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Abstract. Three applications of robust Bayesian analysis and three exam-
ples of its limitations are given. The applications that are reviewed are the
development of an automatic Ockham’s Razor, outlier detection, and analysis
of weighted distributions. Limitations of robust Bayesian bounds are high-
lighted through examples that include analysis of a paranormal experiment
and a hierarchical model. This last example shows a disturbing difference
between actual hierarchical Bayesian analysis and robust Bayesian bounds,
a difference which also arises if, instead, a Type II MLE or empirical Bayes
analysis is performed.

1 Introduction

1.1 Basic Elements

There has recently been considerable interest in the development of the robust
Bayesian approach to statistics. Berger (1990) and Wasserman (1992) present re-
views. The basic idea is to replace the common single model and/or single prior
distribution in Bayesian analysis by wide (often nonparametric) classes of models
and/or priors.

If f(z|0) stands for the density of the data X given the unknown parameter 6,
and w(f) is the prior density of #, then (under mild conditions) the posterior density

of @ 1s
w(f|z) = f(=|0)m(0)/m(z|f, ),
where

m(z|f, ) =/f(z|0)1r(0) do

is the marginal density of X. Of interest is typically some functional ¥(f, ) (e.g.,
the posterior mean or a Bayes factor).
Suppose now that it is only known that

fer and/or mel,

where F and I are classes of densities. The most common robust Bayesian approach
is to then compute

ﬂ:finf W(f,7), b= sup o%(f,7),
feF,merlr

EF,mel’
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and report (1, %) as the range of possible answers. It may well be that knowledge
of this range suffices for answering the problem, and hence more detailed elicitation
of f and/or 7 can be avoided.

As a notational convenience, we will use the symbol N(z|u,o?) to stand for a

normal density in the indicated variable (here z), with mean p and variance o2.

1.2 Hypothesis Testing and Type II MLE

Several of the examples in the paper will involve hypothesis testing, and these will
connect with the common empirical Bayesian technique of Type II Mazimum Like-
likood. Testing examples will involve expressing model and/or prior uncertainty
through a parameter 7, and will reduce to analysis of a Bayes factor (of Hp to

H,) given by
_ [ fo(=|6)mo(6)d0
= [ f(z|0, 7)x(0|7)g(T)dbdT
Here, mo and w(f|r) will be specified, and g will be assumed to belong to a class

G of possible distributions. Robust Bayesian analysis in this scenario reduces to
determination of

B

R
B= 0L B = s T7(e[6, yn(6]r)g(r)dodr"
g€6

and the associated B = sup ¢ B- (In our examples, B will typically be infinite, and
hence of little interest.)
It is often convenient to choose

G = Ga = {all distributions},

since then

B = inf B= [ fo(z|6)mo(6)d0

T g€Ga m*(z|7) ’

where

m*(a:|1')E/f(:v|0,r)7r(0|r)d0,

and 7 is that value which maximizes m*(z|7). Such a # is called a Type II maximum
likelihood estimate, and so B computed in this way could also be called the “Type
II MLE Bayes factor.” Lower bounds on Bayes factors are thus often equivalent to
Bayes factors computed under the Type II MLE approach.

1.3 Preview

This paper has two goals. The first is to review the types of applications of robust
Bayesian analysis that are possible. The specific applications considered (in Sec-
tion 2) are the development of a Bayesian Ockham’s razor, detection of outliers, and
analysis of selection models (i.e., models where f(z|#) depends on the mechanism
by which the data is selected and/or reported).
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Section 3 explores the limitations of the robust Bayesian/Type Il MLE approach.
The main limitation is simply that the bounds may be too extreme, resulting in an
indeterminate answer. Several examples are given of this, including an example where
the bounds are shown to behave very differently than the corresponding posterior
quantity for any fixed prior distribution. The example involves a hierarchical model,
and also exposes a serious limitation of the Type II MLE method.

2 Applications of Robust Bayesian Bounds

2.1 Model Selection and Ockham’s Razor

One of the most interesting applications of robust Bayesian bounds has been the
development of an “automatic” Ockham’s razor (Berger and Jefferys, 1992, and
Jefferys and Berger, 1992). The scenario is that of comparing two models for data
X ~ f(z}0). The “simpler” model is My: 8 = 6y, while the “complex” model is M;:6
arbitrary. Also, under M, beliefs about 8 are symmetric about 0 (which is typically
the value corresponding to existing theory), with larger values of || being no more
credible than smaller values.

