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Consider the problem in which we have a sample from each of two multivariate normal
populations with equal covariance matrices and we wish to classify a new observation
as coming from one of the two populations. It is widely regarded that the most com-
monly used discriminant procedure for this purpose was introduced by Anderson (1951).
During the last fifteen years, promising linear adaptive ridge classification rules have
been proposed as alternatives where the ridge parameters are chosen by sample reuse
methods like cross-validation and bootstrap.

This article undertakes a large sample study of the relationship between the optimal
ridge parameter and the population parameters. The results suggest a new linear adap-
tive ridge classification procedure which has a simple closed form expression for the
ridge parameter. A Monte Carlo study is used to compare its error rate with that of
the other classification rules previously mentioned.

Some key words: Linear discriminant analysis; Monte Carlo experiments; Multivariate
normal distribution; Error rate; Ridge classification rules; Cross-validation ; Bootstrap.

1 Introduction

Consider the problem in which we have a sample from each of two multivariate normal populations
and we wish to classify another observation as coming from one of the two populations. More
precisely, suppose we have a training sample X{l), cen ,X,%) from Np(,u(l), ¥) and a training sample
Xl(z), . ,Xﬁ? from N,(u(?),X). Without loss of generality we shall assume that ¥ is nonsingular
since singular cases can always be made nonsingular by an appropriate reduction of dimension. We
wish to classify another observation X as coming from one of these two distributions where we
assume apriori that it is equally likely that X comes from either Np(u(l), Y)or Np(,um, ).

In the case where the two distributions are completely known, Wald (1944) proved that the
classification procedure which minimizes the expected error (misclassification) rate is given by the
Fisher’s discriminant function, namely: Classify X into N,(u(!), %) if

[X = (6® + @) /212 () - p®) > 0, (1)

and into N,(u(?), T) otherwise.

However very often, the parameters of the two distributions N,(u(),X) and N,(u(?,%) are
unknown and need to be estimated from the training samples. Anderson (1951) proposed using the
unbiased estimates of u(1), u(2) and X in (1). In this case we obtain the usual (Anderson’s) linear
discriminant rule, that is, classify an observation X into Np(p(l), 3)if

X = (X 4 X@)/27'571(XW - X@) 2 0, @

and into N,(u(?), ¥) otherwise, where

S _ Nyl .
X® = ngj ni, i=1,2,
J=
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2 ny . o ; o
§ = 3(xP - XONXD - XOY/(ny + ny - 2).

i=1 j=1

As noted by Gnanadesikan, et. al. (1989), the above procedure is arguably the most widely used
rule at present for classifying an observation X into one of two multivariate populations. The
main reasons for its wide spread use are its simplicity, the ready availability of computer package
programs and reasonable robustness against model violations especially for moderate sample sizes.
Excellent accounts of this procedure can be found, for example, in Anderson (1984) and McLachlan
(1992).

However as is well known, the usual linear discriminant rule does not share the same optimality
properties as (1). Indeed except for asymptotic optimality and in special circumstances (Das Gupta
1965), no finite sample optimality property has yet been found (Friedman 1989). There are at least
two heuristics in which we can hope to improve on the usual linear discriminant rule. The first is
to observe that there is significant distortion in the eigenvalues of the sample covariance matrix as
estimates of the eigenvalues of ¥. This is most apparent when the eigenvalues of ¥ are all equal.
This phenomenon was first noticed by Stein (1956) and since then there has been an enormous
amount of effort in getting better estimates for ¥. James and Stein (1961), Stein (1975), Efron and
Morris (1976), Olkin and Selliah (1977), Haff (1986), (1991), Lin and Perlman (1984) and Dey and
Srinivasan (1985), (1991) have studied this approach by minimizing some particular loss criterion
(which is often some form of squared error loss) on the eigenvalue estimates. Unfortunately as far
as we are aware of, none of the loss criteria that have been studied analytically is directly related
to the error rate of a classification rule.

The second heuristic is more intimately related to the classification problem of interest. It
has been observed (DiPillo 1976, 1977, 1979; Peck and Van Ness 1982; Friedman 1989) that the
relationship between p(!) —1(2) and the eigenvectors of T has a significant influence on the estimates
of the eigenvalues of X. In particular, suppose that the eigenvalues of ¥ are well dispersed. In this
case the first heuristic would lead us to believe that S should be a good estimator of ¥. However
the error rate of the usual rule can still be improved by using an estimate of X that is more spherical
than S if u(1) — u(? lies near the subspace generated by the eigenvector corresponding to the largest
eigenvalue of ¥. This can be substantiated by Monte Carlo simulations.

To essentially take advantage of these ideas, linear adaptive ridge classification rules have been
proposed in the literature. To be specific, we shall focus on the following ridge classification rules:
Namely classify an observation X into N,(u(),X) if

X~ (RO 4 XO)3Y((1 - )8 + 2(us)1 (X0 - X) 20, 3)

and into N,(u(?), %) otherwise. Here I is the p X p identity matrix, tr denotes the trace of a matrix
and 0 < A < 1 is a ridge parameter that depends on the training samples. To choose a good value
for A, two sample reuse methods have been suggested: cross-validation (Geisser 1977; Lachenbruch
1975) and bootstrap (Efron 1983; Peck and Van Ness 1982). We remark that (3) is a special case of
the regularized discriminant rule of Friedman (1989) in which he used leave-one-out cross-validation
to determine the value of the ridge parameter A.

This article undertakes a large sample study of the relationship between the optimal ridge pa-
rameter, Ao pr, and the population parameters u(), u(® and X. (Here the optimal ridge parameter
is that value of 0 < A < 1 which minimizes the error rate of the ridge classification rule.) Let

A? = (’u(l) — u(l’))'g—j('u(l) - ”(2)), §=1,2,-, (4)
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where A? is the usual Mahalanobis squared distance between the multivariate normal distributions
Np(p),2) and N,(u?,L). Then Aopr is found in Section 2 to be of the form

ny + ng
tl‘z{( nmn
1

+n1+—

Aopr = )[(t 571 - pAT?AZ]

[AI(ErE7) - AZ}/(AF - AT?A3) + Ogys, (5)

where O3/, represents a generic term of the 3/2th order with respect to 1/n; and 1/ny. The above
expression for Agpr cannot be used directly in practice since it is given in terms of the unknown
population parameters. However as in (2), the unknown parameters ,u(l), p® and ¥ in (5) can
be estimated by the unbiased estimators X (1), X(2) and § respectively. This suggest the following
linear adaptive ridge classification rule: Define

D? = (X'(l) - X@yg-i(x™ _ x@y, j=1,2,---,

and

n1 + ng

L) (15 ) - pD;2DY)

X:ZSYMP = trS {(

o5 (5™ — DAY/ (D3 - Dy D}).
ni

Since the natural range of X is [0, 1], we truncate X% oy mpr at 0 and 1 which leads us to

. Masymp 0 < Mysyyp <1,
AASYMP = 0 if Nasymp <0,

Now classify an observation X into Np(u(), X) if
[X — (XD + X@)/21[(1 - Aasymp)S + A—AS-I‘:ﬂ(trS)I]-1(X(U ~X®) >0, (6)

and into Np(u(2), ¥) otherwise. Even though in this case A Asy M P is available in closed form (which
should provide a better chance of getting a better understanding of the procedure than the rules
that use cross-validation and bootstrap in determining 5\), the error rate of this rule appears to
be still analytically intractable in terms of a nonasymptotic theoretical treatment. This is not
surprising as the usual linear discriminant rule suffers from the same difficulty as well.

