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The problem of deriving classically acceptable Bayesian estimation procedures is important for
synthesis and reconciliation of the classical and Bayesian approaches to inference problems. In
this work, we consider inference problems for location parameters. The idea is that if one can
produce priors for which the posterior densities are uniformly close to the likelihood function,
then the corresponding Bayesian inference should also be close to classical inference, at least for
location parameters. We describe a large family of prior distributions meeting this goal.

Apart from obtaining approximations for the posterior density itself, we also derive uniform
approximations to the Bayes rule and the posterior expected loss. We also demonstrate that
for these priors, the sampling distributions of the Bayes rule and the classical unbiased estimate
are close uniformly in the parameter and that all 100(1 — &) % Bayesian HPD sets have classical
coverage probabilities umiformly close to 1 — o as well. All of our results are nonasymptotic in
nature.

1 Introduction

The study of the frequentist properties of Bayes procedures and development of Bayesian meth-
ods which are frequentistly justifiable have received scattered but significant attention from many
researchers; Stein (1985) asked which priors would produce Bayes confidence sets that are frequen-
tistly calibrated up to order -7]; Woodroofe (1976) discusses frequentist properties of Bayes methods
in sequential problems; Rubin (1984) considers frequentistly valid Bayesian calculations through a
series of examples, including model choice. DasGupta and Studden (1989), Hartigan (1966), Bickel
and Yahav (1969), Welch and Peers (1963), Ghosh and Mukerjee (1991), Strawderman (1971),
Strawderman and Cohen (1971), Brown (1971), Brown and Hwang ( 1982), Berger (1980), Berger
and Robert (1990), Ghosh (1992), Zidek (1970), Efron and Morris (1971), DasGupta and Ru-
bin (1986), Casella and Berger (1987), etc. are some of the other works on reconciliation of the
classical and Bayesian approaches. While from a subjective Bayes point of view, frequentist prop-
erties of Bayes solutions are not of any direct interest, the general topic is of obvious theoretical
interest, and also of importance in robustness studies; see Berger (1985). Furthermore, develop-
ment of priors that guarantee frequentist validity in some strong mathematical sense is of clear
interest to statisticians who are not necessarily Bayesians, but recognize the use and advantages of
the Bayesian method as a tool.

In 1971, L. Brown conjectured that for estimating a multivariate normal mean using a squared
error loss, a proper Bayes minimax estimator does not exist for 4 or less dimensions. This conjec-
ture was proved in Strawderman (1971), who also settled the conjecture that for dimensions 5 or
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more such estimators do exist. It was, of course, recognized that while a Bayes minimax estimator
would not exist in low dimensions, Bayes estimators with bounded risk functions surely exist in
all dimensions. Indeed, if 7(8) is a prior density for a multivariate normal mean, then the corre-

sponding Bayes rule has a bounded risk whenever the gradient of log7(0) (UVT?%M

) is uniformly
bounded by some finite number k. Such priors are typically thought of as heavy tailed priors in
the literature. For instance, in one dimension, normal priors do not meet this requirement, but the
Double Exponential and t priors do. The principal goal of this article is to establish the fact that
this gradient condition on the prior density implies satisfactory frequentist behavior for the implied
Bayes solution in a wide variety of problems, the point estimation problem mentioned above being
just one of them. It is demonstrated that the general location parameter case can be handled with
some conditions on the underlying density, and that in fact, if one starts with a prior density of the
type described above and then scales it, then not only do the Bayes procedures for the scaled priors
have good frequentist properties, they satisfy remarkably strong uniform approximation properties
as well.

An illustrative example.

Consider the problem of finding a set estimate for a multivariate normal mean, when the normal
distribution has a covariance matrix equal to the Identity. The common classical solution is the
well known Hotelling set, namely the sphere of radius x»(p) centered at the observation X. If
somebody were to use a N(0,I) prior for the unknown mean, then the corresponding Bayes HPD
set would be centered at ¢.X for appropriate 0 < ¢ < 1. It is well known and clear that this set is
not frequentistly justifiable in the sense that its frequentist coverage probability converges to 0 as
the norm of 6 goes to co.

As an T.lltern?.ti)\lfle, consider any prior density on the mean 6 which satisfies the stated gradient

v o

™
the corresponding 100(1 — @)% Bayes HPD set satisfies the following two remarkable properties :

. 1 @8
condition < k, k < 0o. Now consider the scaled version —r(—), ¢ > 0. We prove that
c® e

a. The frequentist coverage probability of the Bayes HPD set converges uniformly to the nominal
level 1— o, uniformly in 8, as the scale ¢ converges to 0o; note this is not an asymptotic result
in the usual sense. We are not letting the sample size go to infinity.

b. There is a spherical band around the classical Hotelling sphere such that the 100(1 — a)%
Bayes HPD set lies inside this band, and moreover the width of this band is a number free
of the observation X, and converges to 0 as the scale ¢ converges to infinity. Again, this is a
fixed sample size result.

The joint implication of these two is that the Bayes HPD set has uniformly justifiable frequentist
validity, and furthermore the HPD set itself is uniformly visually similar to the classical Hotelling
set, and that both of these goals can be achieved simply by choosing a large value for the scale c.

