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Abstract

We use the wavelet decomposition and reconstruction methods of multireso-
lution analysis to estimate a Holder continuous function f from noisy, sampled
data in the white noise model y; = f(z;) + ¢; where the random variables ¢; have
mean zero and are uncorrelated. The result will be a class of consistent estimators
of the regression function f. In wavelet multiresolution analysis, any L, function
is completely described by its wavelet coefficients. Many important properties of
the function can be determined from this sequence of coefficients. We begin with
a local optimal-order interpolatory scheme to get the empirical scaling function
coefficients at the highest resolution. We then shrink and truncate the wavelet
coefficients produced by the multiresolution decomposition so that the noise is
reduced. The estimator is the function derived from the multiresolution recon-
struction process based on these modified wavelet coefficients. It is local adaptive
to respond spetial differences of data at different lacation. The wavelets used in
this study are B-spline wavelets which are bi-orthogonal wavelets. The results can
also be applied to orthogonal wavelets with essentially no modification.

Keywords: wavelet shrinkage, wavelet threshold, nonparametric regression,
B-spline, multiresolution analysis.



1 Introduction

The objective of this article is to use B-spline wavelets (wavelets based on B-splines)
to estimate the function f from a noisy sample y; = f(z;) + €, ¢ = 0,---,n. We
assume that the unknown function f is Ho6lder continuous and that the design points
{z:}i=o,...n are equally spaced. The random variables (noise) {¢;}:=q,...» are uncorrelated
with mean zero and variance o2. This estimation problem has been studied using many
other methods such as kernel estimators, moving linear smoother, penalized smoothing
spline etc. Many of these are, in one way or another, linear estimators. The application
of wavelet theory in the above problem is an interesting new nonlinear approach.

Since the wavelet transformation of {y;} is the sum of the transformation of {f(z;)} and
the transformation of {¢;}, it is important to understand the behavior of the wavelet
transformation of white noise. We study the behavior and use our understanding of it
to form a class of consistent estimators of the regression function f.

2 B-Wavelet and Interpolation Scheme

Let ¢ and ¥ be a pair of functions (scaling function and wavelet function) which provides
a wavelet analysis of L2(R). Define ¢;(-) = 29/2p(2 - —k) and ;4(-) = 29/24(27 - —k),
and let V; = closrz(r){¢;r : k € Z}, and W; = clospe(ry{%jx : ¥ € Z}. Then these
subspaces of L?(R) have the following properties:

(10) eCcVacVWVcWCoeeg

(2°) closzs{Ujez i} = LA(R);

(3% Niez Vi = {0};

(4°) Vin=V,®W,, jeZ;

(5% f(z) eV, = f(2z) €Vinn, JEZ.

In other words, any function f in L?(R) has a wavelet series representation:
fl@) = Y dipin(z)
5k

(2. 1) = o+ Waf+Wof + Wif+-- =Puf+ Wuf+Wnmf +---

where (W;f)(z) = ¥ d; k% x(x) is the projection of f onto the space Wj, (Puf)(z) =
>k emepmi(z) is the projection of f onto the space Vi, and Pji1f(z) = P;f(z) +
W; f(z) for all integer j and M.



Wavelets also provide unconditional bases and characterizations for many functional
spaces other than L%(R). For instance, the Holder spaces C*(R) which are defined as:

|f(z + k) — f(z)|
A"

C*(R) ={f € L®(R); sup <o} O0<ax<l
z,h

C*(R) = {f € C*(R); f™ ec*} a=n+ad 0<d <1

A function f is in C*(R) if and only if there exists a constant C < oo such that the
coefficients d;; in the wavelet representation ( 2.1 ) of f satisfy

(2. 2) |d;x| < C27G+)i Vi kez

Therefore a Holder continuous function’s wavelet coefficients have exponential decay
rate. On the other hand, if we use a set of wavelet coefficients which have some expo-
nential decay rate to construct a function, then this function would have a certain degree
of continuity, or smoothness. For the wavelet characterization of functional spaces and
Hoélder continuity, see [1, 2, 3, 6].