As such a Monte Carlo study is used instead to compare the expected error rate of the linear
classification rules (2), (3) and (6) discussed above. This simulation study is described in detail in
Section 3.

We end this section with the following remark. As it stands, the justification of rule (6) is
asymptotic, i.e. we assume that n; and n, are large relative to a fixed set of parameters u(®), u(2)
and ¥. On closer examination of the argument in Section 2, we observe that the asymptotics break
down when A; is either very large or very small compared to n; and ny. In the case where A;
is very large, it is clear that almost perfect discrimination can be achieved by all reasonable rules
and that in the case where A; is very small, all reasonable rules shall have error rates near 50%.
Thus we do not expect the error rates of the usual rule and rule (6) to differ by too much when the
asymptotic justification for (6) is invalid.
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2 Asymptotic Error Rate Expansion

We begin with the ridge classification procedure: Classify an observation X into Np(,u(l), Y)if
Wy = [X = (X0 4 XO)/2[(1 = ) + S(ex8)7H (X0 - X) > (7)

and into N,,(u@),z) otherwise, where 0 < A < 1 is a constant. We remark that (7) reduces to
the usual linear discriminant rule when A = 0 and that Rodriguez (1988) studied the admissibility
and unbiasedness of these rules. Following the method of Okamoto (1963), we shall establish an
asymptotic expansion for the expected error rate difference between the above rule and the usual
discriminant rule (2). Let A;, j =1,2,..., be given by (4),

€0 = (€., i=12
o9 = (8/0€Y,...,8/069)Y, j=1,2,
and 9* be the p X p matrix whose (j, k)th element is given by (1/2)(1 + 6;)8/86; r where 8, is

the (4, k)th element of a p X p positive definite matrix © and §;; the Kronecker delta. We consider
the characteristic function

¥a(t) = E{explat AT (Wi — A}/2)]}

of the random variable A7}(W) — A}/2) when X ~ N,(u(Y),%). Then by conditioning on X1,
X@) and S, we get

¥a(?)

Eexp{—gAl + it AT pY) — %(X’(l) + X1 = NS + %(trS)I]“l(X'(l) - X))

2
—%A;Z(X(l) - XOYI1-28 + %(trS)I]‘IE[(l - NS+ %(trS)I]‘l(X'(l) - Xy
= EU(XW X@ (1-)5+ %(trS)I), say.

Since ¥ is an analytic function, we expand ¥ as a Taylor series about the point (u(l), p@, ¥). Thus
a(t) = Eexp{(XM - u(l))'a(l) + (X(2) —u®ys®
A
+trf(1 = A)S + ;(trS)I - T]9*}u(EM, £, 0)] (), 0)=(u(D),u® 5)

Using the moment generating function formulas for X, X(2) and S, we have

1 ! 1 ! ny + ng — 2 2(1 - X)xo*
= —aW'n(1) L = 52552 _ A L B ok Sl Lol
¥a(t) exp{2n13 oV + nz(’) o (trxo™) I

_ ny + ng — 2 lo |I 22)\1’11‘6“
g o8

log |T - I

T p(m+nz—2) HEED,€2,0)lw e 0)=u w5y (8)

Substituting the expansion

~log|I — ©] = t2(8) + 51r(07) + 3x(6%) + -+,
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in (8), we get after some simplification
¥a(t) — o(t)
— {S(ED)(u0") - X(u30%) - l—ﬁ—@rza*za*)}m“),e(”, 0)] (€ £),0)= () i 5)
+-;-{[ 2 (42)(6:07) — A(trSOM)J? + 2[2 S(E)(110") = A(trD0") 5, a(l>’za(1>
+i‘9(2y23(2) + m(trza*za*ﬂ}‘l’(ﬁ(l),6(2),9)|(g(1),g(2),e)=(#(1),u(2>,z) +0s, (9)

where O3 stands for a generic term of the third order with respect to 1/n; and 1/ns. Now it follows
from the Fourier inversion formula, (9) and Lemma 1 (see Appendix) that

P(Wj < 01X ~ Np(u),£)) = P(Wo < 0]1X ~ Np(u®, 5))
= /mhﬂ/me4WWAn—¢dﬂwmx
= (—)(t E){ (trz)(A"As AT3A3) + —[PAI3A2 AT (trZ™h)]

A _ -
+2p(n1 + ng — 2) [Al lAg - Al(trz 1)]} + 03’ (10)

where ¢ denotes the probability density function of a standard normal random variable. Similarly
if X ~ Np(u(®,3), we have

P(W,\ > 0| X ~ N,,(,A?) ) - P(Wo > 0|X ~ N,(u?, %))

= WA A - AT A3)+ Z{pATSAT - AT ()]
F ot AT - Ay} + 0 (1)

Thus we conclude from (10) and (11) that the expected error rate difference between rule (7) and
the usual linear discriminant rule (2) is given by

%{P(WA < O|X ~ Np(ul), 2)) = P(Wo < 0]X ~ Np(p®, B))
+P(Wy > 0|X ~ Ny(p®, %)) - P(Wo > 0]X ~ Np(u(?, 1))}

_ Ay A2 “IAZ _ AT3AS Mry+n3), 3 2
= ¢ 5 )(trE) 2p2(trE)(A1 Aj — A2)+ pregn, [pA Aj
A

U
tom T — it A2~ Aa(EET] 4+ Oa

AT (tr2™h)]

(12)
The A that minimizes the right hand side of (12) is

P mtn
—{—

_ -1 —2 A2
AOPT = o S [(‘32 ) — PAT*A7]

1 -
+———n1 5 (AN ) - AT/ (A3 - AT?AD + 05
This proves (5).
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3 Monte Carlo Study

For simplicity of notation, we use USUAL and ASY M P to denote the usual discriminant rule (2)
and the adaptive ridge classification rule given by (6) respectively. In the case of rule (3), we shall
use the following two computer intensive sample reuse techniques to estimate the optimal ridge
parameter: We assume that training samples (of sizes n; and ng) are available from each of the two
multivariate normal populations and that we restrict the ridge parameter ) to take on only values
in the grid {0.0,0.1,...,1.0}.