A variety of such results are proved in this article in various contexts. The principal achievement
is that we demonstrate that the gradient condition which was only known to produce satisfactory
solutions in the point estimation problem, is now mathematically demonstrated to be a completely
unifying condition. We also illustrate many of the results numerically for better understanding.
Many of the proofs are technically complex, and sometimes look intimidating. Consequently, we
have deferred a number of them to an appendix. Section 2 introduces some notations used ex-
tensively in the article; section 3 considers the problem of a doubly uniform approximation of the
posterior density. Section 4 treats the set estimation problem, and in Section 5 we go into uniform
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approximations of other quantities, including the posterior expected loss and Bayes point estima-
tors, and the sampling distribution as a whole of the Bayes estimator. We would like to remind the
reader that approximations and expansions of the posterior are studied in many papers, notably
Meeden and Isaacson (1977), Ghosh, Sinha and Joshi (1982), Johnson (1967), Umbach (1978),
Walker (1969), Woodroofe (1989), etc. However, the uniformity aspect that we focus on was
not the goal in these articles. Also see Ibragimov and Khas’minsky (1972, 1981), Kadane and
Chuang (1978),and Lehmann (1983) in this connection. Our results now leave open the exciting
possibility of strong expansions of an array of Bayesian quantities, including the posterior, the
Bayes rule, and the posterior loss. Such uniform expansions would be valuable on many grounds.

2 Notations and definitions

Consider the general inference and decision problem for a location vector 8 = (6y,---,0,)" based
on an observable X = (Xj,--+,X,)’, where the likelihood function of 8 given X = = is of the form
f(z — 6). If we assume a prior on 8 with density 7(.), then the corresponding posterior density

will be denoted by 7(8{x). Throughout this article, we will denote the scaled prior density c—pﬂ'(g)

(for ¢ > 1) by 7.(8) and the corresponding posterior density by m.(8|z). We denote the uniform
prior on p-dimensional Euclidean space, RP, by 7° (7°(8) = 1). We denote the moment generating
function (MGF) of X and X* = (|X4],---,|X,|) at some t € RP under 8 = 0 by My(t) and M7(¢)
respectively. We use the notation By(x,r) to denote the closed p-ball in RP of radius r (> 0)
and center at # € RP. We denote the volume and surface area of By(z,7) by V,(r) and V;(r)
respectively, (for p = 1, Vj(r) = 2r and V;(r) = 2). To denote a nondecreasing (or nonincreasing)
function of real variable, g(z), we write g(z) T = (or g(z) | ). We denote a real valued sequence a,
increasing in the limit to a by a, /' a. Similarly, b, \, b means a real valued sequence b,, decreases
in the limit to b.

In Sections 4 and 5, we only consider normal density as our likelihood function and use the notation
¢p(z) for p-dimensional standard normal density. For p = 1, we use ¢(z) instead of ¢1(z). For
prior 7 and likelihood function ¢,(x — 8), the 100(1 — @)% highest posterior density (HPD) set for
observation X = =z, denoted by Sr(z), is given by

Se(z) = {B:W(Olw)Zka(w,:c)},

where

ko(m,z) = sup k : / T(0)z)d6 > 1 -«
(8])>k

For uniform prior, 7%, k,(7°, ) does not depend on z and we simply denote it by k2; also, S,o(z)

simply becomes B,(x, Xa(p)), where x2(p) is the upper a-th quantile of chi-square distribution

with p degrees of freedom. (Notice that x,(p) is also the solution of ¢P(z) = k9). The Hausdorff

distance (see Dugundji (1975)) of two HPD sets S;(x) and S,o(z) is denoted by H,(z) and we

denote sup H.(z) by HX. The frequentist coverage probability of the HPD set S,(z) under 8,
zERP
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dented by ¥,(8), is given by

v.(0) = /@Aw—@ﬁﬁwwﬂﬂd@
RP

where I4(x) denotes the indicator function of any set A C RP. The confidence coefficient (see
Lehmann (1983)) of the HPD sets Sx(.) is therefore given by the infimum of the classical coverage
probabilities, ¥, (8), over all 8 € RP. We denote it by ¥5.

3 Main results

Consider a prior density = (.) satisfying

LA Sl | Y RP >
(1) iw) < k VOeR, (p>1),
for some fixed and finite k (> 0), where y77(.) denotes the gradient vector of 7(.) and ||.|| denotes

usual FEuclidean distance in RP. The prior belief about 6 is expressed in terms of a scaled prior
density m.(8) (for some ¢ > 1), where (.) satisfies the gradient condition (1).

We use the following two different methods or criteria for measuring the uniform closeness of
posterior densities 7.(8|z) to the likelihood function f(x — 6):

()
sup [ re(6lz) - (= - 6)|ds;

(11)
Sup SUp Ir:(8|z) — f(z — 0)|.

In Theorems 3.1 and 3.2, we obtain approximations to the quantities described in (I) and (II).
First, we need the following key lemma (see Appendix for proof):

Lemma 3.1 If the MGF of X exists (in a neighborhood of 0), then for any prior sequence {7.(.)}
with 7(.) satisfying (1),

(2) clru(6le) - fa - 6)| < (1 + Gl - 6) + 17 0%) f(z - 0)

P
for all ¢ > co(> 1); here co,d1,da, and d3 are appropriate constants, and G(z) = Z EAP

=1
Thus, if we have a prior 7 satisfying (1), and if the MGF of X exists, the convergence in L,
norm of the posterior to the likelihood function is immediate from the above lemma. With some
minor additional conditions, we can also obtain doubly uniform convergence (in observation and
the parameter). The following theorems formally summarize these results.