A function f in L?(R) can be approximated as closely as desired by its projections
on V; as seen by (2°). The most important intrinsic property of these spaces is that
more and more ”variations” of the projections are removed as j — —oo. In fact, these
variations are peeled off, level by level in decreasing order of the ”rate of variations” and
stored in the complementary subspaces W; as in (4°). One of the features of the wavelet
theory is that this ”peeling off” process can be made very efficient by an application
of the property (5°). That is, once we know the coefficients {cass}rez of a function
Puf(z) = Xk emurpomi(z) in Vag, then a recursive decomposition algorithm will quickly
give us the decomposition

(2. 3) Puf =Wuaf+Wuoaf+- -+ Wyumf + Pu-mf

where My is an arbitrary integer depending on the application problem. On the other
hand, if we know the coefficients {dp—¢r}kez of War—ef for £ = 1,2,--., My, and the
coefficients {car—m, k }kez of Prm—m, f, then the reconstruction algorithm will quickly give

us Puf.

There are many choices of the functions ¢ and ¥. In [1, 4, 5], it is proved that ¢(z) =
Ny.(z) and ¥(z) = L{™(2z — 1) provide a wavelet analysis of L?(R), where N,, denotes
the mth order B-spline

Np(z) = (Np—1 * Np)(2) = /N —1(z —t)dt



with Ni(z) = Ijo,1)(2), Lam(z) denotes the (2m)th order fundamental cardinal interpo-
latory spline and its mth derivative is

2m—2 ) 7

m _1 . m
Lz -1)= Y e Nom(j + )N (22 — )

3=0

where N, (m) is the mth derivative of N,,.. The wavelets introduced here are called
B- wavelets because they are constructed from B-splines. We need to point out that
B-wavelets are semi-orthogonal wavelets (see [1,4,5]). In most of our analysis we use

cubic (m = 4) B-spline wavelets, ¢(z) = Ny(z) and 9(z) = L2z —1).

In applications, one often truncates the wavelet series representation of f in ( 2.1 ) to
Pumf whose coeflicients might be approximated by the observed data. Then one works
on the decomposition ( 2.3 ) of Puf.

In the problem of recovering a function f from a noisy sample, we can not get Puf
because we do not know f, we only have finite number of f observations which are
confounded with noise. But there is a candidate to replace Py f to give us a starting
point.

Applied mathematicians developed a completely local interpolation scheme [1 4, 5]
using mth order B-spline. It utilizes only finite blocks of data mformatmn but gives the

optimal order of approximation. That is, with a finite sequence {w kz.. (m)}
(2. 4) (Puf)(z) = Z{Ew o 2—ity ] (il 2Y)} N (2M 2 — )
satisfies:

{ (Puf — F)(ilm/2M) = 0, JE€EZ
(2. 5)

1Paef = fll = O(1/2m™), M-o feCm™

where 1,,, is a positive integer depending on the order m of the spline. M is an integer
and [, /2™ denotes the sampling rate. Note that Py f is an mth order spline with knots
at 27MZ. For m = 4, {wiq, w3, Wz, w1, wso} = {1/48,-1/12,-1/8,7/12,29/24}
and Iy, =2

We will use Py f to approximate Parf. Ppf depends only on f’s values on integers
or dyadic numbers, thus it is determined completely by the observations of f, whereas
the determination of Py f involves convolutions of f with other functions. Both Py f
and Py f live in the same subspace Vjs. While Py f is the L? projection of f onto Vi,
Py f is the optimal approximation to f in Vjs in the sense of ( 2.5 ). Therefore for
smooth functions such as Holder continuous functions, we expect that ( 2.4 ) gives a
good approximation to Pysf.



3 Decomposition and Reconstruction Algorithm,
Representation Function of Sample

The decomposition ( 2.3 ) of Purf is defined as follows:
{ (Wa-ef)(z) = Za dip(2M 2 — n)

(PM—lf)(w) = Zn cf‘(p(2M_£.'L‘ - n) L= 1a 2’ tet aMO

(3. 1)

Notice that we write ¢t = cpr_,2M =92 and @’ = dpr—0,2M~9/2, Thus ( 2.2 ) becomes
(3. 2) e ()l < c27=M-9  fece

The wavelet coefficients at different levels satisfy the relationship

{ ¢ = Tn tn-arci?

dfc = Zn bn_QkaL—l £= 1,2, ey, Mo

(3. 3)

Two constant sequences {a,} and {b,} have at least exponential decay rate and satisfy
Y an, =2, b, =0. The decomposed function components Was_1 f,---, Wap—m, f and
Pum-m,f can be processed by modifying the wavelet coefficients {cM} and {d‘} into

{&M0} and {d}. To reconstruct the function far(z) = Ppf(x), use the reconstruction
algorithm: )
{ fu(z) ==, 8p(2Mz —n)

& = Ta(Pr-2mll + Gro2nds)  £=1,2,---, Mo

for sequences {a,}, {bn}, {Pn}, and {¢.} as well as their properties, see [1, 4, 5]. The sim-
ple recursive form of this wavelet transformation is the property for the implementation
of the algorithm.

