(dz*). (20)

Using (15), it follows that the reference posterior for £* is

etr{—2D* —10e~D"0'5}
Hi<j(d;!= - d;)

TH(Z*|S) (d5*) (d=*). (21)

The important feature of transforming to ¥* is that ¥* will be an unconstrained symmetric matrix,
which is more efficient to simulate. One can simply transform back to ¥ to get a simulated sample

in the original space.



3.3 Hit-and-Run Sampler

For the reference posterior, analytical evaluation of the quantities in Lemma 3 appears to be quite
difficult. Thus we turn to Monte Carlo integration to do the computation.

Recently, Monte Carlo methods for Bayesian integration have undergone extensive development.
The methods that are commonly used are importance sampling, data augmentation, and the Gibbs
sampler. Attempts to apply these methods encountered difficulties, so we turned to the less common
Hit-and-Run sampler, which is another Markov chain sampler.

The Hit-and-Run sampler was first proposed by Smith (1980, 1984) and later generalized by
Belisle, Romeijin and Smith (1993). The algorithm we used is a version that was developed by
Chen and Schmeiser (1991, 1993), and is called the Metropolisized Hit-and-Run Sampler. This
algorithm is particularly useful when the domain of the posterior along a random direction from a
given point can be obtained without undue difficult.

Our actual sampling procedure proceeds as follows:

(i) Select a starting positive definite matrix X, set 5§ = logXg and k¥ = 0. Here we choose

To=15.

T n

(ii) Select a random direction (symmetric) matrix

tin fiz e by
t1g t22 -+ 1o

T=|"" 7, (22)
tlp t2z> e tpp

defined by T = Z/,/3";<; zfj, where z;; i'i':dN(O, 1), i € j, and Z is the symmetric matrix with
(4, j) element z;;, ¢ < j.

(iii) Generate A ~ N(0, 1).

(iv) Set Y = X% + AT. Then set

Y, with probability min(1, 7*(Y|S)/7*(X%]5))

%, otherwise.

(v) Set £ =k + 1 and go back to (ii).

10



Finally, after a sufficiently large sample £7, X3, ..., X% has been generated, one simply approxi-
mates a posterior expectation by E™(EIS) f(1) ~ % SN f (e¥k), where f is the function of interest.
As N — oo, the ergodic theorem asserts that the approximation converges to the true value (see
Schmeiser and Chen, 1991). Of course, one should simultaneously evaluate E™ZIS)[f(%)] for all f
of interest. In the simulation in Section 4, we set p = 5 (so that the integrals are 15 dimensional)
and N = 50,000. This gave simulation accuracies (100 X simulation error / true value) of about
1.5% for the loss L1(67, ¥) and 0.75% for Ly(6F, X), the quantities needed in the risk evaluations.
The individual elements of 67 and 65 were not quite so accurate, having simulation accuracies of

about 5%.

4 Frequentist Risk Comparisons

4.1 Stein’s and Haff’s Estimators

Writing § = VLV?, where V is a orthogonal matrix and L = diag(ly,...,0,) with [y > I > --- > [,

Stein (1975) considered the orthogonal invariant estimator:
¥ =Ve(L)VY, (24)
where ®(L) = diag(¢s, ..., ¢p) with ¢; = l;/a;,
ai=(n—p+1)+2L> 1/Ui-1;), i=1,...,p (25)
J#
This estimator has two problems. First, the intuitively compatible ordering ¢y > ¢o > -+ > ¢,
is frequently violated. Second, and more seriously, some of the ¢; may even be negative. Stein

suggests an isotonizing algorithm to avoid these problem. The idea of the algorithm is to pool the

adjacent pairs (/;, ;). The resulting estimators of the eigenvalues are

L+l 4+ 4l
o+ gy + o0 Cigs

i =ip1 == Pips = (26)

The details of this isotonizing algorithm can be found in Lin and Perlman (1985).

Haff’s estimator (1991) is closely related to the above estimator. He minimizes the formal

11



Bayes risk for an orthogonally invariant prior by a variational technique. Assuming the prior yields
1/|S| as the marginal distribution of S, this technique reproduces Stein’s unconstrained estimator.
By imposing the constraint ¢; > ¢ > --- > ¢, in the minimization under L;, the formal Bayes
estimator is of the form (24) with the eigenvalue estimators obtained by solving the equations
i
«3 (67 = (@)Y =0, i=1,2...,p, (27)
j=
where ¢¢ = l;/a;, j =1,2,...,p,and € = ¢1 — ¢, € = ¢3 — ¢3,..., € = ¢,.