Theorem 3.1 If the MGF of X exists and T satisfies (1), then

3) sup [ Imo(6le) - f(o - 6)] d0=O(3) (Ve co)
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Proof: By using Lemma 3.1, when the MGF of X exists then, for any prior sequence {m.(.)} with
m(.) satisfying (1), we get

c [1n8le)~ fe =00 < di+dy [ Glm)im)dn+ ds [ ¥P% ()
(4) = My (say), (Ve > cg).

3
Also, from the proof of the above lemma (in Appendix), we can see that, /eG(") 0 f(n) dn exists

and is finite. Hence Mj is a finite constant (free of = and ¢) for any ¢ > ¢o. &

=8
Theorem 3.2 In addition to the conditions of the above theorem, if e <+ f(z) is also uniformly

bounded for some 0 < ¢ < oo, then

5) sup sup |r.(6lz) — f(z ~ 6)| = 0(%) (Ve> oV ker)

Ste)
Proof:  Since e <1 f(z) is uniformly bounded, for any ¢ > ke, there exists a positive constant dy
such that

. G(=)
(6) f(z)<efPf(2)<e ™ f(z)<dy Vz€RP

Also,
G(=)

(=
€1

(7) G(z)f(z) < cie

Applying (6) and (7) to (2), we obtain for ¢ > ¢g V ke;

f(z) Leads  VzeRP (since e® > z (say) for z > 0).

c|r(8lz) — f(x — 0)] < dids+ dacidy + dady
(8) = M (say) < o

where M, is free of 8, & and ¢. The result follows. &

Numerical illustration: 7.(8|z) and f(x — ) are the posterior densities with respect to the
priors 7, and 79; if we denote the corresponding measures by P.(:|z) and PO(-|=) respectively, then

P(Ale) - PP(Als)] = 0n.(o)

sup
A
where Q. (e) & / Im.(6]2) - f(z — 8)|d6.

This fact enhances the interest in the quantity Q. (z). So, we will consider a particular one
dimensional example to actually compute and plot these values; we also compute sup Q_(z), which
T

we will denote by QF .
Let X follow N(6,1) and let # have a scaled Cauchy prior given by

1 1

Co(6) = %c(g), o) =17

-0 < 8 < 0.
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It is straightforward to check that if the prior is symmetric around zero and the likelihood function
is symmetric around the observation z, then the function Q. (.) is also symmetric (around zero).
Therefore, we plot Q¢ (z) as a function of z(> 0) for different values of ¢(> 1) (see Fig 1). In
Table 1, we show corresponding values of (2% .

In the following two sections, we apply our results to estimating multivariate normal means by
using any prior family {r.} satisfying gradient condition (1) and obtain closed form approximations
of the Bayesian credible sets, and various Bayesian quantities arising from squared error and linear
loss functions.

4 Applications to set estimation of normal means

Set estimation is one of the most common statistical problems and has a long history. The literature
is too huge to list here; see Lehman (1986). We consider set estimation of multivariate normal means
here. While the particular sampling distribution considered here is of interest in its own right, the
techniques used to obtain the results can also be useful for some other location families.

Our goal in this section is to show that for a prior = satisfying (1), the implied HPD sets will
be close to the Hotelling confidence set uniformly over the observation. Notice that such credible
sets will, therefore, have an inherent Bayesian robustness with respect to the particular choice of
any prior satisfying (1). Also notice that, as we mentioned in the introduction,the strong uniform
approximations we are about to prove do not hold for any scaled normal priors.

Let X follow a p—variate normal distribution with unknown mean vector @ and covariance
matrix I (identity matrix of order p). Then the standard Hotelling confidence set will simply be
Syo(z).

As described before, our objective, in one hand, is to obtain classically acceptable Bayesian
credible sets, and on the other hand, is to obtain robust Bayesian credible sets each being uni-
formly close to the Hotelling confidence set. To meet the objectives, we consider the following two
formulations:

(i) To meet our first objective, we consider the confidence coefficient ¥% to assess if the HPD set
Sr(.) is classically justifiable. The asymptotic version of this problem has been studied before;
see Stein (1985), Welch and Peers (1963), Hartigan (1966), Ghosh and Mukerjee (1991). Our
results are for fixed sample size and therefore in some sense have a more direct bearing on
practice. Observe that, by construction, ¥, 0(8) = 1 — a. So, for a given ., the implied HPD
credible sets are classically justifiable if ¥ is close to the nominal level 1 — a. Indeed, we
shall prove that ¥% is 1 — a + O(2).

(ii) We will also give an uniform approximation of the HPD set S, () itself; the exact result is
given in (10). Roughly, the assertion in (10) says that one can find a small spherical band
around the classical set in which the Bayes solution lies and that the width of this band is a
small number, free of the observation . We find this remarkable.