(3. 4)

The cubic B-spline interpolation scheme represents the sample

(3. 5) {¥itizo,m = {f(2:) + €i}iz0,n z; =21
as a spline series
Pyy(z) = ;cﬁw(ﬂw —n)
= Xn:cg(fﬁp(?Mw —n)+ an cn(e)p(2Mz — n)
(3. 6) = Puf(z) + Pye(z)
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where {2} = {c2(f) + c2(¢)} is the approximation to {ca,} which are the coefficients

in Ppf + Pue, and
{ A(f) = Xi wnyz—2if(z:)
(3. 7)
A(e) = T wnta-2ii

We will use ( 3.6 ) to approximate
(3. 8) Puy = Puf + Pue
where Pre := Pu[Pume] = Pue. And ( 3.8 ) will serve as our theoretical model.
The decomposition of Ppy is
Puy(z) = Way-1y(z) + - - - + Wr-my(z) + Pr-aoy(x)
Way—ey(2) = War-ef(2) + War-ee(2) = Za(dn(f) + di(€))$(2Y 4z — n)

- Pr-mo¥(2) = Pru-mo f(2) + Pr-me(x) = Tp(cM(f) + cMo(e))p(2M Moz — n)

We call function Pyy the representation function of the sample ( 3.5 ) because the
noisy sample of the underlying function f is just the exact sample of function Pyy at
some dyadic numbers. Since the sample is the composition of the underlying function
and noise, we do not simply do reconstruction to get the original noisy sample back,
we modify the wavelet coefficients to get a smoothed estimation fM = Ppf of true
underlying function f. In order to do so, we have to be able to see how the random
noise affects the wavelet coefficients.

4 Analysis of Variance of Wavelet Decomposition

We use Ppry defined in ( 3.6 ) to represent the sample ( 3.5 ). For a noise free sample
from a cubic polynomial segment, Pyy reproduces the polynomial segment. In other
words, Py f = f if f is a cubic polynomial. This can be shown directly from ( 3.6 ).
Such low degree polynomial reproducing ability is especially important for smoothing.

For noisy data, Pyy(z) = Pum f(z)+ Pye(x) has expectation Pasf(z). By (2.5 ) we know
that P f(z) approaches f(x) as M — oo for f having a certain degree of continuity,
therefore the expectation of the function Pyy would approach the truth f. However we
can not use Pyy to estimate f simply because it is too noisy.



Assuming the variance of {¢;}i=o,...n is 0%, the variance of Ppe(z) is between 0.659202
and o?. In fact, the variance of Ppye(z) is a periodical function with period 2'~M,

0_2Var('PM6(2l'Ma:)) = 0"2Var(z E Wry2-2i€ip(2z—n)) = E(Z Wn-2:p(2742—n))?

This is also the variance of Pye(z) or Pyy(z) or Pyy(z). Figure 1 is the plot of one
period of the variance of Pye(27Mz)/o as a function of z.

For analyzing the variance of Way_1y,- -+, War—m,y, and Prr—_am, Yy, it is enough only to
trace the stochastic part in the decomposition, i.e. let f(x) = 0. We think of {¢;}icz
as a stationary process so that we do not have to worry about the boundary problem.
The idea of viewing this sequence as a stationary process will help us to see how the
variation of {g;} carry on from one layer to another by means of the spectral density.

Let {}nez = {2(¢)}nez be defined as in ( 3.7 ), and {e;}icz be a white noise

WN(0,0%). A simple calculation shows that Var(cy,) = 122042, Var(cd,,) = Lo?,

and Cov([c3y, 3] = 0if £ > 9. Although this calculation indicates that {c2} is not a
stationary process, the sequence {c}L} is a stationary process with autocovariance func-
tion

(4. 1) (k) =0’ Z(Z ajwj+2+2,-)(z @jW;242i-2h)

This is because {cL} can be written as a filtered process from {¢;}.

C}z = E aj-an? = Z aj—2n Z wj+2—2i€(i.)
J J ¢
= 2.2 0Wisania-2€(d) = 30 ) ajwisaeaie(n — i)

t J $ 2
where 3=; | 32; a;wis242:i] < 00.