The two estimators discussed above are both obtained under L,. Stein’s and Haff’s methods
are difficult to apply under Ly. Thus it is common to take the L, estimators and simply rescale
for L, (see Haff, 1991, and Lin and Perlman, 1985). That is, if 3 is derived under L;, then one
simply considers the estimator n¥ /(n+p+1) under Ly. This corresponds to the optimal rescaling
for the unbiased estimator under Ly. Note that such adhoc adjustments are not required for the

Bayes estimators.

4.2 Risk Simulations

The frequentist risks of the various estimators under L, and Ly will be approximated by average
losses in simulation. The simulation was designed as follows: Set p = 5 and n = 10, 20, 40. The

test covariance matrices were chosen to be

¥ = diag(1, 1, 1, 1, 1),

b2

diag(5, 4, 3, 2, 1),
3

diag(16, 8, 4, 2, 1).

For fixed n and X;, we do the following;:

(i) Generate 50 random Y ~ Wy(I, n), 1 < k < 50, using Bartlett’s decompdsition, and then
transform them into W,(Z;, ») random variables, Sk.

(ii) For each observation Si, estimate the covariance matrix using the reference prior Bayes
estimator, Stein’s estimator, and Haff’s estimator, under L; and L. Record the associated loss for

each estimator.

12



(iii) Compute the mean and standard error of the differences in loss between the three different

estimators.

(iv) Following the tradition of Lin and Perlman (1985), we also record the percentage reduction

in average loss (PRIAL) of the three estimators relative to the usual estimator, defined by:

For L.,

For Lo,

The simulation results for frequentist risk are given in Table 1, with the standard errors in

PRIAL =

PRIAL =

R(zS, B)

X 100;

R(—1-8, ©)- R(Z, %)

n+p+1

x 100.

1
Rt

parentheses. Table 2 presents the results for PRIAL.

S, )

Table 1. Risk Differences of Reference Prior, Stein, and Haff Estimators.

L1 L2
n | R(Stein)—R(Ref.) | R(Haff)—R(Ref.) | R(Stein)—R(Ref.) | R(Haff)~R(Ref.)
10| —.14 (.016) —.15 (.029) 023 (.029) .13 (.023)
S| 20| —.056 (.0063) —.059 (.010) 0023 (.015) —~.061 (.012)
40| —.031 (.0033) —.029 (.0049) —.025 (.0093) —.036 (.0071)
10| .049 (.024) 045 (.032) 089 (.029) .035 (.036)
S» 20| 050 (.011) 054 (.011) 069 (.019) 066 (.019)
40| .011 (.0087) 012 (.0043) .014 (.0070) .016 (.0073)
10 .10 (.026) 11 (.032) 095 (.031) 11 (.042)
Ts | 20|  .044 (.0089) 048 (.0089) 045 (.015) 051 (.014)
40 .017 (.0033) .017 (.0034) .030 (.0066) .030 (.0070)

13




Table 2. PRIAL Relative to the Usual Estimator.

11 L2
n | Ref. | Ref.* | Stein | Haff | Ref. | Ref.* | Stein | Haff
10 | 59.02 | 80.03 | 66.98 | 67.34 | 35.02 | 59.17 | 33.76 | 41.92
31|20 | 64.06 | 84.19 | 71.15 | 71.50 | 50.46 | 75.36 | 50.25 | 55.89
40 | 63.61 | 80.95 | 71.63 | 71.06 | 55.78 | 75.31 | 59.55 | 61.23
10 | 45.99 | 55.41 | 43.28 | 43.50 | 26.12 | 32.47 | 21.29 | 24.23
Yo |20 ] 34.71 | 31.58 | 28.35 | 27.84 | 23.69 | 16.50 | 17.52 | 17.82
40 | 21.25| 17.52 | 18.46 | 18.05 | 15.91 | 9.01 | 13.74 | 13.41
10| 31.92 | 33.71 | 26.28 | 25.55 | 16.08 | 16.32 | 10.89 | 10.33
33|20| 14.08 | 11.61 | 8.45 | 8.01 | 880 | 6.10 | 4.82 4.26
40 | 6.09 | 6.02 | 1.73 | 1.75 | 4.39 | 3.88 | —1.66 | —2.24

Table 3. Risk Differences of Modified Reference Prior, Stein, and Haff Estimators.