We start with the following lemma (see Appendix for proof) which is essential for proving the
results.

Lemma 4.1 For any fized € > 0 and a fized prior density 7(.) of @ satisfying (1), let us denote

(9) Si(z) = {6:m(6lz) > k2 —c}.
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Then there exist fized positive constants Ly and Uy, such that

L oo
Sre ¢ () C Sr(2) C Sx8 (2), Ve RP, Ve e,

for appropriate ¢, (> 1).

Theorem 4.1 Assume 7(.) satisfies the gradient condition (1). Then there exist universal positive
constants c*(> 1), U(> 0), and L(> 0) such that

(10) B, (w,xa(p) - %) C Sx.(z) C B, (w,xa(p) + %) Yz € RP,

whenever ¢ > c*.

Proof: ~ We will only prove the right inclusion part; the other part is exactly similar. In order to
prove the right inclusion, first in Step I, we show that the HPD set S, (=) is contained in a closed
ball with center at @ and of radius x,(p) + {; for some appropriate positive constant (.. Then, in
Step II, we prove our claim by showing that (. is in fact O(%).

Step I: By Theorem 3.2 (or equivalently, (8) ) and the above lemma, we know that whenever
¢ > co V key Voea(= ¢z, say) one has that for all z € RP,

4 T
Srlx) C 57 (z) = {0 RACDE kg_%}

[by (8)]

IN
——
S

3
&
|
2
A\
"o
I
|
|

f

{0 : |16 —=|| < xa(p) + (e}

(11) By(=, xa(p) + (o)

where (. is given by

" (Xa(P) + ) = k2 —

(12) = Gep(xalp) + )P (Xalp) + ) =
[by Taylor expansion and using the fact that ¢”(x(p)) = £2].

M1+ Uy
C

M, where 0 < & < (.
c

Step II: Since ¢P(z) is a strictly decreasing function of z > 0, we can choose c4 large enough, so
that

P (Xa(P)) — P (Xal(P) + 1) > M

Hence, for ¢ > ¢4 we always have (. < 1, and whence

Sl (a(p) + (@) +C) 2 iaf (xa(o) + )¢ (alp) + )

= min{Xa(P)?"(Xa(P)), (Xa(P) + 1)¥"(xa(p) + 1)}
= M, (say).
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So, from (12) and above, it follows that for all ¢ > ¢3 V ¢4 we have

M+ U
——— = (P (alP) + C)P (Xalp) + &) > CpM;
My+U;s U [ . M1+U1]
e X ——==— 1b t = ——
=( < TP . y writing U YA ,

and hence from (11), we have

Sro(x) € By(z,Xa(P) + ()

]
(13) By (sxap) + ) Vae R, Ve esve,

N

as claimed. &

Corollary 4.1 ¥, =1-a+ (’)(%) for ¢ > c*.
Proof: By definition
U0) = [ o= - O)is,w0)(e) do.
RP
So, using (10), we get for ¢ > ¢* that

V®) > [ ool = O aortype(2) B2
RP

= l-a- / @p(x — 0)de
Xa(P)—£<|l2—0]I<xa(p)
= l—-a- / pp(x) de
Xa(P)—£<|l2||<xalp)
> 1 - - @P(xal(p)) / e [since py(x) | |lo]l]

Xa(p)~Z<|l2l|<xa(p)

= l—a-— k‘g [%(Xa(p)) - V;,(Xa(p) B %):I
> l—a- kg%V;(Xa(p))

(by using Taylor expansion and the fact that V,(r) 1 ). Thus, writing L = k2 L VJ(xa(p)), we have

v, () > 1-a—-— VOeRP

oo

2>V, > l-a-

whenever ¢ > ¢*. The result follows. [ )
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In the following corollary we establish that the Hausdorff distance between the HPD set and
the Hotelling confidence set is small uniformly over the observation. Notice that a small Lebesgue
measure of the symmetric difference of those two sets, which is an alternative measure to determine
their closeness, does not guarantee a visual similarity of the two sets; however, a small Hausdorff
distance generally does. The uniform approximation result of Theorem 4.1 will imply similar results
for many other distances, Hausdorff distance is particularly nice.

1
Corollary 4.2 sup H, (z) = O(Z) forc>c*.

Proof:  From (10), it immediately follow that for ¢ > ¢*

L L
OSHWC(W)S%V;SU_F

, Vz € RP.
)

Examples and numerical illustrations: We consider the construction of 95 % HPD credible
sets (i.e., @ = 0.05). The numerical examples we consider here, using scaled Cauchy priors, illustrate
the convergences described in Corollaries 4.2 and 4.1. We use the same notations for scaled Cauchy
priors (C.) as were used in Section 3.

In Figure 2, we plot ¥ () as a function of 8 for different values of c. We can see that for each
fixed ¢, the plot of ¥¢ (@) is symmetric around zero which actually follows from the symmetry of
normal and Cauchy densities. Also notice that, for each ¢, ¥¢ () attains its supremum at 6 = 0
where it always exceeds the nominal level; then, as @ increases, it decreases below the nominal level
and attains the infimum (W% ) for some moderate value of § (depending on c). Thereafter, ¥¢ ()
increases in the limit to the nominal level. We compute ¥z for different values of ¢ (see Table 3).
We also compute H7_ for different values of ¢ (> 1) (see Table 2).