Ezample 1. One of the great scientific projects in the late 1800s and early 1900s
was to explain the anomalous behavior of the motion of the perihilion of Mercury
(the point at which Mercury is closest to the sun in its orbit). For our purposes,
it is sufficient to suppose the data was X ~ N(6,(2)?) (in units of seconds of arc
per century), where Newtonian physics with known astronomical objects predicted
@ = 0. The actual data was =z = 41.6, clearly calling for an alternative explanation.

A number of alternative theories were proposed. Perhaps the two best theories
were general relativity (by Einstein) which predicted 6 = 42.9 (call this My, i.e.,fp =
42.9), and a theory of Newcomb that gravity follows an inverse (2+¢) law (instead of
inverse square). Converting € to f (a deterministic transformation), and noting that
Newcomb’s theory equally allows negative and positive values of € (corresponding to
negative and positive values of §) and that existing scientific belief would not have
caused more prior weight to be given to larger values of |¢| (equivalently, |#]) than
smaller values, we see that Newcomb’s model can be described statistically by the
model M defined at the beginning of the section.

The Bayes factor of My to M, in this situation is given by

_ Helo)
BO) = 7o)

where g(6) represents the prior density of § under model M;. Because of the prior
beliefs about 8, it is reasonable to restrict g to be in the class

g € Gsu = {9(f) = h(]6]), where h is nonincreasing}.

Then, it is easy to show that a lower bound on B(yg) is

. f(=]60)
B = inf B(g) = = .
=7 yébso (9) sup == [ f(x|6)do
r>0

(2.1)
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For the special case where X ~ N(6,0?) (02 known), B can only be computed
as the iterative solution to an equation (see Berger and Sellke, 1987), but can be
approximated by

b= et @ [u+ vigmT19), (22)

where to = |z — 6o|/0 and ¢, = |z|/o. (This approximation is within o(1) of B as
ty — oo, and is accurate within 1% if ¢; > 1.4).
In the perihilion example,

to = |41.6 — 42.9]/2.0 = 0.65 and t; = |41.6]/2.0 = 20.8,

80

B= \/g exp{—;: (0.65)°} [20.8 + v/21og(208 + 12)| = 15.04.

Thus the data supports the simpler law (general relativity) over the more complex
law by at least a factor of 15 to 1. That this happens in spite of the fact that the
data “fits” M, even better than it fits My, shows that the Bayes factor clearly acts
as an Ockham’s razor.

Study of (2.2) shows that the Bayesian Ockham’s razor operates very sensibly.
If the simpler model does not adequately fit the data, i.e. if ¢ is large, then B will
be small, indicating substantial odds against the simpler model. But if the simpler
model adequately fits the data, the more complex model becomes penalized by a
factor of (roughly) ¢1, which can be thought of as the (scaled) amount by which the
free parameter in the complex model has to be adjusted (using the current theory
as a baseline) to fit the data.

2.2 Outlier Detection

Bayesian detection of outliers has been extensively studied; references can be found
in Bayarri and Berger (1992). The most common approach uses a model for outliers,
which is usually taken to be a generalization of the original model, involving an extra
parameter. The original model is then typically a particular case of the contaminating
model corresponding to some specific value of the extra parameter, and testing for
outliers is reduced to testing for this specific value of the extra parameter. Since little
is usually known about the contaminating distribution, robust Bayesian methods are
a very natural way to approach outlier detection.