L1 L2
n | R(Stein)—R(Ref.*) | R(Haff)—R(Ref.*) | R(Stein)—R(Ref.*) | R(Haff)—R(Ref.*)
10 23 (.036) 23 (.042) A7 (.037) 32 (.034)
2| 20 10 (.015) .10 (.016) 28 (.024) 22 (.023)
40| .036 (.0076) 039 (.0075) .10 (.021) 092 (.018)
10 22 (.041) 21 (.048) 21 (.040) .15 (.040)
T | 20 025 (.019) 029 (.018) —.011 (.034) —.014 (.032)
40| —.0036 (.011) —.0021 (.011) —.031 (.032) —.029 (.031)
10 13 (.032) 15 (.034) 10 (.053) 11 (.056)
s | 20 025 (.017) .028 (.016) 014 (.026) 021 (.024)
40| .017 (.0051) 017 (.0052) 027 (.011) 027 (.011)

The performance of the reference prior Bayes estimator is very comparable to that of the Stein
and Haff estimators. It is somewhat worse when X = I, somewhat better otherwise. This behavior
is indicative of an estimator that has more moderate shrinkage than that of the Stein or Haff

estimators. This might well be desirable; indeed, for ¥ far from the identity matrix, there is a

14



suggestion in Table 2 that the Stein and Haff estimators overshrink, at least for Ly, where the
PRIAL can become negative.

To investigate this further, we considered alternative reference priors that happened to yielded
more shrinkage. For instance, if one applies the reference prior algorithm discussed in Appendix B
to the ordered group {(di, dp),(dz, ..., dp—1),(012, ..., 0p—1,5)}, the reference prior turns out to
be

7r«(D, O) (dD)(dH) « |D| Y[logd; —logd,]~*=? (dD)(dH), (30)

which intuitively will induce more shrinkage than will (13). Risk differences and PRIALSs for the
associated Bayes estimators are given in Table 3 and the “Ref.*” columns of Table 2, respectively.
The apparently more aggressive shrinkage of these estimators results in dramatically improved risk
when ¥ =2 I. And these high shrinkage Bayes estimators seem somewhat superior to the Stein and
Haff estimators.

Note that there is nothing particular compelling about 7g« from a reference prior perspective.
Indeed, we would still probably recommend 7 in (13); it is likely to have better confidence prop-
erties, and in general one should be wary of overshrinking. It must be admitted; however, that all
these conclusions are quite tentative, being based on only a very limited study. Indeed, we feel that

all four estimators considered here are comparably effective in practice

5 Determination of Accuracy

It is something of a bonus that the reference prior Bayes estimators may actually have superior risk
properties, compared with existing shrinkage estimators. The primary motivation and value of the
Bayesian approach to estimation problems such as this is, rather, that the Bayesian approach readily
allows determination of accuracy of estimation, and allows associated prediction and numerous other
types of inference involving . We illustrate this here by providing estimates of the loss of ¥ under

Ll and L2 .

Lemma 4 . The posterior expected loss of the Bayes estimator in Lemma 3 under Ly is

p1(m(2|5), 67) = E™E9) log | 5| - log |67 ;

15



the posterior ezpected loss under L, is

Proof. See Appendix D. O

Example 1.

pa(m(%]S), 67) = p — tr[87(67) "]

Consider, as data, the following matrix S/n,

where S is generated from a

Ws(X, 10) distribution, with ¥ = diag(5,4,3,2,1):

S/n

The corresponding Bayes estimators are

)

)

/ 1.925 1.618 0.132 —-1.101 0.264 \
1.618 8.437 1.638 —0.880 -0.983
0.132 1.638 2.147 -0.439 -0.646
-1.101 -0.880 -0.439 1.331 -0.035

\ 0.264 —0.983 -0.646 -0.035 1.280 /

( 1.726  0.946 0.077 -0.712 0.207 \
0.946 5.536 0917 -0.483 -0.567
0.077 0917 1.889 —-0.282 -0.385 |,
-0.712 -0.483 -0.282 1.366 —-0.022

\ 0.207 -0.567 —0.385 —-0.022 1.412 /

( 1.233 0.723 0.057 -0.567 0.165 \
0.723 4.120 0.682 -—-0.364 —0.413
0.057 0.682 1371 -0.215 -0.307
-0.567 -0.364 -0.215 0.936 —0.018

\ 0.165 -0.413 -0.307 -0.018 0.993 )

Using Lemma 4, the posterior expected losses of these estimators can be computed to be

pi(7(X]$), 87) = 1.152 and py(r(2|S5), 67)

(computable since we know X) are L;(67,%)

1.509, respectively. Note that the actual losses
1.270 and L9(63,%) = 1.548, respectively. (For

16



comparison, observe that the actual losses for §/n and S/(n + p+ 1) are L1(S/n,X) = 2.267 and
Ly(S/(n+p+1),%) = 2.147.)