5 Further applications

Intuitively, the doubly uniform convergence of the posterior to the likelihood function, established
in Section 3, should imply a broad range of further approximation results. For instance, one would
expect that for many loss functions, the Bayes rule for the prior 7. should be uniformly close
to the uniform prior Bayes rule. Two concrete and common losses are addressed here, although,
generalization seems certainly possible. We consider a univariate normal random variable X ~
N(6,1). The two losses we consider are squared error loss and the linear loss of the form

_ ) Ko(0—a) if0—a>0
(14) L(6,a) = { Ki(a—0) if0—a<0

for some arbitrary but fixed positive constants Ky and K;. The quantities of interest are the Bayes
rule, the posterior expected loss, the Bayes risk, the risk function, and the frequentist distribution
of the Bayes rule.

5.1 Approximation of the Bayes rule:

Here, we will show that if 6.(z) denotes the Bayes rule implied by the prior 7.(8), and §°(z) denotes
the generalized Bayes rule implied by the uniform prior 7°9(8) = 1, then both for squared error and
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the linear loss function,
1
sup l6.(x) - 8°(@)| = O(7).

Ior squared error loss, the following theorem is immediate from the variational formulas of
Brown and Hwang (1982).

Theorem 5.1 For anyc > 1,

(15) 1/071‘,{0!.7:) dd -z < — Vz€eR.
!
provided w(0) satisfies (1), i.e., 7;((00))) <kE< o

Next, considering the linear loss of the form (14), we will show that similar approximations for
the implied Bayes rule are also available here. First notice that (see Section 4.4 in Berger (1985)),
the Bayes rule is any %"R—-l—th fractile of the posterior distribution. So, an approximation of the
Bayes rule is equivalent to an approximation of this fractile. For a fixed @, (0 < a < 1), let g.(z)
denote the a—th fractile of the posterior density 7.(f|z), and let ¢°(z) denote the a-th fractile of
the normal density with mean at z and variance one. Then we have the following approximation

of g.(z).

Theorem 5.2

@) - (=) = O(),

sup
T
provided 7(8) satisfies the gradient condition (1).

Proof:  From Theorem 3.1, we know that there exists cg > 1 such that
Mo
(16) sup/ |re(6]z) — (0 — )| df < — Ve > e,
T
R

for some positive constant My. So, for ¢ > ¢g, we have

gc(z) ge(x) ge(x)
a— / w(@—=z)d8| = / Te(0)2) do — / o(0 — z)do
ge(z)

< [ infblo) - 90 - )] d8
< [ ne(6la) - (6~ )] ao

(17) ]—”c-‘l Vo € R, [by (16)]-

IA
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Notice that ¢°(z) = z + ¢°(0). Fix any (> 0), however small; then there exists cg(e)(> 1) such
that for all ¢ > ¢g(e),

¢°(z)+s ) q%(0)+¢
[ pl0-=z)do = [ @(6)do > a+ M
qo_(;())—s qo—(g;)—s Ve > 66(8).

and | o(0—z)do [ e(0)dd < o~

Thus combining (17) and the above, we have that for ¢ > ¢o V ¢6(¢),
sup |go(2) — ¢°(z)| < e
T

Hence, for ¢ > ¢o V cg(€), we get

g¢(=) g¢()
o / o0 —z)do| = / o(0 — z) df
~o0 (=)

(@) +(2c(2) ()
- / o(0 - z)df

(=)
9°(0)+(ge(2) ~¢° (2))
= / ©(0)dB| [since ¢°(z) = = + ¢°(0)]

9°(0)

(18) > |g(2) - ¢°(2)| min {(¢°(0) — €), p(¢°(0) + ) },
[since sup |ge(2) — ¢°(2)| < .

(19)
The assertion of the theorem now clearly follows from (17) and (18). L

5.2 Approximations of posterior expected losses and Bayes risks:

From a Bayesian decision theoretic viewpoint, apart from the Bayes rule, other quantities of interest
are the posterior expected loss and the Bayes risk. In this section we will obtain an approximation
of the posterior expected loss uniformly over the observation z and hence an approximation of the
same order will also hold for the Bayes risk. We will therefore make no further mention of the
approximation of Bayes risks.

We denote the posterior expected loss of an action a for an observation X = z under prior 7
by p(r(f]z),a). Then denoting the posterior expected loss at z for prior 7, and #° by p, (z) =
p(r(8)z),8.(z)) and pro(z) = p(r°(8|z),6%x)) respectively, we obtain uniform approximation of
pr.(z) for both squared error and the linear loss function in the following theorem.