Here, we limit ourselves to discussion of the simplest case, that in which the
goal is to detect whether a specific observation, z, is an outlier, assuming that all
the rest are not. We assume that the data are observations of n + 1 independent
random variables Xo, X1, ..., X,, originally modelled as X; ~ fo(z:|6), but we rec-
ognize that there is a (small) probability, £, that X is an outlier generated from the
contaminating density f(x|0, 7); hence,

Xo ~ (1 - €)fo(xo|0) + 6f(.'l)0|0, T).

n
Let © = (z1,...,%,) denote the non-outlying observations and £(8) = [] fo(z:]0)
i=1

denote the likelihood function for  based solely on .
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Testing Ho: zo ts not an outlier, versus Hy:xo is an outlier is, with the above
formulation, equivalent to testing Ho: Xo ~ fo(zo|0) versus Hq: Xo ~ f(z0}8,7), so
that the expressions in Sect. 1.2 apply. Here, the Bayes factor in favor of z being
non-outlier can be written

- fl(ﬂ)fo(zo|0)7ro(0)d0 — mo(zalz)
J [U0)f(zol0, T)m(8|7)g(T)d0dr — m(zo|z)’

where mg and m are the (posterior) predictive densities at 2o under the models fo
and f, respectively, i.e.,

mo(zolz) = / fo(@ol8)mo(6]z)ds,
m(zo|z)=//f(zo|0, T)n(0]x, 7)g(r|x)dodr.

B

(2.3)

Ezample 2 (Scale Contamination). A widely used model for outliers is that in which
the base model, fo, is the N'(8,02) distribution (initially assume that ¢ is known),
and the distribution of the possible outlier Xj is

(1 — &)N(zo]0, 0%) + eN(z0|0, T0?),

with 7 > 1 unknown. We assume that # and 7 are independent a priori, so that
7(0,7) = n(0)g(), and =(f) = mo(6) = m(f|r) is taken to be a N(f|mo, 02) density.
The Bayes factor (2.3) can then be shown to be

N(zolm1, 01 + 0?)

B =
fN(:colml, o? + ro?)g(r)dr’

(2.4)

where my = AT + (1 — A)my, 0 = Ao?/n, and A = no?/(o? + no?). (Using the
non-informative prior 7(#) = 1 is equivalent to taking A = 1 above.)
The infimum, B, of this Bayes factor over the class G4 = {all distributions} of

) ==

prior distributions for  is then given by

N(xo|m1, 0% +0?) 2
B = = — 1 .
sup N(zo|my, 03 + T0?) ¢ zexpi=#"/2}, for 2> 1, @5)
T

and B = 1 for z < 1, where z = |£o — m|/s1, and m; and s, = \/0? + o2 are the
mean and standard deviation, respectively, of the predictive distribution mq(zo|x)
of g under the non-outlier model.

When o2 is unknown, and the usual Normal-Gamma prior for (6, 2) is taken,
that is, 0|6 ~ N(mog, (ho6)™1), § ~ Ga(ao,bo), where § = 1/02, the infimum B of
the Bayes factor over the same class G4 of priors for 7 can be computed to be (see
Bayarri and Berger, 1992)

(at1)/2
B==z (:_:-zlz) for z > 1, (2.6)

and B = 1for z < 1, where @ = 2(a; — 1), a1 = ap+(n—1)/2, and 2 = |zg —m1|/51
where, here, m; = AT+ (1 — A\)mg, A = n/(ho + n), 2 =[(1 + h1)/h1][b1 /(a1 — 1)],
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n
hy = ho+n, and by = (2bo+ Y (zi — %)% +Aho(F—mo)?)/2. For the non-informative
i=1
prior m(0,02) = 1/a2, these become a = n—3,a; = (n—1)/2, my =7, hy =n, and
n

b1 = igl(z; has 5)2/2

In Table 1, we give B for certain values of z, both in the case of known o2 and
unknown o2 (for & = 20). Note that z does not numerically represent the same quan-
tity in both cases; in each case it is, however, the standardized distance between zg
and its predicted value m; under the predictive distribution of X, derived under the
non-outlier hypothesis. In Fig. 1, the lower bound B for the case of unknown o2 is
graphed, as a function of 2, for a = 10, 20,40,100. (B for known ¢? is indistinguish-
able from that corresponding to @ = 100.) Both Table 1 and Fig. 1 were derived
using the non-informative priors.

Table 1. Lower bounds on the Bayes factor of non-contamination to scale contamination.

z 1.5 2 2.5 3 3.5 4 4.5
a* known .8029 4463 1811 .0549 .0126 .0022 .0003
o° unknown 8174 | .4922 .2401 .1012 .0387 .0139 .0049

2 3 4 5

Fig. 1. B for 02 unknown as a function of z for a = 10, 20, 40, 100.