Leave-one-out cross-validation. Consider rules of the form (3) where A is a constant taking
on a value in the above grid. The error rate of each of these rules is estimated by leave-one-out
cross-validation. The A which minimizes the cross-validated error rate is then used as the estimate
for the optimal ridge parameter.

Bootstrap. Consider rules of the form (3) where ) is a constant taking on a value in the above
grid. For each of these rules, we estimate the error rate with the following bootstrap algorithm.

1. First compute ﬁ‘j, Jj = 1,2, the empirical distribution function for each of the two training
data sets.

2. Randomly generate n; and ny bootstrap samples from F} and Fj respectively. Estimate the
error rate of this rule by classify the original training data by using the rule with the bootstrap
sample as the training data.

Step 2 is performed 25 times and the error rates are then averaged and used as an estimate of the
true error rate. The \ which minimizes the bootstrapped error rate is then used as the estimate
for the optimal ridge parameter.

For simplicity, we shall use LZOO and BOOT to denote the procedure as given by (3) where A
is determined by the cross-validation and the bootstrap algorithm respectively.

We observe that there is a considerable amount of invariance in the four discriminant procedures
USUAL,ASYMP, LOO and BOOT. All these rules are location, scale and orthogonal equivariant.
Thus without loss of generality, in our simulations we shall take u(2) = (0,---,0) and X to be a
diagonal matrix diag(of,---,02) with g > -+ > o, = 1.0.

In this section we shall report on two Monte Carlo experiments which compare the expected
error rates of the rules USUAL, ASYMP, LOO and BOOT. In the first experiment, we take
n1 = ng = 25, p = 10 and in the second experiment we take n; = ny = 30, p = 5. Each experiment
consists of 500 independent replications of the following procedure. First, training samples of sizes
n1 and n, are generated from N,(u(), %) and N,(u(®),X) respectively via the IMSL subroutine
DRNNOA. We observe that conditional on X(), X(2) and S, the error rate for any of the four
procedures is given by

(1/2)@(z1) + (1/2)[1 - ¥(22))}; (13)

where @ is the distribution function of the standard normal distribution and for j = 1,2,
zj = [ — (XM 4 X@y2rs—1(xW - x@)(xW - X(Z))'z‘;-lgﬁ;—l(x(l) ~- X2,

Here ¥ is an appropriate estimate of £ which depends on the particular classification rule. The
IMSL function DNORDF is used to evaluate (13). This reduces the Monte Carlo variance of
the simulation. The average error rates and their standard deviations of the four procedures are
computed over the 500 replications. These are reported in Tables 1 to 3 (for experiment 1) and
Tables 4 to 6 (for experiment 2). We also observe that the average error rates of these four
procedures should be positively correlated as they share the same training samples. Thus the
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estimated standard deviation (as given in Tables 1 to 6) is probably a conservative indicator of the
variability of the relative magnitude of the average error rates.

The two Monte Carlo experiments focus on three configurations of the parameter space, namely
(1) p® — p® = (0,...,0,2), (i) pV) — u@ = (2,0,...,0) and (iii) @ — p® = z(0y,...,0,),
where 7 is a suitable numerical constant and ¥ as previously mentioned is a diagonal matrix with
eigenvalues 67 > --- > 02 = 1.0.

(i) First configuration: u) — u(® = (0,...,0,z). In this case the difference of the two popu-
lation mean vectors lies in the subspace associated with the smallest eigenvalue of the population
covariance matrix. This is a situation that is widely recogrized to be most favorable to USU AL.
This is substantiated by Tables 1 and 4 which reports on the simulations of Experiment 1 and 2
respectively. These tables indicate that no one classification rule dominates another in terms of
error rate. LOO does significantly worse than USU AL in those situations when X is highly ellip-
tical, e.g. in Table 1 when ¥ = diag(10°,10%,...,10,1) and (u(1) — x@ YD1 - u(2)) = 1.00,
the error rate of LOO is 39.06% and that of USUAL is 36.97%. In contrast, ASY M P and BOOT
does slightly worse than USU AL when ¥ is non-spherical with BOOT having a slight edge over
ASY M P. However when ¥ = I Tables 1 and 4 show that all three alternative classification rules do
dramatically better than USU AL and that generally ASY M P does best among the different rules;
e.g. when (u(M — p@yYS-1(u(W — 4(?)) = 9.00 in Table 1, the error rates for USUAL, ASY MP,
LOO and BOOT are respectively 9.98%, 8.31%, 8.68% and 8.46%.

(ii) Second configuration: p(V) — u(?) = (2,0,...,0). In this case the difference between the two
population mean vectors lies in the subspace associated with the largest eigenvalue of X. This is
a situation widely recognized to be most unfavorable to USUAL. Indeed, Tables 2 and 5 show
this to be the case. All three alternative classification rules ASY M P, LOO and BOOT do much
better than USU AL in terms of error rate with LOO having generally the smallest error rate and
BOOT having a slight edge over ASY M P.

(iii) Third configuration: p*) — u® = z(ay,...,0,). This is a case intermediate between the
two previous cases and the error rates of USUAL, ASYMP, LOO and BOOT are reported in
Tables 3 and 6. Indeed in this case the ASY M P error rate generally (up to Monte Carlo error) falls
in between those reported for the two previous situations. However, due to the discretization of the
possible values of A, this is not the case for LOO and BOOT. There are situations in which LOO
and BOOT do significantly worse than USUAL; e.g. in Table 3 when ¥ = diag(512,256,...,2,1)
with (u(1) — @ YE-1(uM — 4@)) = 16.00, the error rates for USUAL, ASY M P, LOO and BOOT
are respectively 4.10%, 4.03%, 4.59% and 4.49%. The discretization effect can be reduced by making
the grid for ) finer. However further simulations indicate that this leads to a deterioration of the
performance of LOO and BOOT in (i).