Theorem 5.3 sup |py (z) — pro(z)| = (’)(-i-)
xr
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R
Proof:  Let us denote £(z) = (dy + da|z| + dgelzlco Yp(2), where d;’s are positive constants as in
Lemma 3.1. Then, using Lemma 3.1, we have that there exists co(> 1) such that whenever ¢ > cg,

1
(20) |Te(0l2) — (0 — z)| < 25(0 -z), VOER,Vz€ER.
Thus for any loss function L(#,a), we have
pre(@) = pro(@)| S |pr(@) = p(°(B2), 8())| + [2(7°(812), 6:(2)) = poo(a)]

[ 16,6@) Ire(8l2) - 9(6 - )] df

IA

+ / { L(8,6(z)) — L(b, (50(:1:))}(,0(0 —2)do

R

< 7 [ 10,060 - 2) 0

+

/ {L(H,ﬁc(w)) - L(9, 50(93))}90(9 —x)df

R
[by (20), for all ¢ > ¢]

< % / L(6,6%=x))E(0 — z) df
+'}? / {L(0’5°(”’)) - L(975°(m))}5(0 —z)df
= * / {L(o’ o(2)) = L(6, 50(“”))}99(9 —z)df

Now we will consider the squared error loss and the linear loss case by case and obtain the required
result.

Case I: L(8,a) = (0 — a)%:
Notice that here §°(z) = z and hence

L(8,8:(x)) = L(8,6°(2)) = (8c(2) ~ 2)* +2(0 — z)(z ~ bc(2))
> | {L(o,«sc(x» - L(e,a"(w))}s(e ~a)ds = (6a)- o) [E0-z)a0
[since £(z) is a symmetric function]
and / {L(o, 5(z)) - L(6, 50(;1:))}90(0 _2)dd = (b))’

Also notice that

/(0 — )60 —a)df = /t2§(t) dt < o

R

and (é.(z) — z)?

I}

O(), by (15)]
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Hence from (21) we see that whenever ¢ > ¢y,

Wb o () = pre(@) < 7 [0+ O(F).

R

This completes the proof for the squared error loss function.

Case II: L(#,a) is linear given by (14):

In this case it is easy to see that

(22)

L(8,8.(w)) — L(8,6°(2)| < (Ko V Ky)|bc(z) — 6°(2)];

moreover, since é,(z) = g.(z) here, and §°(z) = ¢°(2) = z + ¢°(0), we get from (21) that for
¢z o,

pre®) = @) < - Ko(6 - 2~ P(0)(0 - ) ds
9> z+4°(0)
+ / Ki(z + ¢°(0) — 0)£(8 — x) do]
6<z+4°(0)
0 1
+ / (0, 6.(2)) - L(8, 6())| {L,o(o ~2)+ (0 - x)}dO
< [ K-t [ K0 - vew i

t>q°(0) t<q%(0)
oV KJed2) - @) [ (90 +¢) at
R
(on using (22)).

By Theorem 5.2, sup |6.(z) — 6°(z)| = O(%) and therefore

1
sup |pre(2) = po(z)l = O(7).

This proves the result for the linear loss.

5.3 Approximation of frequentist distributions of Bayes rules:

Let us denote

Feo(?)
and F{(t)

Pxj (6(X) < 1)
Px (8°(X) < 1).

Then the following theorem holds:
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Theorem 5.4 For both the squared error and linear loss functions,

supsup [F,g(t) — Fgo(t)l —0 asc— o0
[/ t

Proof: By using results from Section 5.1, there exists ¢7(> 1) such that

sup |6.(z) — 6%z)] < %, Ve>er

for some positive constant Ms. Hence, for ¢ > ¢7 we will have for all 8 and ¢,

PX]G <6O(X)St———-ﬂf—3-) < PX|0 (6C(X)St) < PX|9 (50(X)St+—1%>
s (t—%) < Fo(t) < FP (t+%)

Now, notice that F§(¢+ O(L)) converges to Fg(¢) as ¢ — oo uniformly in 8 and ¢. Hence the result
follows. &

5.4 Approximation of risk functions:

In the following theorem, we obtain an uniform approximation for R(#,d.), again for both the
squared error and the linear loss functions.

Theorem 5.5 sup |R(8,6.) — R(0760)| = 0(%)
a

Proof:  First notice that

(23) 51;p|R(9,6c)—R(9,60)| < Expl|L(8,6.(X)) - L(8,6°(X))|

For the case of squared error loss,

Exg|L(8,6:(X)) — L(8,6°(X))] < 2Exp[l8 — X||X — 6.(X)]
+Exj9 (X — 6(X))?

k _ k2
Expol0 — X[+ ot [by (15)].

IA

(24) 2

¢

In the case of a linear loss, we have for ¢ > ¢7,
Ex1o|L(6,6((X)) — L(8,8°%(X))] < (KoV K1)Exjs)|X — 6,(X)|

(25)

IA

M.
(Ko V K1)73. [by Theorem 5.2]

Combining (24) and (25), the theorem follows from (23). &
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6 Summary

The main goal of this work was to demonstrate satisfactory frequentist behavior for the implied
Bayes solution in a wide variety of problems; we described a large family of scaled prior distri-
butions meeting this goal. Development of these priors guaranteed frequentist validity and at the
same time we obtain strong robustness in Bayesian inference with respect to the particular form of
the prior distribution. ,

Acknowledgement: The idea of this work arose in conversation with Joe Eaton and Bill Sud-

derth. Various ideas were discussed with Larry Brown, Jayanta Ghosh, Herman Rubin and Bill
Strawderman. We are very glad to thank all of them.
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7 Appendix

Proof of Lemma 3.1: We have to prove that if My(t), the MGF of X, exists and is finite for
all £ in an open neighbourhood of 0, then for any prior sequence {r.(.)} with x(.) satisfying the
gradient condition

v =(9)ll . »
(26) —71'(9—3—_- < k VY6eRP,

there exist positive constants co(> 1),d;,ds, and d3 such that whenever ¢ > ¢,

(27) ¢|ro(8]) — f(z - 8)| < (dl + oGz — 6) + daeG(”"O)%) f(z —6)

P
where G(z) = Z EAR
i=1

We prove (27) by using the following steps: first in Step I, we get bounds on posterior densities
by obtaining bounds on prior densities and the fact that the MGF of X exists; then in Step II, by
some applications of the Dominated Convergence Theorem (DCT) on the bounds obtained in Step
I, we prove the result.