To interpret these results, recall that B is the lower bound on the Bayes factor
for zo being a nonoutlier to zy being an outlier. Hence, when 2 = 2, the evidence
that zy is an outlier is no stronger than about 1 to 2. Even when z = 3, so that 2
is three predictive standard deviations from its predicted location, the evidence for

T being an outlier is no stronger than 1 in 20 (known 0?) or 1 in 10 (unknown o2,
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a = 20). This suggests that outlier rejection standards need to be set higher than
is commonly perceived. Unless z exceeds, say, 3 or 3.5 one should not consider the
evidence that zq is an outlier to even possibly be strong.

2.3 Weighted Distributions

Assume that the random variable X € R! is distributed over some population of
interest according to f(z|f), 6 € (r,s), a (possibly infinite) interval in R!, but that,
when X = z, the probability of recording = (or the probability that z is selected to
enter the sample) is w(z). Then the true density of an actual observation is

futale) = 200, @7

where vy () = Ep[w(X)). There is, actually, no reason to require w(z) to be a
probability; all we require is that w be nonnegative and that Eg[w(X)] < oo for
all 6. Then w can be interpreted as a weight function that distorts (multiplies) the
probability or density f(«{f) that observation = gets selected. Selection models occur
often in practice (Rao, 1985; Bayarri and DeGroot, 1992).

Often the specification of w(-) is highly subjective. It is thus of considerable
interest to study the robustness of the analysis to choice of w. The problem becomes
particularly important in the multi-observational setting, because the effect of the
weight function can then be extremely dramatic. Suppose X3, X3, ..., X, are i.i.d.
from the density (2.7), so that the likelihood function for ¢ is

Ly (8) o< 1(0)[vw ()] ™, (2.8)

where 1(8) o H f(=:]0) would be the likelihood function for the unweighted base
density. If 7r(0) 1s the prior density for 6, the posterior density is then

OO 0)
O ) = ) e O 2(0)d0) 29)

assuming = is such that the denominator is finite. Expression (2.9) suggests that, at
least for large n, the weight function w can have a much more significant effect on
7(0|z, w) than might the prior . Hence we will treat 7(6) as given here; for instance,
it might be chosen to be a noninformative prior for the base model f(z;|0).

In Bayarri and Berger (1993), this problem is studied for the class of weight
functions

= {nondecreasing w: wi(z) < w(z) < wy(z)}, (2.10)

where w; and w; are specified nondecreasing functions representing the extremes of
beliefs concerning w. Posterior functionals

$(w) = / £(0)r(0]z, w)d8 2.11)
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are studied for a variety of shapes of the target £(¢). When £(6) is monotonic (e.g.,
£(8) = 0 or £(0) = 1(¢,00)(8)), the extreme points in W at which ¢ = sup ¥(w) and
w

¥ = inf ¢(w) are attained were shown to have one of the following two forms:
- w

o=z Wrsese, -
wa(z) if r < z < hac)

w(z) = {c if hao(e) < 2 < hy(c) , (2.13)
wi(z) ifhi(c) <z <s

where hi(c) = inf{z: wi(2) < c} and hy(c) = sup{z:wa(z) > c}. The condition
needed for this result is primarily that f(z|f) have monotone likelihood ratio.

Ezample 3. Suppose f(z;|0) = 0 exp{—0z;} fori =1,...,n, where £; > 0 and 8 > 0.
Any z; that is less than a value T is, however, not observed. Any z; that is greater
than T3 is observed. For T} < z; < T5, the probability of its being observed is not
known, but the probability is known to be nondecreasing. This specifies the class of
weight functions in (2.10), with w1(z) = L(1, 00)(2) and wy(z) = L(7,,00)()-

Suppose £(8) = @ is of interest, so that (qb,E) is the range of the posterior mean
as w ranges over W. Then one can explicitly minimize and maximize (2.11) over w
of the form (2.12) and (2.13), obtaining ¢ = 1/(F—T}) and ¥ = 1/(Z~T3). Whether
or not robustness is achieved is thus easy to determine. Note that it depends on the
size of Z as well as the closeness of T} and 75.