4 Conclusion

This paper gives an asymptotic expression for the optimal ridge parameter within the class of ridge
classification rules. This in turn suggests a new adaptive ridge classification rule ASY M P which
has a closed form expression for its ridge parameter. The error rate of this rule is compared to that
of the usual discriminant rule USU AL and the ridge classification rules LOO and BOOT (which
were described in Section 3) via a Monte Carlo study. The simulations indicate that ASY M P per-
forms reasonably well with respect to USUAL, LOO and BOOT without having the discretization
drawbacks associated with the latter two rules.
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Table 1
p=10 my =25 na=25 p_—u®@=(0,...,0,z)
Expected Error Rates of USUAL, ASYMP, LOO, BOOT (standard errors are in parenthesis)
Eigenvalues of X USUAL | ASYMP | LOO | BOOT

(,u,(l) — #(2))'2_1(”(1) — 'u(Z)) = 0.25
(L,1,1,1,1,1,1,1,1,1) 45.68 (0.11) | 45.52 (0.11) | 45.45 (0.11) | 45.59 (0.11)
(50,1,1,1,1,1,1,1,1,1) 45.68 (0.11) | 45.74 (0.11) | 46.68 (0.12) | 45.72 (0.11)
(10,10,10,10,10,1,1,1,1,1) 45.68 (0.11) | 45.91 (0.11) | 46.75 (0.11) | 45.83 (0.11)
(25,25,25,25,25,25,25,25,25,1) 45.68 (0.11) | 45.78 (0.11) | 46.78 (0.13) | 45.83 (0.12)
(20, 20,20,5,5,5,5,1,1,1) 45.68 (0.11) | 45.87 (0.11) | 46.88 (0.12) | 45.81 (0.11)
(10,9,8,7,6,5,4,3,2,1) 45.68 (0.11) | 45.81 (0.11) | 46.66 (0.12) | 45.88 (0.11)
(512,256,128,64,32,16,8,4,2,1) 45.68 (0.11) | 45.80 (0.11) | 47.39 (0.13) | 45.76 (0.11)
(10°,108,107, 106, 10°,10%,10%,102,10,1) | 45.68 (0.11) | 45.78 (0.11) | 47.56 (0.13) | 45.70 (0.11)

(p) — p@ Y510 — 42)) = 1.00
(1,1,1,1,1,1,1,1,1,1) 36.97 (0.13) | 36.28 (0.13) | 36.19 (0.13) | 36.56 (0.13)
(50,1,1,1,1,1,1,1,1,1) 36.97 (0.13) | 36.86 (0.13) | 37.99 (0.18) | 36.94 (0.13)
(10,10,10,10,10,1,1,1,1,1) 36.97 (0.13) | 37.24 (0.14) | 38.38 (0.19) | 37.11 (0.14)
(25,25,25,25,25,25,25,25,25,1) 36.97 (0.13) | 37.01 (0.14) | 38.20 (0.21) | 37.04 (0.14)
(20,20,20,5,5,5,5,1,1,1) 36.97 (0.13) | 37.14 (0.14) | 38.58 (0.20) | 37.15 (0.14)
(10,9,8,7,6,5,4,3,2,1) 36.97 (0.13) | 37.04 (0.14) | 38.36 (0.19) | 37.15 (0.14)
(512,256, 128,64,32,16,8,4,2,1) 36.97 (0.13) | 37.02 (0.14) | 38.66 (0.24) | 37.01 (0.14)
(10°,108,107, 106,105, 10%,10%,102,10,1) | 36.97 (0.13) | 37.01 (0.14) | 39.06 (0.25) | 36.99 (0.14)

() — p@Y5-1(u@) — 42)) = 4.00
(1,1,1,1,1,1,1,1,1,1) 20.72 (0.10) [ 19.02 (0.08) | 19.18 (0.09) | 19.43 (0.09)
(50,1,1,1,1,1,1,1,1,1) 20.72 (0.10) { 20.00 (0.11) | 20.15 (0.12) | 20.16 (0.10)
(10,10,10,10,10,1,1,1,1,1) 20.72 (0.10) | 20.95 (0.11) | 21.43 (0.15) | 20.83 (0.11)
(25,25,25,25,25,25,25,25,25,1) 20.72 (0.10) | 20.72 (0.10) | 21.20 (0.17) | 20.72 (0.10)
(20,20,20,5,5,5,5,1,1,1) 20.72 (0.10) | 20.83 (0.11) | 21.54 (0.15) | 20.76 (0.11)
(10,9,8,7,6,5,4,3,2,1) 20.72 (0.10) | 20.73 (0.10) | 21.57 (0.15) | 20.80 (0.11)
(512,256,128,64,32,16,8,4,2,1) 20.72 (0.10) | 20.72 (0.10) | 20.85 (0.14) | 20.72 (0.10)
(10°,108%,107, 108, 10%,10%, 10%,102,10,1) | 20.72 (0.10) | 20.72 (0.10) | 20.87 (0.14) | 20.72 (0.10)

(pD) — @ yy-1(,0 — 4)) = 9,00
(1,1,1,1,1,1,1,1,1,1) 9.98 (0.07) | 8.31(0.05) | 8.68 (0.06) | 8.46 (0.05)
(50,1,1,1,1,1,1,1,1,1) 9.98 (0.07) | 9.09 (0.09) | 9.19 (0.07) | 8.93 (0.06)
(10,10,10,10,10,1,1,1,1,1) 9.98 (0.07) | 9.99 (0.08) | 10.07 (0.09) [ 9.94 (0.08)
(25,25,25,25,25,25,25,25,25,1) 9.98 (0.07) | 9.98 (0.07) | 10.10 (0.09) | 9.98 (0.07)
(20,20,20,5,5,5,5,1,1,1) 9.98 (0.07) | 10.10 (0.08) | 10.24 (0.09) | 10.05 (0.08)
(10,9,8,7,6,5,4,3,2,1) 9.98 (0.07) | 10.03 (0.08) | 10.39 (0.10) | 10.11 (0.08)
(512,256, 128,64,32,16,8,4,2,1) 9.98 (0.07) | 9.98 (0.07) | 9.98 (0.07) | 9.98 (0.07)
(10°,108,107, 105, 10%,10%, 10%,10%,10,1) | 9.98 (0.07) | 9.98 (0.07) | 9.98 (0.07) | 9.98 (0.07)

() — p2Y51(u — u@) = 16.00
(1,1,1,1,1,1,1,1,1,1) 4.11 (0.05) | 3.01 (0.03) | 3.52(0.04) | 3.06 (0.03)
(50,1,1,1,1,1,1,1,1,1) 4.11 (0.05) | 3.51(0.09) | 3.65 (0.04) | 3.31(0.04)
(10,10,10,10,10,1,1,1,1,1) 4.11 (0.05) | 4.00 (0.05) | 4.05 (0.05) | 3.94 (0.04)
(25, 25,25,25,25,25,25,25,25,1) 4.11 (0.05) | 4.11 (0.05) | 4.20 (0.05) | 4.11 (0.05)
(20,20,20,5,5,5,5,1,1,1) 4.11 (0.05) | 4.14 (0.05) | 4.18 (0.05) | 4.16 (0.05)
(10,9,8,7,6,5,4,3,2,1) 4.11 (0.05) | 4.13 (0.05) | 4.23 (0.05) | 4.18 (0.05)
(512,256,128,64,32,16,8,4,2,1) 4.11 (0.05) | 4.12 (0.05) | 4.11 (0.05) | 4.11 (0.05)
(10°,108, 107,106, 10°%,10%,10%,102,10,1) | 4.11 (0.05) | 4.11(0.05) | 4.11(0.05) | 4.11 (0.05)
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p=10 n1=25