Step I: When =(.) satisfies (26), it immediately follows that

| v 7(8)ll k

< - 8ecR
(28) 7.(8) T ¢ voe
Now, expanding log 7.(8) around =z, by using multivariate Taylor expansion, we get
V(6 — =*)
(29) IOg 7'('0(9) = log 7rc(:c) + (6 - w)’m 6 c Rp, x € Rp,

where z* lies between 0 and =. Combining (28) and (29) and using Cauchy—-Schwartz inequality
we get
m(6)

(30) 1og 79| < 116 — oL
Te(z)

(0 — x* k
‘jr(a( M < o et
c —:13) c

Since ||z|| £ G(z) Vz, we get on straightforward calculation from (30) that
(31) 7T'c(‘l’)e—]‘-:_G(g"w) <me(8) < 7T'c(‘l’)e%G("_m) Vo, € R".

Notice that since M¢(t) exists and is finite in an open neighbourhood of 0, the same is true of
7(t), the MGF of X* = (|Xy|,---,]|X,])". So there exists to(> 0) such that M}(t) exists and is

finite for all ||£|| < fo. Therefore, if we choose ¢g = % + 1, then whenever ¢ > ¢g
k )
) = /e%G(’)f(z)dz
Rp

¢
exists and is finite and hence by using (31) we get the following bounds on the posterior density
Te(8]x):

(32) M3 (

e <%0 f ()
J e_%G(’)f(z) dz

RP

e 250 f(n)

33
(33) fe%G(z)f(z)dz
RP

< me(6fz) <

Vn € RP,
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whenever ¢ > ¢g, where n = = — 6.
Step II: Using (33) we get

(34) —hc("l) < ”c(gl‘l’) - f(z - 6) < gc("’)?
for any @ and 6, and for any ¢ > co, where the nonnegative functions g.(.) and h.(.) are defined as
LG(n)
ec n —EG(z

aem) = S L), sy = [t (2) s

ug(e) 2

-£G(n)

and ho(n) = f(n) - e,—f(l), wy(e) = /e%G(‘)f(Z)dz-

wy(e) A

By using (34) and the fact that g.(.) and h.(.) are nonnegative, we get

(35) c Iﬂ'c(a'w) - f(:l: - o)l < cmax {gc(ﬂ), hc('rl)} < Cgc(n) + Chc(n)

Finally, to obtain (27), we will give bounds on cg.(n) and ch.(n).
Notice that we can rewrite cg.(n) as

~ e2G(n) .
cge(n) = cf(n) (m— )

_ W s )L (1—Uf(6))
(%6) o) 1) +efen | -5~ )

Using the fact that f(z)e_%G(‘) < f(2) Vz and f(z)e_%G(‘) /" f(z) as ¢ /" oo for any fixed z, it
follows from the Dominated Convergence Theorem that 0 < uf(c) /1 as ¢ / o0. Also we know

that ¢ (efG(") —~ 1) | ¢ and therefore we get
c

ug(c)

This handles the first term in (36). Next, notice that whenever ¢ > 1,

o(1—us(c)) = /c(1_e-%G(')) f(z) dx

RP

/c (%G(z)) f(z)d= [since 1 —e™® < |z|V z € R]
RP

(37) (e%G(") _ 1) Le(>1).

IN

(38)

k/G(z)f(z)dz = my (a fixed constant)
Rp

So combining (38) and (37), we get from (36) that whenever ¢ > ¢o(> 1)

C G(n)% _ m p
(39) car(n) < s (SO 1) )+ TS Ve,

A similar argument shows that

(40) che(m) < kG(n)f(n)+ co(wsleo) — 1) f(n).
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(27) now follows by combining (35), (39), and (40).

Proof of Lemma 4.1: We have to prove that there exist fixed positive constants L; and Uy, such
that

I u
(41) Sﬂ'c ¢ (:B) g S""c(z) g Sﬂ'z (:l:), v T e Rp) V c Z C2,

for some c3 (> 1).
The following simple lemmas will be used in the proof; their proofs are omitted.

1 1
Lemma 7.1 z¢P(2) < —¢P(—=)V z € R.
p

VP VP
Lemma 7.2 For any p > 1, Vp/(?‘) Tr.

In the following, we supply the proof of the right side inclusion of (41), i.e., we prove that there
u
exist constants U; and ¢y such that S (=) C S:¢ (x) for all # € RP whenever ¢ > ¢;. The proof of
the left inclusion is completely analogous and is therefore omitted.
Notice that for a given € > 0, S (&) C S5 (=) if and only if / T.(8|lz)d0 > 1 — a. So, in
S&.(=)
order to prove the required result, we simply show that if ¢ = l—il, for suitable choice of positive
constants U; and ¢3(> 1), then / Tc(8|z)d8 > 1 — a for all ¢ > c,.