Classical estimates of loss (the unbiased estimates of risk) are available here (cf., Haff, 1991),
but they are unwieldy and potentially unreliable (for instance, they can even be negative).

Other estimates of accuracy could be found using the Bayesian approach, such as the posterior
covariance matrix for £ (a [p(p+1)/2]X[p(p+1)/2] matrix), or even credible intervals for components

of 3. This could also be done for functions of ¥ that are of interest.

6 Comments and Generalizations

1. Though unquestionably computationally intensive, the rewards for adopting the Bayesian
approach here are considerable. Resulting estimators have exceptional risk properties, and de-
termination of accuracy and inference for functions of ¥ is straightforward. Indeed, once the
computation for 3 is set up, it is easy to compute the expectation of any function g(X) that is of
interest.

2. The situation in which the X; are i.i.d. Np(f, X) can be handled similarly; the reference
prior will be constant over ji, so that i can simply be integrated out to reduce the problem (in a

Bayesian sense) to consideration of

n
§=3(X; - X)(Xi - X)! ~ Wp(Z, n—1).
i=1

Analysis then proceeds as before, with n replaced by n — 1. Note, however, that, from a frequentist
or a hierarchical Bayesian perspective, there might be advantages in utilizing “shrinkage priors”
for p, rather than the constant prior.

3. As with all scale problems, choice of the loss is a rather perplexing question. From Example
1 it is clear that the effect can be substantial. We have no firm recommendation here, except to
note that, when p=1, the Jeffreys and reference priors both equal the usual invariant prior 1/0?,
and use of L, with this prior yields, as the Bayes estimator, the “standard” estimator $/n (see
Corollary 2). Hence use of Ly, and the corresponding 67, has some appeal.

4. It can be argued that the reference prior should depend on the loss function. For instance,

when p=1, the standard reference prior is 1/0?, and this is completely satisfactory for invariant
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losses such as Ly or Ly, but it is not optimal for, say, squared error loss. Unfortunately, it is not
eagy, in general, to determine how the reference prior should depend on the loss (see Bernardo,
1981, and Bernardo and Smith, 1994, for discussion). In our situation, the problem is probably not
severe, since we only utilized invariant losses.

5. A related problem can arise if one is interested in some function, g(X), of ¥. Conceivably
a better reference prior can be developed that recognizes the centrality of g(X) (cf., Berger and
Bernardo, 1992c). Use of the given reference prior, 7g, is likely to be quite satisfactory, however,
especially because it arises from so many different group orderings that it will be the reference prior

for “most” g(¥).
Appendix A: Proof of Lemma 1

Tracy and Jinadasa (1988) established that the Fisher information matrix for ¥ is
1
I(z)= 36" 937G, (31)

where G is defined as G = Ovec(X)/0vecp(X), with £ = O'DO and vecp(X) = (di,...,dp,
0125+ ++501py 023y -+ +502p, « -+, Op_1,p). Writing @; = vecd(0*D0O)/dd; and I_;ij = vecd(0*DO)/do;;
yields G = (dy,...,ayp, 512, .. .,Z;p_l,p), and thus the Fisher information matrix, w.r.t the reparam-

eterization (D, O0), is

(@ )
1 at N il Lo -
I(D, O) = 5 -’tp (E 1 ® 2 1)((1,1, .o .,ap,blz, ceey bp_l,p). (32)
b12
\ b;’_]-yp )

The elements of I(D, O) are of three types:
L al(n-t @ 5,
2. @YZ71 @ ZV)bys, or b (Z7 @ B1)d;,
3. B (271 @ B71)b,s
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To finish the proof of Lemma 1, we need only evaluate the first two types. We will utilize the

following matrix equality (from, e.g., Magnus and Neudecker, 1988) to do so:

(i) For the first type,

tr(ABCD) = (vecD*)(C* @ A)(vecB).

(' @2,

(ii) For the second type,

(@ X7 )b,s

where C = 000%/do,.