Table 2
Ny = 25

p - u® = (z,0,...,0)

Expected Error Rates of USUAL, ASYMP, LOO, BOOT (standard errors are in parenthesis)

Eigenvalues of X | USUAL ASYMP | LOO | BOOT
(V) — p@Ys-1(uQ) — 4(2) = 0.25
(50,1,1,1,1,1,1,1,1,1) 45.72 (0.10) | 44.48 (0.14) | 42.52 (0.16) | 44.77 (0.14)
(10,10,10,10,10,1,1,1,1,1) 45.72 (0.10) | 45.25 (0.11) | 44.68 (0.12) | 45.39 (0.11)
(25,25,25,25,25,25,25,25,25,1) 45.72 (0.10) | 45.55 (0.10) | 45.33 (0.11) | 45.61 (0.11)
(20,20,20,5,5,5,5,1,1,1) 45.72 (0.10) | 45.20 (0.12) | 44.23 (0.13) | 45.31 (0.12)
(10,9,8,7,6,5,4,3,2,1) 45.72 (0.10) | 45.12 (0.12) | 44.59 (0.12) | 45.36 (0.11)
(512,256,128,64,32,16,8,4,2,1) 45.72 (0.10) | 45.32 (0.11) | 43.37 (0.15) | 45.25 (0.13)
(10°, 108,107,106, 10%,10%,10%,102,10,1) | 45.72 (0.10) | 45.55 (0.11) | 42.64 (0.16) | 45.39 (0.12)
(u,(l) —_ 'u(z))’z_l(’u,(l) — M(z)) = 1.00
(50,1,1,1,1,1,1,1,1,1) 36.91 (0.12) | 34.28 (0.13) | 32.59 (0.12) | 34.52 (0.16)
(10,10,10,10,10,1,1,1,1,1) 36.91 (0.12) | 35.67 (0.13) | 34.77 (0.12) | 35.80 (0.14)
(25,25,25,25,25,25,25,25,25,1) 36.91 (0.12) { 36.42 (0.12) | 35.88 (0.12) | 36.49 (0.12)
(20,20,20,5,5,5,5,1,1,1) 36.91 (0.12) | 35.66 (0.13) | 34.16 (0.12) | 35.66 (0.14)
(10,9,8,7,6,5,4,3,2,1) 36.91 (0.12) | 35.47 (0.13) | 34.57 (0.12) | 35.71 (0.14)
(512,256,128,64,32,16,8,4,2,1) 36.91 (0.12) | 35.99 (0.13) | 33.22 (0.12) | 35.46 (0.16)
(10%, 108,107,108, 10%,10%,103,102,10,1) | 36.91 (0.12) | 36.55 (0.12) | 32.71 (0.13) | 35.90 (0.16)
(D — p@AYS-1(pM — 42 = 4.00
(50,1,1,1,1,1,1,1,1,1) 20.70 (0.10) | 18.04 (0.08) [ 17.41 (0.09) | 17.92 (0.10)
(10,10,10,10,10,1,1,1,1,1) 20.70 (0.10) | 19.01 (0.09) | 18.34 (0.09) | 18.83 (0.10)
(25,25,25,25,25,25,25,25,25,1) 20.70 (0.10) | 19.80 (0.10) | 19.01 (0.08) { 19.37 (0.09)
(20,20,20,5,5,5,5,1,1,1) 20.70 (0.10) | 19.07 (0.09) | 18.05 (0.09) | 18.67 (0.10)
(10,9,8,7,6,5,4,3,2,1) 20.70 (0.10) | 18.77 (0.09) | 18.28 (0.09) | 18.61 (0.10)
(512,256,128,64,32,16,8,4,2,1) 20.70 (0.10) | 19.54 (0.09) | 17.61 (0.09) | 18.54 (0.12)
(10°,108,107,10%,10%, 10%,10%,102,10,1) | 20.70 (0.10) | 20.23 (0.10) | 17.40 (0.10) | 18.93 (0.14)
('u(l) - u(z))’z_l(’u,(l) - u(2)) = 9.00
(50,1,1,1,1,1,1,1,1,1) 9.98 (0.07) | 8.06 (0.05) | 7.81 (0.07) | 7.71 (0.06)
(10,10,10,10,10,1,1,1,1,1) 9.98 (0.07) | 8.63 (0.34) | 8.26 (0.07) | 8.16 (0.06)
(25,25,25,25,25,25,25,25,25,1) 9.98 (0.07) | 9.17 (0.07) | 8.52 (0.06) | 8.40 (0.05)
(20,20,20,5,5,5,5,1,1,1) 9.98 (0.07) | 8.71(0.06) | 8.13 (0.07) | 8.08 (0.06)
(10,9,8,7,6,5,4,3,2,1) 9.98 (0.07) | 8.44 (0.06) | 8.23 (0.07) | 8.10 (0.06)
(512,256,128,64,32,16,8,4,2,1) 9.98 (0.07) | 9.07 (0.06) | 8.05(0.07) | 8.02 (0.07)
(10%, 108,107,108, 10%,10%,10%,102%,10,1) | 9.98 (0.07) | 9.60 (0.07) | 7.82 (0.08) | 8.12 (0.09)
(pD — p@yE-1(uW — u®) = 16.00
(50,1,1,1,1,1,1,1,1,1) 4.11 (0.04) | 3.00 (0.03) | 3.19 (0.04) | 2.79 (0.03)
(10,10,10,10,10,1,1,1,1,1) 4.11 (0.04) | 3.29 (0.03) | 3.35(0.04) | 2.97 (0.03)
(25,25,25,25,25,25,25,25,25,1) 4.11 (0.04) | 3.57 (0.04) | 3.48 (0.04) | 3.05(0.03)
(20,20,20,5,5,5,5,1,1,1) 4.11 (0.04) | 3.34(0.03) | 3.37 (0.04) | 2.94 (0.03)
(10,9,8,7,6,5,4,3,2,1) 4.11 (0.04) | 3.18 (0.03) | 3.38 (0.04) | 2.94 (0.03)
(512,256,128,64,32,16,8,4,2,1) 4.11 (0.04) | 3.55(0.04) | 3.26 (0.05) | 2.90 (0.04)
(10°,108%,107, 106, 105, 10%, 10%, 102,10, 1) | 4.11 (0.04) | 3.88 (0.04) | 3.17 (0.05) | 2.97 (0.05)
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Table 3
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Expected Error Rates of USUAL, ASYM P, LOO, BOOT (standard errors are in parenthesis)