S5 (=)
Applying Theorem 3.1 and Theorem 3.2, we get respectively

M
(42) sup/ [me(6le) — wple — )| d0 < =2 V> e,
® ke
My
(43) and supsup | (8|z) — pp(z - 0)] < — Ve>cpV ke,
] ] C
where ¢g, ¢1, My, M, are as in Theorem 3.1 and Theorem 3.2.
Consider ¢ > 0 and any ¢ > ¢ V keq; let
i) = [ wla-0)do-(1-a)
5% (@)
= / pp(z — 0)do — / pp(x — 8)d8;
Skt 5o (=)

then we have

v

7.(6]2)d6 / on(@ — 6)d6 — / Imo(6]) — @p( — 6)]d6
55.(2) S3.(@) Sio(e)

[ ee-o)io-22 oy (42)
Sz (=)

v
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= 1-a460)+ [ pe-0)

55.(=)
(44) - [ wle-oae-22
S,?o (=)
Observe now that
6(e) = [ vola-o)s
kg —5<pp(e—0)<kY
(45) = / ©p(8)dé (> 0 for any € > 0)

kS —5 <wp(0)<kQ
So, by (44) we get

n(@le)is > 1-atsE©)t [ pple-0- [ ¢ye-0)i0- Mo

C
S‘;Erc ("’) Sﬁ-c ("’) S-%o (::)

1—a+68() + / on(a — )d0
me(8lm)>kd —¢
¢p(”‘o)<k3_%
M,
- [ e=-e)ae-=2
[

we(8lw) <k —e
Yp (""‘9)Zk2 - %

= 1-atie) = [ ee-ed -2t

c
ne(0|m) <k —e
‘Pp("’_a)zkg - %

(46)

v

- a+8(e) - / o, ( — 6)do — %

|7c(8]2)—¢p(=—0){>5
Therefore, for any £ > Mcl, we have from (43) and (46) that
(47) [ melle)ie > 1-a+be) - My,

55 (=) ‘

So, to show the right-side inclusion of (41), it is enough to prove that for some constant Uy > 2Mj,
R
I(jet ¥ >% be the unique solution of ¢?(x4(p)) — ¥?(Xa(p) + 7) = §. Then, we get from (45)

that
i) = [ elee

kg—5<pp(6)<kg

> (VB (xalp) + 7))~ VlVBxalo) ) (K - 5)

(48) VPV (VB (Xa(®) + 7K - ),

{i
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where the last step uses Taylor expansion and 7* is between 0 and . Again, by definition of v,

= ¢’ (Xa(P)) = ¢"(Xa(p) +7)
= m(xa(p) + 7**)90”(xa(p) +77)  [by Taylor expansion, with 0 < y*™* < 4]
< ©F (——— [by Lemma 7.1]

Lo

‘ 1 1
(19) =7 > S—pP(—)

N \/—
Combining (48) and (49), we get

¢
2

56) 2 ST (VA (e®) YR - )

VP
€ _,, 1 o €
> S SVVBX@)H - 5) by Lemma 7.2
E,.,0 € . |
(50) = —2—(La — 5))\ [ by denoting A = ¢ P(—\/%)Vp'(\/]_)xa(p))} .
. Mo +1 .
Now choose Uy = 2(M; + 1)V 2 0 ) clearly, Uy > 2Mj; now using (50), we get
2
é (ﬁ) > Yoy Ui —LX
¢ 2c 4c?
My+1 1 (Mo+1 ?
>
- c c2( Ak9 +M1+1) A
_ M, Mo +1 2
(51) > TO Ve>egy = (——/(\)E-I—M1+l) A

So, with the special choice of ¢ = %1- (> 2—]\0—4-‘-, as is required from before), we get from (47) that

T (Olz)d® > 1—a+é(c)— Mc_o_ [for all ¢ > ¢o V key]

S (=)
> 1-o [for all ¢ > ¢3 = ¢y V o V keq].

Hence,

U.
(52) Sp(z) C St (z) Vo€ RP Ve o



UNIFORM APPROXIMATION

Figure 1: Plots of Q¢ (z) as functions of z for different values of ¢
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Table 1:

Cel + T 2 [ 38 [ 4 | 8 [ 7 | 10 | 16 |
[ T 0.61854 [ 0.36599 | 0.25535 [ 0.19489 | 0.15721 | 0.11311 | 0.07949 | 0.04979 |

Table 2:

Cel 1 [ 2 [ 8 [ 4 [ 5 [ 7 [ 10 | 16 ]
[ 9% [ 0.86523 ] 0.91980 | 0.93571 | 0.94191 | 0.94483 [ 0.94735 | 0.94882 [ 0.94988 |

Table 3:

e t [ 2 [ 8 [ 4 [ 5 [ 7 | 10 | 16 |
[ a2 T 0.82399 ] 0.48623 ] 0.33277 [ 0.25020 | 0.20003 ] 0.14301 | 0.09999 | 0.05812 |

23
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