The sequences {c’} defined by ( 3.3 ) recursively are also stationary processes for all
£ > 2 as long as {c{"!} is a stationary process and {a;} is in £! space. We state our
observations as the following propositions.

Let us consider the operator

(4. 2) Oat)= 3 a;F*H

i=—o0
the downsampling linear filter with weights {a;}. where F is the forward shift operator

FJXt ES XH‘.‘i
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We can rewrite ( 3.3 ) as

¢ = O(a, k)¢
(4. 3)
di =0(bk)cit £=1,2,---, My

Notice that this linear filter is not a time-invariant linear filter, but it will take any
stationary process to another stationary process.

Proposition 4.1  If{ci™'} is a stationary process with autocovariance function v,_1(-),
then {ct as defined in (4.3) is a stationary process with autocovariance function

o0

(4. 4) ve(h) = 3 ajarve-1(2h+j — k)

j1k=_°°

The proofs of this proposition and the next two are given in a seperate study in order
to focus on discussing the wavelet function estimator.

This proposition says that {c{} is well defined from {ci'} via ( 4.3 ) and every sequence
{ct}, £ > 1, is a stationary process. The autocovariance functions satisfy the relationship
(4.4). In fact, two autocovariance functions 4,(-) and v,_1(-) of the stationary processes
{1} and {c;} are not only connected by ( 4.4 ), but also by the corresponding spectral
distribution functions or spectral density functions.

Proposition 4.2 If {ci™'} is a stationary process with spectral density function fo_1(-),
then the spectral density function fi(-) of the stationary process {ct} as defined in ( 4.3

) is

A A
(4 5) fl(A) = %g(%)fl—l(%) + %g(’ﬂ' — E)fg_l(ﬂ' - 5) 0< A S T
where g(A) = | 52 _, a;e" 2.

Proposition 4.3 There is a 0 such that f, = O(6%).

A function sequence like the one defined in ( 4.5 ) has some interesting properties.
Similar function sequences have been studied in dynamic system and ergodic theory. A
Ruelle’s Perron-Froebenius theorem type result can be proved.



Proposition 4.3 tell us that the variances of {c{} and {d’} decrease exponentially as ¢
increases.

(4. 6) E[d(e))? < CH'0?
for some # which depends on the sequence {a;}.

The Constant C' and 8 can be estimated numerically. In the case of cubic B-wavelets, 6
is close to one half.

5 A Class of Consistent Estimators

For a given sampling rate 2!~™, one can only do a limited number of decomposition
before boundary effects seriously show up. That is to say that My, the number of
decomposition steps, is an integer which can not be too far from M. When /£ is small,
Wir—ey in (3.9 ) contains the high frequency portion of Par_sy, and this portion is
mainly the information about the random noise. Therefore we need to get rid of it. As
£ increases, Whys_gy carries less and less information from the stochastic part, and the
fluctuation of Wys_sy comes mainly from the true signal f. The modification of War_.y
for large £ contributes little to clean the noise, but tortures the meaningful information of
the true signal contained in Wis_,y and in turn affects the quality of the reconstruction
of f. To balance between cleaning the noise and conserving the true information, we
should focus on modifying Was_ey for small .

Let {m % = {m.(Mo)}} be a sequence of Mo numbers which may depend on Mo
and are between zero and one. Let f(z) = Puyy(x) be the function derived from the
multiresolution reconstruction process ( 3.4 ) based on the modified wavelet coefficients

{d.} = {med;}.

Mo
flz) = > mWy_y(z) + Pr-my(z)

=1

(3. 1) = AXJO: meWar-ef(z) + War-ee(2)] + Pr-mo f(2) + Pr-moe(z)
=1

If we use f(x) = 'ﬁ;y(z) as an estimator of f(z), then we have the following results.

Theorem 5.1 If the sequence {m,}2 is such that

Mo
(5. 2) S- me|27°M=9 L Mom26'] -0 as M, — oo
£=1

9



then f is a consistent estimator of f € C* in the sense that

MSE[f(z)] -0 as M — oo

PROOF: The absolute value of the bias of f(x) is
lbias(f(2))] = |E(f(2) - f(z))l
Mo
= | mWum-_of(2) + Pu-mof(z) — f()]

=1

My
= |E(mt — D)Wum—ef (z) + Puf(z) — f(z)]

M,
< Y= mul[Wa—ef ()| 4 [Puf(z) — f(=)]

=1
(5. 3) = Al + A2
If f € C%, then we have ( 3.2 ) |d4(F)| < C27*M-9, Notice that the support of 1 is

from 0 to 7, we have

Wa—ef ()] = | 32 d(H$(2M e — n)| < Tlyp|C27*M~9)
Thus A; < C Y |1 — me|27*-8 — 0 as My — oo under the condition ( 5.2 ).

