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Abstract

Down sampling a stationary process consists of forming another
process by taking every other entry of the original process. Passing
the down sampled process through a linear filter, one still gets a sta-
tionary process. Its autocovariance function can be computed from
the weights of the linear filter and the autocovariance function of the
original stationary process. The relationship between the spectral den-
sity functions of the original process and of the down sampled, filtered
process is obtained. In studying the use of wavelets in statistics, we
encounter the situation where we repeatedly down sample a station-
ary process and pass it through a linear filter. It is proved in this
article that the corresponding spectral density functions decay expo-
nentially. The proof is fitted in the framework of Ruelle’s general
Perron-Froebenius theorem for sequence spaces.
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1 Some Properties of Spectral Density Functions
in Down Sampling a Stationary Process

Define the dbwn sampling operator

O(a,t)= f: a_,-F""'j

j==00

with weights {a;}, where F is the forward shift operator FJ X; = X;;. This
linear filter is not time-invariant, but it will take any stationary process to
another stationary process.

Proposition 1 If {X:} is any sequence of random variables such that
sup; E|Xy| < o0, and if 372 |a;| < oo, then the series

o0 o0
(1) O(a, )X, = ) a;F'MX,= Y a;Xou;

j=—o0 j=—o00

converges absolutely with probability one. If in addition sup, E|X;|? < oo
then the series converges in mean square to the same limit. If {X;} is a
stationary process with autocovariance function vx(-), then the limit {Y; =
O(a,t)X;} is a stationary process with autocovariance function

oo

(2) wh)= Y ajaryx(2h+35 - k).

j1k=_°°

Proor: The proof is parallel to the standard argument which one can find
in most time series books, for example in [?]. The monotone convergence
theorem and the finiteness of sup, E|X| give

E( 32 lojllXaees) = Jlim E( D7 |ajl| Xaeel)

. n—00
j=—0c0 j=—n
n
s Jim, j_Z_:n |a;| sup E| X151
< oo0.

It follows that 3572 _  la;|| X2t+;] and O(a, 1) X = 3532, @ Xat4; ate both
finite with probability one.
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If sup, E|X;|? < 00 and n > m > 0, then

El Y aiXauyil® = ) ajarE(XaeqiXorer)
m<|jl<n m<[i],|kl<n
< sup EIX (Y lagl)?
t m<j<n
— 0 as m,n — oo,

and so by the Cauchy criterion, the series (1) converges in mean square. If
Y; denotes the mean square limit, then by Fatou’s lemma,

n
ElY; - 0(a,t)X* = Eliminf|V; — ) ajXau°
j=—n
n
< LminfE[Yi— 37 ¢ Xl
Jj=-n

= 0

showing that the limit Y; and O(a, )X, are equal with probability one.

If X, is a stationary process with autocovariance function yx(-), then us-
ing the mean square convergence of (1) and continuity of the inner product,
we have

n 0
Elft = nll»ngo Z lleXzH.j = E a_,-Eth

j=—n j=—co

and

E(Yi4rY;) = lim E[( zn: a; Xati2h+5 ) Zn: arXat+k)]

e j=—n k=—n
©0
= E ajak(7x(2h +45- k) + (Eth)z).

j1k=_°°

Thus EY; and E(Y;4,Y:) are both finite and independent of ¢. The autoco-
variance function vy () of ¥; is given by (2). m]
This result actually holds for any integer replacing the factor 2. In other
words, O(a, ) could be 32 a; F¥**+i, where k > 2.
Two autocovariance functions 7y (:) and yx(-) of the stationary processes
{Y:} and {X;} defined in the proposition 1 are not only connected by (2),
but also by the corresponding spectral distribution functions.
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By Herglotz’s theorem the autocovariance function yx(-) of a real sta-
tionary process X; has a spectral representation

1x(®)= [ MFQ)

where the spectral distribution function F is a right-continuous, nondecreas-
ing, bounded function on [~m,x] with F(—7) = 0 and F(7) = yx(0), it is
symmetric in the sense that F(A) = F(7™) — F(-=A~), —-r < A< 7.