Eigenvalues of ¥ = diag(0{,03,...,02) | USUAL | ASYMP | LOO | BOOT
(p®) — @Y=, — 4@ = 0.25
(50,1,1,1,1,1,1,1,1,1) 45.73 (0.12) | 45.67 (0.12) | 46.31 (0.13) | 45.74 (0.12)
(10,10,10,10,10,1,1,1,1,1) 45.73 (0.12) | 45.72 (0.11) | 45.94 (0.12) | 45.72 (0.12)
(25,25,25,25,25,25,25,25,25,1) 45.73 (0.12) | 45.65 (0.11) | 45.60 (0.12) | 45.66 (0.11)
(20,20,20,5,5,5,5,1,1,1) 45.73 (0.12) | 45.71 (0.11) | 45.92 (0.12) | 45.72 (0.11)
(10,9,8,7,6,5,4,3,2,1) 45.73 (0.12) | 45.65 (0.11) | 45.65 (0.12) | 45.68 (0.12)
(512,256,128,64,32,16,8,4,2,1) 45.73 (0.12) | 45.73 (0.11) | 46.24 (0.12) | 45.73 (0.11)
(109,108,107,10°,10%,10,10%,102,10,1) | 45.73 (0.12) | 45.74 (0.12) | 46.84 (0.12) | 45.74 (0.12)
(/_//(1) — “(2))’2_1(/1,(1) — /_[,(2)) = 1.00
(50,1,1,1,1,1,1,1,1,1) 36.97 (0.14) | 36.74 (0.14) | 37.67 (0.16) | 36.88 (0.14)
(10,10,10,10,10,1,1,1,1,1) 36.97 (0.14) | 36.97 (0.14) | 37.39 (0.14) | 36.99 (0.14)
(25,25,25,25,25,25,25,25,25,1) 36.97 (0.14) | 36.78 (0.13) | 36.66 (0.13) | 36.84 (0.13)
(20,20,20,5,5,5,5,1,1,1) 36.97 (0.14) | 36.98 (0.14) | 37.43 (0.13) | 36.97 (0.14)
(10,9,8,7,6,5,4,3,2,1) 36.97 (0.14) | 36.82 (0.13) | 36.81 (0.13) | 36.83 (0.14)
(512,256,128,64,32,16,8,4,2,1) 36.97 (0.14) | 37.03 (0.14) | 38.28 (0.15) | 37.10 (0.14)
(109,108,107,10%,10%,10%,10%,102,10,1) | 36.97 (0.14) | 37.03 (0.14) | 39.11 (0.18) | 37.04 (0.14)
(N(l) — 'u,(2))’2_1(“(1) — ,“(2)) = 4.00
(50,1,1,1,1,1,1,1,1,1) 20.66 (0.11) | 19.88 (0.10) [ 20.48 (0.13) | 20.08 (0.10)
(10,10,10,10,10,1,1,1,1,1) 20.66 (0.11) | 20.46 (0.10) | 21.07 (0.11) | 20.75 (0.11)
(25,25,25,25,25,25,25,25,25,1) 20.66 (0.11) | 20.49 (0.10) { 20.13 (0.09) | 20.35 (0.10)
(20,20,20,5,5,5,5,1,1,1) 20.66 (0.11) | 20.53 (0.10) | 21.06 (0.11) | 20.77 (0.11)
(10,9,8,7,6,5,4,3,2,1) 20.66 (0.11) | 20.28 (0.10) | 20.35 (0.10) | 20.32 (0.10)
(512,256,128,64,32,16,8,4,2,1) 20.66 (0.11) | 20.66 (0.11) | 21.86 (0.13) | 20.89 (0.12)
(10°, 108,107, 108, 105, 10%, 103, 102, 10, 1) | 20.66 (0.11) | 20.74 (0.11) | 21.69 (0.18) | 20.71 (0.11)
(pD — p@yn=1(,1) _ p2) = 9.00
(50,1,1,1,1,1,1,1,1,1) 9.94 (0.08) | 9.16 (0.06) | 9.49 (0.08) | 9.22 (0.07)
(10,10,10,10,10,1,1,1,1,1) 9.94 (0.08) | 9.66 (0.07) | 10.13 (0.08) | 9.93 (0.07)
(25,25,25,25,25,25,25,25,25,1) 9.94 (0.08) | 9.80 (0.07) | 9.45 (0.06) | 9.52 (0.06)
(20,20,20,5,5,5,5,1,1,1) 9.94 (0.08) | 9.73 (0.07) | 10.11 (0.08) | 9.95 (0.07)
(10,9,8,7,6,5,4,3,2,1) 9.94 (0.08) | 9.52 (0.07) | 9.58 (0.07) | 9.48 (0.06)
(512,256,128,64,32,16,8,4,2,1) 9.94 (0.08) | 9.88 (0.07) | 10.72 (0.10) | 10.21 (0.08)
(10°,10%,107,10%,105,10%,10%,102%,10,1) | 9.94 (0.08) | 10.00 (0.08) | 10.25 (0.12) | 9.96 (0.08)
() — p@y5-1(, W — 42 = 16.00
(50,1,1,1,1,1,1,1,1,1) 4.10 (0.05) | 3.57(0.04) | 3.87(0.05) | 3.56 (0.04)
(10,10,10,10,10,1,1,1,1,1) 4.10 (0.05) | 3.88 (0.04) | 4.21 (0.05) | 4.13 (0.05)
(25,25,25,25,25,25,25,25,25,1) 4.10 (0.05) | 4.00 (0.04) | 3.86 (0.04) | 3.71 (0.03)
(20, 20,20,5,5,5,5,1,1,1) 4.10 (0.05) | 3.92(0.04) | 4.19 (0.05) | 4.11 (0.04)
(10,9,8,7,6,5,4,3,2,1) 4.10 (0.05) | 3.78 (0.04) | 3.91 (0.04) | 3.76 (0.03)
(512,256,128,64,32,16,8,4,2,1) 4.10 (0.05) | 4.03 (0.04) | 4.59 (0.06) | 4.49 (0.06)
(10%,108,107, 108, 10%,10%, 103,102, 10, 1) | 4.10 (0.05) | 4.12(0.05) | 4.24 (0.07) | 4.12 (0.05)




Linear Discriminant Analysis

11

Table 4
p=5 n=30 n;=30 pH-pu@®=(0,...,0,2)
Expected Error Rates of USUAL, ASYMP, LOO, BOOT (standard errors are in parenthesis)
Eigenvalues of X USUAL ASYMP | LOO | BOOT