The second term A; goes to zero as M — oo because of the properties ( 1° ) and ( 2°)
of the multiresolution analysis of L? and the continuity of f(z) and Parf(z).

In words, if the sampling rate is high, then the initial resolution level M is high, and
the bias square of f(z) is small.

Now the variance of f(z) is

Var(f(z)) = E[Aff meWar—ee(2) + Pur_moe(z)]?

< (Mo+1) %40:[77131‘3()’\’M—e6(5'3))2 + E(Py-mpe(x))?]
=1 '
Since

EWu-ee(z))’ = E[3_d(e)p(2" 'z —n))”
T 3 E(dy(e))’

0<2M—tr_n<g7
7|9 E(d(e))?
Co*

IA

IN A
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and similarly
E[Pu-mpe(@)]’ < £|pPE(cM (¢))? < CoMo
We have

(5. 4) Var(f(z)) < C(Mo + 1)[% m26* 4 gMo]

£=1

Where 6 is the variance decreasing factor in ( 4.16 ).

By combining ( 5.3 ) and ( 5.4 ), we see that under the condition ( 5.2 ) the mean
squared error of f(z) goes to zero as My goes to infinity. ]

REMARK: There are many sequence {m,}2% satisfing the condition ( 5.2 ). For example,

let my = 0% for 1 <£< A—g‘l, and m, =1 for Mz"- < £ < My, then the sequence {mg}l]‘f1
works.

Corollary 5.1 If the sequence {m¢}2%, is such that

M
(5. 5) Moy mi0t >0 as Mp— oo
=1

and if M — My — oo, then f is a consistent estimator of f € C* in the sense that
MSE[f(z)] -0 as M;— oo

PROOF: 30 |1—my|2~*M~9 _; 0 as M — My — oco. This and ( 5.5 ) give the condition
(5.2 ) in Theorem 5.1. 0

Corollary 5.2 Pur_m,y(x) is a consistent estimator of f € C* in the sense that

MSE[Pru-my(z)] >0 as My—00 and M — My— oo

PROOF: Set my = 0 in Corollary 5.1. |

Before we introduce a more general theorem, we need the following lemma.

Lemma 5.1 For constants a, A, and random variable X with mean 0 and variance o?,

Var((a + X)]jarxp>2] < 02 + min{a? 40” + 427}
IB[(a + X)Tesxi3x — all = | - Bl(@ + X)Tas xj2]] < min{A,a+ o}

11



PROOF: Var[(a+X)jarxi3:] < El(a+X)]jasx22—0)* = E(X? Loy x122)+0E(Lja1x]<»)
If la| < 2X than @*E[ljo4x|<a] < 4A?, otherwise a?E[I ;4 x1<)] < 40? by Chebyshov
inequality. O

Donoho and Johnstone [5] showed that ”threshold” nonlinearities provide near-minimax
behavior. We consider two possible threshold nonlinearities together with shrinkage on
wavelet coefficients to construct the estimation. Let {)\;} be a seqence of nonnegative
numbers.

1. "hard” nonlinearity: djf = (d}(f) + d},(€)) 14t ()4t (e)ipre}

2. ”soft” nonlinearity:
dy! = (d5,(F) + (€))L gag(ryrat(e)zag + Aelan(nease)c—rer — MLt (n)+dt(e)2re

Consider the estimator f(z) which is the function derived from the multiresolution
reconstruction process ( 3.4 ) based on the modified wavelet coefficients {d**} = {m,d*‘},

Mo
fz) = Y mWi_w(z) + Pu-my(z)
=1

My
(5. 6) = Y meWir_of(2) + Wir_ie(@)] + Prr—mo f(z) + Prr-ase()

£=1
where W3;_,y(z) is based on the modified coefficients {d*‘}, and {d*’} is the shrinkage

of either the "hard” nonlinearity or the "soft” nonlinearity of {d¢}.