Proposition 2 If {X;} is any zero-mean stationary process with spectral
distribution function Fx(-), then the spectral distribution function Fy(-) of
the stationary process {Y; = O(a,1)X;} satisfies the equation

(3) (k)= /( ]eih*dpy(,\)= /( ]eﬂh*g(x)dpx(x) hez

-, -~ T,

which is equivalent to

@ dFy(X\) = 9(3)dFx(3) + 9(3 — )dFx (3 - ) 0<A<m
4
dFy()) = g(2)dFx(3) + g(3 + 7)dFx (3 + ) —T<A<0

where g(A) = | %2 _o, a;e? 7, {a;} € €.

ProoF: From (2), using the spectral representation of yx(-), we have

’)’Y(h) = Z ajak/ ]ei(2h+j—k)/\dFX(/\)

jk=—c0 (=mn

_ /(-“r]( Z a;6 ) E are=*N )PPy (A)

j=—o0 k=—o00
- /( ) ]e"?h*g(,\)dpx(,\).
Let g*(\) =g(A)if0 < A< 7mand g*(A\) = g(A - 2m) if 7 < A < 27. Let

F*(A)=F(A\)-F(0)if0 < A <7 and F*(A\) = F(A - 27) + F(r) — F(0) if
T < A < 27. Now since

/ MRy ()) = / M dF3 (),
(=m,7) (0,27]
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we have

/( g I
Joarg &8 OHERY)

. A A . A A
thA _x¢ 7% o i thA _&e % *
/(] F(SAFE(5) + /(] g5+ m)FR(5 + 7).

Thus (3) implies that

BN = Qi3 + 0 G + MaFz(G+7)  0<A<on
which is (4). It is easy to check that (4) implies (3). O
Corollary 1 If {X;} is a stationary process with spectral density function

fx(-), then the spectral density function fy(-) of the stationary process {Y; =
O(a,t)X;} is

M) = D) + har-Dx-2)  0<rcn
where g(0) = | DL —on 2 [

Proposition 3 Let f, be a function on [0, 7] defined by

120 = 203V faa(5) 4 307 = Dfacal(r = 3)

where fo()) is a nonnegative bounded function on [0,7] and g is a nonneg-
ative function on [0,7]). There are constants C and 0 depending on g such

that fn(\) < Co™.

A function sequence like the one defined above has some interesting prop-
erties. Similar function sequence has been studied in dynamic system and
ergodic theory. A Ruelle’s Perron-Froebenius theorem for A-map is proved
in the next section.
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2 Ruelle’s Perron-Froebenius Theorem for A-Map

Let © = [0,1]. A point z € @ has a nonterminating dyadic sequence expres-
sion

with each z; being 0 or 1. Most time we also use z to denote its dyadic se-
quence Z1Z2 --- For definiteness, a point such as %— =.1000...= .0111...,
which has two expansions, takes the nonterminating one; 0 takes the expan-
sion .000--.; and 1 takes .111....

Define the map o: @ — Q by o(z); = z1 + (—1)**2;4; or

o(z) = 2z ifz<0.5
~ ] 2—2z otherwise

The map o is a two-to-one continuous map of 2 onto itself. We call ¢ a
A-map because of its shape.

We will work on the banach space (C(), ] - ), where C(f) is the set of
the real-valued continues functions on © and |f| = max,eq |f(z)|.

Let M(Q) be the set of Borel probability measures on Q. For any u €
M(Q) one can define L*v by L*v(f) = v(Lf) for any operator L : C(Q) —
c(Q).

For ¢ € C(9) define

Varrp = sup{|¢(z) —(y)|: i =9 1<i<k}

Let F be the family of all continuous ¢ : Q + R for which Varié < ba* (all
k > 1) for some positive constants b and « € (0,1).
For ¢ € C(Q) define the operator £ = L4 on C(§2) by

(L)) = 3 eV f(y) = %) f(0z) + €12 (1)

y€o—1z

1

where 671z = {y : y =0z or y = 1z}, and Z is the sequence with (z); =

1-z;.