() — p@Y5-1(,0) — 4?)) = 0.25
(1,1,1,1,1) 44.01 (0.12) | 43.90 (0.12) | 43.92 (0.12) [ 43.93 (0.12)
(10,1,1,1,1) 44.01 (0.12) | 44.35 (0.12) | 44.83 (0.13) | 44.31 (0.12)
(25,25,25,25,1) 44.01 (0.12) | 44.18 (0.13) | 45.22 (0.15) | 44.42 (0.14)
(200, 120, 100,80,1) 44.01 (0.12) | 44.17 (0.13) | 45.42 (0.16) | 44.38 (0.14)
9,7,5,3,1) 44.01 (0.12) | 44.17 (0.13) | 45.16 (0.14) | 44.48 (0.13)
(16,8,4,2,1) 44.01 (0.12) | 44.17 (0.13) | 45.33 (0.14) | 44.48 (0.13)
(104,10%,10%,10,1) 44.01 (0.12) | 44.17 (0.13) | 45.96 (0.17) | 44.31 (0.14)

(p) — p@YB=1(uM — 42y = 1,00
(1,1,1,1,1) 33.89 (0.09) | 33.55 (0.09) | 33.61 (0.09) | 33.57 (0.08)
(10,1,1,1,1) 33.89 (0.09) | 34.20 (0.11) | 34.75 (0.14) | 34.09 (0.11)
(25,25,25,25,1) 33.89 (0.09) | 33.89 (0.09) | 34.64 (0.16) | 33.98 (0.11)
(200,120,100, 80,1) 33.89 (0.09) { 33.89 (0.09) | 34.63 (0.18) | 33.97 (0.11)
(9,7,5,3,1) 33.89 (0.09) | 33.90 (0.10) | 34.96 (0.15) | 34.19 (0.12)
(16,8,4,2,1) 33.89 (0.09) | 33.91 (0.10) | 35.04 (0.16) | 34.23 (0.12)
(104,103,102%,10,1) 33.89 (0.09) | 33.89 (0.10) | 35.15 (0.22) | 33.91 (0.10)

(p) — p@YE-1(u0) — u(2)) = 4,00
(1,1,1,1,1) 17.84 (0.06) | 17.16 (0.04) | 17.37 (0.05) | 17.30 (0.05)
(10,1,1,1,1) 17.84 (0.06) | 18.07 (0.08) | 18.02 (0.08) | 17.74 (0.06)
(25,25,25,25,1) 17.84 (0.06) | 17.84 (0.06) | 18.17 (0.09) | 17.84 (0.06)
(200, 120,100,80,1) 17.84 (0.06) | 17.84 (0.06) | 17.84 (0.06) | 17.84 (0.06)
(9,7,5,3,1) 17.84 (0.06) | 17.84 (0.06) | 18.41 (0.10) | 17.98 (0.07)
(16,8,4,2,1) 17.84 (0.06) | 17.84 (0.06) | 18.44 (0.10) | 17.98 (0.07)
(10%,103,10%,10,1) 17.84 (0.06) | 17.84 (0.06) | 17.84 (0.06) | 17.84 (0.06)

() — p@y5-10u1 — ) = 9.00
(1,1,1,1,1) 7.94 (0.04) | 7.34 (0.03) | 7.64 (0.03) 7.52 (0.03)
(10,1,1,1,1) 7.94 (0.04) | 8.10 (0.07) | 7.94 (0.05) 7.78 (0.04)
(25,25,25,25,1) 7.94 (0.04) | 7.94(0.04) | 8.20 (0.06) 7.96 (0.04)
(200, 120, 100,80, 1) 7.94 (0.04) | 7.94 (0.04) | 7.94 (0.04) 7.94 (0.04)
9,7,5,3,1) 7.94 (0.04) | 7.94 (0.04) | 8.17 (0.05) 8.02 (0.04)
(16,8,4,2,1) 7.94 (0.04) | 7.95(0.04) | 8.20 (0.05) 8.01 (0.04)
(104,10%,102,10,1) 7.94 (0.04) | 7.94 (0.04) | 7.94 (0.04) 7.94 (0.04)

(p) — y@yB-1(4,0 — 4,@)) = 16.00
(1,1,1,1,1) 2.93 (0.02) | 2.57 (0.01) | 2.81(0.02) 2.66 (0.02)
(10,1,1,1,1) 2.93 (0.02) | 3.00 (0.04) | 2.88 (0.02) 2.81 (0.02)
(25,25,25,25,1) 2.93 (0.02) | 2.93 (0.02) | 3.05 (0.03) 2.96 (0.02)
(200,120,100, 80,1) 2.93 (0.02) | 2.93 (0.02) | 2.93 (0.02) 2.93 (0.02)
9,7,5,3,1) 2.93 (0.02) | 2.95(0.02) | 3.00 (0.02) 2.97 (0.02)
(16,8,4,2,1) 2.93 (0.02) | 2.95(0.02) | 2.99 (0.02) 2.96 (0.02)
(10%,10%,10%,10,1) 2.93 (0.02) | 2.93 (0.02) | 2.93 (0.02) 2.93 (0.02)
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Table 5
p=5 n;=30 ny=30 p®—pu® =(z,0,...,0)
Expected Error Rates of USUAL, ASY M P, LOO, BOOT (standard errors are in parenthesis)