3 Limitations of Robust Bayesian Bounds

Robust Bayesian bounds are, of course, just bounds, and their usefulness depends on
how close they are to the “real” Bayesian answer (that which would hypothetically
arise from infinite reflection on subjective elements of the problem). If the class of
priors (or models) is too big, then the bounds can be expected to be poor. We
illustrate this here with three examples. The examples also highlight the strong role
of the data in determining whether or not a class is “too large.” Two of the examples
also indicate potential inadequacies of the Type II MLE approach.

3.1 Outlier Rejection with Location Contamination

A commonly used alternative to the scale-contamination model for outliers that was
considered in Sect. 2.2 is the location contamination model. As in Sect. 2.2, assume
that z1,23,...,z, are non-outlying observations from a N (9, ¢2) distribution, but
that z¢ is generated by the mixture

(1 —€)N(z,l8,0%) + eN(z0)0 + 1, 02).

We limit ourselves, here, to the case in which o2 is known. (Lower bounds when

? is unknown are derived in Bayarri and Berger, 1992.) The infimum of the Bayes

o
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factor (2.3) over the class G4 = {all priors} for the location parameter 7 is given by

— N(zolmh 5%)

=4 sup N(zo|my + T,
T

3 = exp{-2*/2},

where z, m; and s? are defined following (2.4) and (2.5). B, differs from B in (2.5)
by a factor of /¢ z. For z in the “interesting” range 2 to 4, this is a factor of from
3.3 to 6.6, a dramatic difference.

When a lower bound seems to be too small to be useful, one should investigate
whether the class, G, of priors that is used is too large, in the sense of containing
unreasonable prior distributions that could be removed from consideration. In the
case of G4, which was used to derive B ,, the minimizing prior is a point mass (at
T = zo — my). Point mass priors are typically quite unreasonable as reflections of
prior belief. A much smaller class of “reasonable” priors is

Gsu = {densities g(7) = h(|r|), where h is nonincreasing}.

This class represents symmetry in prior beliefs about the contamination, and the
belief that larger absolute contaminations should receive no more prior weight than
smaller absolute contaminations. '

In Bayarri and Berger (1992), lower bounds on B over Gsy were obtained. For
the 02 known case, the lower bound is

Bo — 2 exp{—2%/2}
VT exp{—(z + )22} — exp{~(z = 7)?/2}’

and Bgy = 1 for 2 < 1, where 2 is as in B, above, and 7 is the unique solution of
¢z +7) + (2 = )] = &(z+7) - 8(2 —7),

where ¢, @ represent, as usual, the standard normal p.d.f. and c.d.f., respectively.
Table 2 gives B, and Bgy for certain values of z, all obtained with the non-
informative prior 7(#) = 1.

for z > 1,

Table 2. Lower bounds on the Bayes factor of non-contamination to location contamina-
tion.

z 1.5 2 2.5 3 3.5 4 4.5
B, .3247 .1353 .0439 0111 .0022 .0003 .0000
Boy 7493 .3835 .1458 .0420 .0093 .0016 .0002

Clearly By is much larger than B 4. It is also very similar to the bound B in (2.5)
(see, also, the first row of Table 1) that was obtained for the scale-contamination
model. This is evidence that G, is simply too large to be useful when considering
location contaminations.
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It is interesting that (2.5), which seems reasonable, was itself obtained using
Ga (but for the scale-contamination model). In Bayarri and Berger (1992) it is
shown that going from G4 to a smoother class has little effect on B in the scale-
contamination model. Hence G4 does not appear to be too large when scale-contamin-
ations are being considered. Indeed, we recommended (2.5) (or (2.6)) for actual use
precisely because it seems not to be “too small,” while at the same time being easy
to compute (because of the simplicity in using G4).

3.2 A Paranormal Example

Jefferys (1990) analyzes an experiment of Jahn, Dunne, and Nelson (1987) in para-
normal phenomena. The statistical question is to test Ho: 6 = 0.5 versus H;:0 # 0.5,
on the basis of z = 52,263, 471 successes out of n = 104, 490, 000 Bernoulli (6) trials.
Here 6 = 0.5 corresponds to “no paranormal phenomenon present.” The interest in
this particular example is that the (one-tailed) P-value is less than 0.00015 which,
from a classical perspective, would indicate extremely significant evidence against
Hg.