Theorem 1 Let ¢ € FNC(R) and L = Ly as above. There are A > 0,
h € C(Q) with h > 0 and v € M(Q) for which Lh = Ah, L*v = v, v(h) =1
and

lim [A™™L ™™g —v(g)hl =0 for all g € C().

m—0o0
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PRrOOF: L is a positive operator and £1 > 0, G(u) = (L*u(1))"1L*n €
M(Q) for p € M(Q). There is a v € M(R) with G(v) = v by the Schauder-
Tychonoff fixed point theorem. G(v) = v gives L*» = Av with A > 0.
Define

A={f€C@: F20,u(f)=1, f(x) < Buf(z') for ci =z}, 1<i<m)

By = exp(T 52,41 2ba%), b, and a as in Vargé < ba*.
We complete the proof through the following five lemmas.

Lemmal 3 he A withLh=Mhand h>0.

Proor: A1Lf € A when f € A, since A7I1Lf > 0 and v(A71Lf) =
A71L*v(f) = v(f) = 1. Furthermore assume z; = z!, for 1 < i < m,
then Lf(z) = exp(¢(0z))f(0z) + exp(¢(1Z))f(1Z). As Oz and Oz’ agree in
places 1 tom +1

(5)  e?09) f(0z) < 202N ™ B | £(02') < Bne?©) £(02")

this would be also true if 0z were replaced by 1z, so Lf(z) < B Lf(z').
Consider any z, z € Q,for f € A

Lf(z) > e Plf(y) > e 1B f(2)

where y=0zif 2y =0,and y = 1Z if 2y = 1.
Let k = Ae~I#1By, then 1 = v(A"1Lf) > k~1f(2) gives | f] < k as z was
arbitrary.
Since v(f) = 1, f(2) > 1 for some z and we get inf(A"1Lf) > k1.
fa;=ziforl1<i<m, f €A, one has

|f(z) = f(@")| < (Bm — B )k—>0 asm— oo

Thus A is equicontinuous and compact by the Arzela-Ascoli theorem. Ap-
plying the Schander-Tychonoff theorem to A™1L: A +— A gives us h € A
with Lh = Ah. Furthermore inf h = inf \"1Lf > k™1, o

Lemma 2 3 5 € (0,1) such that Vf € A, A71Lf = nh + (1 — 5)f' with
f eA.

ProoF: Let g = A"1Lf — nh where 7 is to be determined. To show (1 —
n)"1g € A, first we need njh] < k7! to get g > 0. Assume z; = z! for
1 < i < m, we want to pick 7 so that g(z) < Bn,g(z') or equivalently

(6) n(Bmh(z") — h(z)) < BpA7Lf(z") — A71Lf(z)
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from (5), f € A, we have A™1Lf(2) < Bpy1€®™ A-1Lf(2'). Now h(z) >
B;1h(2') since h € A, to get (6) it is enough to get

m+1

(B — By Ya(2') < (B — B )ATLI(2")

or
(7) 7(Bm — By)|k| € (Bm — Bry1€™®

Since 1 < B,, < exp %b_"—j} for all m, there is an L so that the logarithms
of B,,, B3} and B, ;1™ arein [-L, L] for all m. Let u; uy be positive
constants such that u(z — y) < e — e¥ < uy(z — y) for z, y € [-L, L] For
(7) to hold it is enough for n > 0 to satisfy

m+1

!

nlhluz(log By +10g Br) < k™" us(log B, — log(Bm1¢**™"))

or
Abomt1
nlhfusz la_ = < k7l (2001 — pa™H1)
or (1-a)
miL—-a
< A7)
= Luslhlk

Lemma 3 3 A > 0 andf € (0,1) such that JA~"L"f—h] < AB™ for f € A,
n>0.