(vec )(E RX~ 1)(vec 2%
BZ 1 0%
-1 -
tr(% d —xy-! 3d
tr[(0O'D~ 10)(Ot O)(OtD 10)(Ot O)]
tr[D (')d]D 34,
1/d? ifi=j
0 otherwise.
0%
-1
)(vecaors)
62 ox
—1 -1
tr (E rs adz
¢
tr[(OtD‘IO)?%(OtD 10)(0t 0)]
10D _ _ d(0*DO) .,
1 1
trl D ad; 34070 doys O]
oD __, 00! 10D 080
“[ad b 05+ D7 54 55,9
¢
tr[diag(0,...,0,1/d;,0,.. 0)(0 90 (,?00
tr[diag(0,...,0,1/d;,0,...,0)(C + C’t)],
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]
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To complete the proof, it is enough to show that C is skew symmetric. Note that

0[O0} ot ...0t
C = (012:--01,)(023---02) - (Op-1,p) [Op-1,° 6¢(> 1p" " Ota)l
00:, '
= 012“.0”307‘3 O

Thaus it suflices to show that Ors 3 is skew symmetric. This is true, because

(1 o o o oYfo o o o o)
80t 0 coso;; 0 —sino;; 0 || 0 —sino;; 0 coso;; O
Ors%:f =10 0o I 0 O 0 0 0 (VI
0 sino;; 0 coso;; O 0 —coso;; 0 —sino; O
\ 0 0 0 0 I \0 0 0 0 0)

(0 0 00 0)

0 0 010

= 0 0 06 00O

0 -1 000

0 0 00O

Appendix B: Proof of Theorem 1

(36)

(37)

First, we briefly sketch the algorithm from Berger and Bernardo (1992c) for computing ordered

group reference priors. Let 8 = (0(1), 8(2)s - - -»0(m)) be the m groups of unknown parameters, where

each 0(;y = (8:,0s,,. - .,0;, ) has size n;. Define

O = Oy -+ 0(5))y and by = (Bi41), - -, Bm)),

with the conventions that fj.q = 6 and 8y is vacuous. Let S(6) = (I(#))~!, where I() is the
[~0] [0]
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Fisher information matrix. Write $(8) as

All Aél e Aﬁnl

A A Y |
se=| 70 T
Aml Am2 e Amm

so that A;; is (n; X n;). Denoting N; = $°I_, n;, define

S;j = upper left (N; X N;) corner of §,
H; =57, and

hj = lower right (n; X n;) corner of H;, j =1,...,m.

Suppose @ C ©2 C - - - are a sequence of compact subset of © such that UL, 0! = O, where ©
is the domain for 8. Define

9’(0[j]) = {041y : (857, 0i2)s Fosaay) € O’ for some Ot

Also define

1 ifye
lo(y) =

0 otherwise.

In the situation where |h;(0)| depends only on 05, for j = 1,...,m, the reference prior is given
by

7
m(9) = lim ﬂl(ﬁ)), (38)

where 6* is any fixed point in @ with positive density for all i, and

20— | T1 |hi(6)['/2
1(0) = (,l;[[ fG’(b’[.--:l]) |hi(0)|1/2d9(i)) 1gt(6). (39)

We will take the ordered group to be {dy,...,dp, (012,.. »0p_1,p)}, as an example of the com-

putation of the reference prior for X; all the other ordered groups give the same answer, providing
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the {d;} are listed before the {o;;} and the {d;} are ordered monotonically (either increasing or

decreasing). Define the compact subsets of the parameter space to be
@lz{(D, 0):0<a<dy<---<dy < by < o0, -T/2< 0; < 7/2, Vi < 5},
where a; — 0 and b; — co. Using Lemmas 1 and 2, note that

hi = 1/(2d), i=1,...,p,

p~-1 p 2 2 P
|hP+1l 08 I:H H COSj"i_1 Oijjl I:H(di_dj)jl Hd;'(p—l).

i=1 j=i+1 1<j =1
Also,

0'(fp_) = {ditar<di<diy), i=1,...,p,

01(9[(p+1)_1]) = {0;:-7/2< 0;; < /2, Vi < 5},

where do is interpreted as b;. Thus (38) becomes

z 1/d; L
w(6) = ( : ) ( p1 Loi(6).
' ’t=]:|1: fazSd-‘Sd.—_1 ]'/d’ dd’ f—7r/2<o,'j57r/2 |hp+1|1/2d0 ©

P , p-1 p o
[z 1/d, [H I cos—*! Oz'j:I .