A robust Bayesian analysis of this example might reasonably consider, as a class
of prior densities on Hy:6 # 0.5,

Gsu = {densities g(f) = h(|60 — 0.5), where h is nonincreasing}. (3.1)

Symmetry is a typically-made assumption in paranormal research (to avoid the ap-
pearance of prejudging the conclusion), and it is reasonable apriori to give no more
weight to large differences from @ = 0.5 than to small differences.

As in (2.1), it follows directly that B, the minimum Bayes factor over Ggy,
is attained at a Uniform (0.5 — r, 0.5 + r) distribution. It can be computed that
B = 0.0064, attained at r = 0.00025. Jefferys also shows that, for even moderately
large r, say r > 0.55, it will be the case that B > 1 which would imply that the
evidence actually favors Hy for such r.

Note, first, that even the lower bound B = 0.0064 is much larger than the P-value
(even the two-tailed P-value is just 0.0003). Hence B is not nearly as misleading as
the P-value. However, a strong case can be made that B is itself misleading, with
“natural” values of r (or natural priors) giving much larger Bayes factors.

The problem here is, again, that B seeks out an unusual prior. It would be unusual
for someone to specify, apriori, that their prior beliefs about # are concentrated
fairly uniformly over the interval (0.49975, 0.50025), and if a much larger (or, for
that matter, much smaller) interval were specified, the Bayes factor would be large
enough to favor Hy.

Part of the interest here is that Gsy in (3.1) is usually considered to be a “nice”,
reasonably restricted class of priors (compared to, say, G4 = {all priors}). But even
a nice class can be unreasonably large in the face of a large amount of data.

A final point of interest is that the Uniform (0.49975, 0.50025) prior is the Type II
MLE prior in Gsy, i.e., is the prior in Gsy most supported by the data. However,
the “likelihood” in, say, r, namely

0.5+

m(zlr) = 51; /0 £(216)ds,

B-—r
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is sharply peaked about r = .00025, but virtually all the “mass” of the likelihood is
removed from this peak. This is the type of likelihood for which use of the MLE is
highly questionable.

3.3 Hierarchical Bayesian Analysis

An interesting discrepancy between robust Bayesian and actual Bayesian analysis
arises in hierarchical models. To take the simplest case, suppose X ~ Np(#,I) and
6 ~ Np(0,72I), and that we wish to test Ho:0 = 0 versus Hy:0 # 0. Interest will
focus on how uncertainty about 72 is handled. In Sect. 3.3.1 the robust Bayesian
approach is illustrated, while Sect. 3.3.2 presents the strict hierarchical Bayesian
approach. The conflict between the two is discussed in Sect. 3.3.3.

3.3.1 Robust Bayesian Approach For illustrative purposes, it suffices to con-
sider simply the class

Gn = {Np(0, 72I) distributions, 7° > 0},

as prior distributions for §. This is studied in Edwards, Lindman, and Savage (1963),
where it is shown that, for observed z, the lower bound on the Bayes factor, over
gN ) is
Ny (|0,1)
B =inf
X N, 16, DN, (3]0, 721)d0
Np(z|0,1)
Y » (2|0, (1+ #2)I)

= 1+ exp{-55),

where 72 = max{0, 2|z|? — 1} is the Type Il MLE for 72

Interest often focuses on values of z for which the cla.ssmal P-value for testing
Hy: 8 = 0 is approximately some specified a. Since [X|? is chi-squared with p degrees
of freedom under Hy, it is the case that the P-value is & when (as p — o0)

|z = p+ z40/2p + O(1), (3.2)
where z4 is the (1 — a) quantile of the standard normal distribution.

Lemmal. For [z[? as in (3.2) and o > &,
. 1,
plllgﬁ= exp{—E 22} (3.3)

Proof. Observe that |z|? > p for large enough p (since a > %), so that then

Izl

tog 2 = (%) flos( =Ly + 1 - Ly (3.4)

Expanding this in a Taylors series in |z|?/p about 1, and using (3.2), yields the
conclusion immediately.
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3.3.2 The Strict Hierarchical Bayesian Approach A strict Bayesian deals
with uncertainty about 72 by placing a prior distribution, g(72), on 72. Then the

Bayes factor is
B(7) = Np(=[0, I)/m(z),

where

m(z) = /ooo Np(z[0, (1 + T®)I)g(7?)dr2.