Theorem 5.2 If the sequence {m;}}% and {\})% are such that

My
(5. 7) STl — mg|27* ™D 4 Myml(0 +A3)] =0 as My — oo

=1
then f is a consistent estimator of f € C* in the sense that

MSE[f(z)] 0 as My — o

PROOF: The absolute value of the bias of f (z) is
lias(f(@)| = |E(f(e) - f(=))|
Mo
= | Y meEWy_y(z) + EPy-my(z) — f(2)|

=1

12



Mo
= Y (meEWy_py(z) — Wh—ef(2)) + Puf(z) — f(=)|

=1

Mo
< Y mu|EWy_y(z) — War—ef(2)| +

=1

M,
211 = me|Wa—ef(2)| + [Puf(2) — f(2)|
=1

(5 8) = A0+A1+A2

We have seen in the proof of theorem 5.1 that A; and A, go to zero as Mp increase.

In the case of hard” nonlinearity,
|Ed;! — di(f) = | — E[dTiagi<p,]) < e
In the case of ”soft” nonlinearity,

|Ed; —dL(f)] < |E(dn(f) + drn(e)Lgag(nagezaa) — ()] +

Al E[Lgt (ny+as(eng-rar — Lt +asenzasll
< 2

thus
My My My L
A0 <Y me YIB! — d(F)| 922~ m)] < Y 14lplmede < 14]pIMo[> s mErd]E
=1 n =1 =1

which approaches to zero as My increase because of the condition ( 5.7 ).

Now the variance of f(z) is

Mo
Var(f(z)) = E[_meY (df - B&)p(2Y 'z — n) + Pr_mee(z)]?

=1 n
< (Mo+ 1)[% mlE() (dif — E€Hy(2M 'z — n))? + E(Pm-mpe(z))Y
=1 n

By lemma 5.1, for the "hard” nonlinearity of d*
B — BE) < 5E(d(e) + O < O(8° + M)
for the "soft” nonlinearity of d
E(dy — Ed)’ < 2Var((dy(f) + d5.()) L gag (pysat@izaa] +
20V ar(liasnraseng-re — Lt grazenzanl
10(d (e))? + 8)2 + 2)}
C(6°+ A7)

IAIA
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therefore we have

Mo
(5. 9) Var(f(z)) < C(Mo + 1)[Y_ m2(6° + A}) + 6]

=1

Where 0 is the variance decreasing factor in ( 4.16 ).

By combining ( 5.8 ) and ( 5.9 ), we see that under the condition ( 5.7 ) the mean
squared error of f(z) goes to zero as My goes to infinity. o

REMARK: Theorem 5.1 is a special case of theorem 5.2 where we do not threshold the
wavelet coeflicients. It corresponds to setting all A, to zero.

Proposition 5.1 If the sequences {m,}2% is such that
Moy
(5. 10) MY miet -0 as My— oo
=1
and if M — My — oo, then, for any hard nonlinearity thresholds {\}¥, f is a consistent

estimator of f € C* in the sense that
MSE[f(z)] =0 as My — o

PROOF: The absolute value of the bias of f (z) still has upper bound as in ( 5.8 ). The
terms A; and Az go to zero because of M — My — 00. Since by lemma 5.1,

|Ed;f — d2(f)| < |da(f)| +/Var(d(e) < C(27*M=0 4 6°/7)
We have that

Mo MO
Ao <Y m TIEEE ~ d (D@2 — )| < O3 my(272M=0 4 ¢2)

=1 =1
which approaches to zero as M, increase because of the condition ( 5.10 ).

By lemma 5.1
E(d}f — E&)* < E(di(e))® + |di(f)I? < C(6° + 277(M-9)

Similar to ( 5.9 ), we have

(5. 11) Var(f(z)) < C(Mo + 1)[% m2(6° + 27 22(M=9) | gMo)

£=1

which goes to zero as M increases because of ( 5.10 ) and M — M, — 0.

Therefore the mean squared error of f (z) goes to zero as My goes to infinity under the
conditions assumed. a
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6 A Numerical Example

Here is an example. Let f(z) be a function as in the upper-left box in Figure 2.
We observe f with error {€;}i=o,...250 at the points {/250};=0,...250 to get the sample
{vi}i=o,..250 = {f(:/250) + €;}:i=0,...250 as plotted in the upper-right box. The error is
distributed normally with mean g = 0, and variance 62 = 1/9. In the low-left box is
the representation function of the sample. And we put the estimator together with the
underlying function and the sample in the low-right box.

In Figure 3, the upper-left box contains the reconstruction of f, f is well preserved
through the procedure. The upper-right box is the reconstruction from the noise, there
is a little trend in the noise.
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