Proor: AL f =(1—- (1 - n)")h + (1 = n)*f., where f. € A. Thus
PATLMf - bl =] - (1-n)"h+ (1-n)"f] < AB"
where A=2kand f=1-1. o

Lemma 4 LetC, = {f € C(Q): Var,f=0}. IfF€A, feC,, f>0and
JF£0, then v(fF)"'A""L"(fF) € A.

Proor: First show that L7 (fF)(z) < B L' (fF)(a') if z; =zl for 1 <i <
m.

r—1
L(fF) (=)= 3 exp{d_ ¢(c*(jrja -+ - 4re*)} f(Grdz - - - 5o 2* )} F Gz - - - Gr*)
J132++r {=0

where jij2 - - - jr is one of 2" distinct r-digits long binary strings, and (z*); =
e+ (“1)r;.
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Now f(jija+--jrz*) = f(jrj2---jrz™) as f € C;. F(jrja---jrz*) <
Buyr F(jrga---Js2'*) as F € A. §(0*(jijz---jra*)) < (0(Grgz - - - §r2"™)) +
Vargyr—¢¢ and By, exp(zz;é Varmir—e9) < Bpyr exp(zl’z":': 1 bat) <
B,,. Hence

L7 (§F)(®) < BnL'(fF)(a)

We still need »(fF) > 0. For the same reason as in lemma 1,
Nv(fF) = v(ATIL(LT(fF))) 2 k7L (FF)(2)

fF(w) > 0 (for some w = wyw; - - - w,w) gives us L7(fF)(z) > 0for z = w
ifw,=0and z=mif w, = 1. So v(fF) > 0. |
Lemma 5 For FeA, feC,,n>0
IATTTLY(fF) — w(fF)h] < Av((fFI)B"
For g € C(Q) one has
lim |A=™L™g — v(g)h] =0

m—+0o

ProoF: Write f = f+ — f—, we still have f+, f~ € C,. By lemma 4,
v(fEF)IA="L7(f*F) € A, then by lemma 3,

AL (FEF) — w(fEF)R] < Av(fEF)BT
therefore

AT LTI (FF) - v(fF)A|
< TTTLM(SE) — w(fYF)R) + ITVTTLMYT(FTF) — (ST F)R|
< AV(fYF)B™ + Av(fYF)B™ < Av(|fF|)B"
Given g € C(2) and € > 0, one can find r and f;, f2 € C, so that 0 <
f2 - fl S €, fl S g S f27 and |V(fl) _V(g)l S €. Take F = 1’
AL —v(g)h] < IANTL™ i — v(F)RD + Ww(£i) = v(g)lIR]
< AV(IfDB™T + €lhl
< e(1+]hl)
for large m. Since [A~™L™ fi| < [A"™L™g] < JA"™L™ fo,

IAT"L™g — v(g)h] < €1+ |A])
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for large m. (m]
REMARK: It is pointed out by Professor Steven Lalley that there is a map
on 2 such that theorem one is a special case of Ruelle’s Perron-Froebenius
theorem in [2].
ACKNOWLDGEMENT: Special thanks to Professor Steven Lalley for in-
troducing to me Ruelle’s theorem and for warm encouragement.

References

[1] Brockwell, P. J., & Davis, R. A. (1991). Time Series: Theory and Meth-
ods. Springer-Verlag: New York.

(2] Bowen, R., (1975). Equilibrium States and the Ergodic Theory of Anosov
Diffeomorphisms. (Lecture Notes in Mathematics), Springer-Verlag:
Berlin.

[3] Wang, Z., (1992). Estimating a Hoélder Continuous Function from a
Noisy Sample via Shrinkage and Truncation of Wavelet Coefficients.
(Technical Report, Department of Statistics, Purdue University).

Zhongcheng Wang
Department of Statistics
Purdue University

West Lafayette, IN47907
zwang@pop.stat.purdue.edu