Lemma 2. Suppose g(72) is bounded and that g(7%) x C(2)* as 12 — 0, for con-
stants C > 0 and a > 0. Then, for |z|? as in (3.2) and o > 1

B(r) = Kp+/? exp(— 22}(1+o(1) (3.5)
as p — 0o, where
K = {(2*D0/x C B [(2a = 2)* 1o 2) (D)},
with Z being standard normal.

Proof. Transforming to § = (1+ 7%)~! yields
! 1 1
m(z) = / (2m) P26 exp(— 8le Y5 — 1)d.
0

Application of Laplace’s Method to the term §P/2 exp{—16|z|?} yields, as p — oo,

_ew(op2) (2 \OE [ p 1
m(z) = VP(2r)(p=1)/2 : <|-’v|2) /0 N (8] lz’ B l4)9( —~1)ds(1+ 0(%);)

The indicated bound on the error term arising from Laplace’s method is obtained
by observing, from (3.2), that

p 2 1
W =1- Za\/g'*' 0(;) (37)
Since, then, 0
14
—==(140
= 21402,

it is irnmediate from the assumptions on g and a > % that
[ N6t 200G~ vas
= [ N(z[0,1)g(1 fz—-z"—ldz
/M/_u )9(1/1(y 2ea — )7~ 1)

= ./_Z: N(z|0, I)C[\/I;(za — 2)]%dz(1 + o(1))

af2
= (%) CEZ[(Za - Z)ﬂ 1(—°°,za)(Z)](1 + o(1)). (3.8)
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Observe, next, that Lemma 1 can be restated as (see (3.4))

p/2 2
4 _ Pli_ || _1_ 2
(|z|2> = xp {2 (1 ? ) * g%y (L+o(l))
Combining this with (3.6) and (3.8) yields

(27)?/2 exp{—|z|*}
g(;xr)t—llj%zz ) ]':rﬁT -exp{§(1 - E}’E) + %2‘2’} ) ﬁﬁ’m(l +o(1))

Upon simplification, this is equal to the right hand side of (3.5), except for an extra
factor of (|z]2/p). But this factor goes to one by (3.7), completing the proof.

B(w) =

Priors, g(72), that are typically considered in hierarchical modelling, such as
Gamma (a + 1,b) priors or any continuous bounded prior that is positive at zero,
satisfy the conditions of the lemma. In the latter case (i.e., ¢ = 0), note that the
constant in (3.5) can be written K = 1/[2/7(1 — )x(0)].

3.3.3 The Discrepancy From (3.3) and (3.5), it is clear that, for large p,

Since a > 0, this demonstrates that B can underestimate the actual Bayes factor,
B(), in hierarchical models by an enormous factor if p is large. And recall that
a > 0 includes virtually all standard proper priors for 72. Hence the indication is
that robust Bayesian bounds based only on first stage priors can be excessively small
in high dimensional hierarchical models.

The discrepancy observed here is even more surprising when one considers that
#2 — 72 as p — oo. And the prior at which B is attained is the Np(0, #2I) prior,
which is actually thus converging to the true prior. Nevertheless, the answer obtained
by using # can be dramatically wrong. The moral here obviously applies as well to
the Type II MLE approach, which here is also called the empirical Bayes approach.

There is a natural and simple robust Bayesian solution to this problem; simply
work with a class of prior distributions on 72. This has been studied in Sdnchez

(1990).

2

4 Conclusion

We make no effort to review the various insights that arose through study of the
examples in the paper. Overall, we feel that a cautious optimism towards use of
robust Bayesian bounds is warranted. They are effective in a number of scenarios
for settling concerns about robustness, and can provide useful quantitative measures
for phenomena such as Ockham’s Razor and outlier detection.

At the same time, one must be wary of using the lower bounds themselves as a
substitute for “real” Bayesian measures. Real Bayesian measures can differ substan-
tially from the bounds, even when the priors on which the bounds are based seem
to be extremely close to the “true” prior. The examples also indicate that care must
be taken when using the Type II MLE or empirical Bayes approach.
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