(log by —log a;) [T5-,(log d;—3 — log a;) 1 s

From (37), the reference prior w.r.t this group ordering is thus given by

!
. m1(0)
(D, 0) « zlfn 1)

x l:ﬁ H cosj'i_loij] /|D|.

i=1 j=i+1

Appendix C: Proof of Lemma 3

Let ¢ denote an arbitrary estimator with (i, j) element 6;;. Bayes estimators are calculated as

follows:
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(i) For the loss function L, define
R, 2y = EES[t(631) - log |62 — p].

Using the matrix identities (see, e.g., Magnus and Neudecker, 1988)

dtr(5A)
86

0)4|

_ At g191 _
= A", and ET;

l61(6)",

-1
and setting BRT(EIS)(& ¥)/06 = 0, one obtains the Bayes estimator as [E"(Els)E‘l] .

(ii) For the loss function Ly, define

R;"(EIS)(‘S, $) = EW(EIS)tr(ﬁzf—l _I)2
= E"CS)(6n-16x1 - 26871 4 1).

By setting OR®19)(8, $)/86;; = 0, it follows that

E"ES)(216n7t - m7hy, 4 = 0,

p P
E"ED ST S (S adumn (S kg = EEO(E )y,

=1 k=1
[the (i — 1)p + jth row of ETIS)(2~1 @ £~1)]vec(d) = E"(EIS)(E_I)U,,], Vi, j.

Therefore,

vec(63) = [E”(Els)(E_l ® 2'1)]_1 vec [E"(EIS)E"I] .

If the prior is orthogonally invariant, orthogonal invariance of 47 is trivial. For 63,

vec(sTEITST)y - [Er(ElFSI‘t)(E—-l ® 2-1)] 1 ec [Er(z|rsrt)2-1]
[E"EIS)(rs1TY) @ (1T ~ yec [ErEIS)rs-ir]
= [CPenE®E9(t o) @) vec FEE91T]
= (Ton) [F"C9(E 1 gz (T Q T (T @ T)vee( EEIS 51y
= (T ® I)vec(67F19)y
= vec(D&TEIOTH,
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where the last three steps used the following matrix equality (from, e.g., Magnus and Neudecker,
1988):

vec(ABC) = (C* ® A)(vecB).

Now suppose S is diagonal, define U = diag(1,...,1,-1,1,...,1), and consider the transfor-
mation A = ULU?. Then

6;r(z|s) _ 'Ew(z|3)2_1]-1
- -1
_etr(—32719)
x /E B R (B) (43)

[ tr(—LUtA-IUS) -
~ Ny /g 'AT) (dA
_/AU U g (A (dA)

[ etr(—2A"? -
_ /A UtA‘IU%W(A) (dA)]

x UTE9y,

from which it follows that the off diagonal elements of 67 (%I5) are 0. For 63 (1) use of the same

transformation as above yields

E7r(2|5)(2—-1 ® 2—1) — EW(A|S)[(UtA—1 U) ® (UtA—l U)]
= (Ut UHETMSA-T @ A=\ U @ U).

Letting ¢ denote the coordinate of U equal to —1, note that U ® U is a diagonal matrix with the
(i — 1)p+ jth diagonal element equal to —1 (Vj # ¢). It follows that the (i — 1)p+ jth row and the
(i —1)p+ jth column (Vj # ¢) of E™EIS)(£1 ® £-1) are 0 except for the [(i — 1)p+ 4, (i —1)p+j]
element. The same is thus true for [E”(E'S)(E]“1 ® )3'1)] - But, since E™®I5)%-1 {5 diagonal, the
(i — 1)p + jth element (Vj # ¢) of vec [E“(EIS)E_I] is 0. By (18), it follows that the (¢ — 1)p + jth
element (Vj # i) of vec(8; (Els)) is 0, and hence 63 (Z19) i diagonal.

Appendix D: Proof of Lemma 4

24



Computation of p(7(X|S), 67) is trivial. For Lo,

p(n(X]S), 67) E™CI8)t1(67%-1 — )
= E"OPu(ssntegnt - 267871 +1)
= Evr(EIS)tr(ﬁgg—l,s;rE—l) _ 2tr(6§E”(EIS)Z"1) +p

= p—trf65(67) 7],
where the last step follows from

EW(EIS)tr(ggE‘I%'Z‘l) = E”(Els)(vecﬁg)t(ﬂ—l ® 2—1)(V665§)
= (vecé])ivec( ETFIS)L-1)

= (vect)ivec[(6T)7Y.
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