Eigenvalues of X | USUAL | ASYMP | LOO |  BOOT
(e — p@YE-1(,0 _ 4@y = 0.25
(10,1,1,1,1) 43.85 (0.12) | 42.69 (0.14) | 42.04 (0.14) | 42.73 (0.14)
(25,25,25,25,1) 43.85 (0.12) | 43.69 (0.12) | 43.53 (0.12) | 43.63 (0.12)
(200,120, 100,80,1) 43.85 (0.12) | 43.54 (0.12) | 42.92 (0.13) | 43.26 (0.13)
(9,7,5,3,1) 43.85 (0.12) | 43.18 (0.13) | 42.99 (0.13) | 43.22 (0.13)
(16,8,4,2,1) 43.85 (0.12) | 43.02 (0.13) | 42.48 (0.13) | 42.98 (0.13)
(104,10%,10%,10,1) 43.85 (0.12) | 43.47 (0.13) | 42.01 (0.15) | 43.07 (0.14)
(#(1) — ’u,(z))'z"l(p,(l) — ’u(z)) = 1.00
(10,1,1,1,1) 33.73 (0.08) | 32.14 (0.07) | 31.97 (0.06) | 32.21 (0.07)
(25,25,25,25,1) 33.73 (0.08) | 33.37 (0.08) | 33.19 (0.08) | 33.27 (0.08)
(200, 120,100,80,1) 33.73 (0.08) | 33.29 (0.08) | 32.65 (0.08) | 32.77 (0.08)
9,7,5,3,1) 33.73 (0.08) | 32.71 (0.08) | 32.62 (0.07) | 32.75 (0.08)
(16,8,4,2,1) 33.73 (0.08) | 32.55 (0.08) | 32.29 (0.07) | 32.51 (0.08)
(10%,103,10%,10,1) 33.73 (0.08) | 33.19 (0.08) [ 31.95 (0.07) | 32.63 (0.09)
(V) — p@YE-1(40) — 4 (2)) = 4,00
(10,1,1,1,1) 17.77 (0.05) | 16.63 (0.03) | 16.85 (0.04) | 16.78 (0.04)
(25,25,25,25,1) 17.77 (0.05) | 17.32 (0.05) | 17.27 (0.05) | 17.23 (0.05)
(200, 120,100,80,1) 17.77 (0.05) | 17.35 (0.05) | 17.01 (0.04) | 17.01 (0.05)
9,7,5,3,1) 17.77 (0.05) | 16.90 (0.04) | 17.05 (0.04) | 16.94 (0.04)
(16,8,4,2,1) 17.77 (0.05) | 16.85 (0.04) | 16.91 (0.04) | 16.88 (0.04)
(10%,10%,10%,10,1) 17.77 (0.05) | 17.31 (0.05) | 16.79 (0.04) | 16.98 (0.06)
(p) — p@YB=1(1) — 4(2)) = 9.00
(10,1,1,1,1) 7.90 (0.03) | 7.18 (0.02) | 7.41(0.03) | 7.26 (0.03)
(25,25,25,25,1) 7.90 (0.03) | 7.55(0.03) | 7.56 (0.03) | 7.46 (0.03)
(200,120,100,80,1) 7.90 (0.03) | 7.63 (0.03) | 7.48 (0.03) | 7.37 (0.03)
9,7,5,3,1) 7.90 (0.03) | 7.31(0.03) | 7.49(0.03) | 7.34 (0.03)
(16,8,4,2,1) 7.90 (0.03) | 7.29 (0.03) | 7.44 (0.03) | 7.31(0.03)
(10%,10%,10%,10,1) 7.90 (0.03) | 7.60 (0.03) | 7.39 (0.04) | 7.36 (0.04)
(p) — p@Y5-1(40 — 42 = 16.00
(10,1,1,1,1) 2.91 (0.02) | 2.53 (0.01) | 2.75(0.02) | 2.58 (0.02)
(25,25,25,25,1) 2.91 (0.02) | 2.71(0.02) | 2.79 (0.02) | 2.65 (0.02)
(200,120, 100,80,1) 2.91 (0.02) | 2.76 (0.17) | 2.77 (0.02) | 2.62 (0.02)
9,7,5,3,1) 2.91 (0.02) | 2.59 (0.01) | 2.77 (0.02) | 2.61 (0.02)
(16,8,4,2,1) 2.91 (0.02) | 2.59 (0.01) | 2.76 (0.02) | 2.60 (0.02)
(104,103, 10%,10,1) 2.91 (0.02) | 2.76 (0.02) | 2.73 (0.02) | 2.63 (0.02)
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Table 6

#(1) - #(2) = 2}(0‘1, (25 TR U'p)’
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Expected Error Rates of USUAL, ASYMP, LOO, BOOT (standard errors are in parenthesis)

Eigenvalues of ¥ = diag(o},03,...,07) | USUAL [ ASYMP | 100 | BOOT
(D — @ yx-1(,® _ 42)) = 0.25
10,1,1,1,1) 43.86 (0.11) | 43.95 (0.11) | 44.24 (0.12) | 43.97 (0.11)
(25,25,25,25,1) 43.86 (0.11) | 43.86 (0.11) { 43.96 (0.11) | 43.89 (0.11)
(200, 120,100, 80, 1) 43.86 (0.11) | 43.89 (0.11) | 44.04 (0.10) | 43.89 (0.10)
(9,7,5,3,1) 43.86 (0.11) | 43.87 (0.10) | 43.90 (0.11) | 43.89 (0.11)
(16,8,4,2,1) 43.86 (0.11) | 43.97 (0.11) | 44.06 (0.10) | 43.95 (0.11)
(104,103,102, 10, 1) 43.86 (0.11) | 43.95 (0.11) | 44.85 (0.13) | 44.05 (0.11)
(u® — p@ys-1(u — u®) = 1.00
10,1,1,1,1) 33.80 (0.09) | 34.00 (0.09) | 34.35 (0.10) | 34.03 (0.09)
(25,25,25,25,1) 33.80 (0.09) | 33.89 (0.08) | 34.16 (0.08) | 34.05 (0.09)
(200,120,100, 80, 1) 33.80 (0.09) | 33.94 (0.09) | 34.44 (0.09) | 34.14 (0.09)
(9,7,5,3,1) 33.80 (0.09) | 33.93 (0.08) | 34.11 (0.08) | 34.01 (0.09)
(16,8,4,2,1) 33.80 (0.09) | 34.01 (0.09) | 34.36 (0.09) | 34.10 (0.09)
(104,103,102,10,1) 33.80 (0.09) | 34.00 (0.09) | 35.40 (0.13) | 34.26 (0.11)
() — p@yE=1(u@ — u3) = 4.00 |
(10,1,1,1,1) 17.82 (0.06) | 17.78 (0.06) | 17.97 (0.07) | 17.86 (0.06)
(25,25, 25,25, 1) 17.82 (0.06) | 17.95 (0.06) | 18.32 (0.06) | 18.22 (0.06)
(200,120, 100,80, 1) 17.82 (0.06) | 17.98 (0.06) | 18.66 (0.07) | 18.25 (0.07)
(9,7,5,3,1) 17.82 (0.06) | 17.94 (0.06) | 18.15 (0.06) | 18.04 (0.06)
(16,8,4,2,1) 17.82 (0.06) | 17.95 (0.06) | 18.30 (0.07) | 18.09 (0.07)
(104,103,102, 10, 1) 17.82 (0.06) | 18.00 (0.07) | 18.57 (0.12) | 17.92 (0.07)
(pW — @@y 5-1(uW — u®) = 9.00
(10,1,1,L,1) 7.92 (0.04) | 7.85 (0.04) | 8.06 (0.05) | 7.94 (0.04)
(25,25,25,25,1) 7.92 (0.04) | 8.00 (0.04) | 8.37 (0.04) | 8.33 (0.04)
(200,120,100, 80, 1) 7.92 (0.04) | 8.00 (0.04) | 8.56 (0.05) | 8.33 (0.05)
(9,7,5,3,1) 7.92 (0.04) | 7.98 (0.04) | 8.18 (0.04) | 8.18 (0.04)
(16,8,4,2,1) 7.92 (0.04) | 7.97 (0.04) | 8.27 (0.06) | 8.19 (0.05)
(104,103,102, 10,1) 7.92 (0.04) | 8.01 (0.04) | 8.17 (0.07) | 7.99 (0.06)
(utV) — p2YE-1(p) — 42)y = 16.00
(10,1,L,1,1) 2.92 (0.02) | 2.88 (0.02) | 3.03 (0.03) | 2.97 (0.03)
(25,25,25,25,1) 2.92 (0.02) | 2.96 (0.02) | 3.11 (0.02) | 3.23 (0.03)
(200,120, 100,80, 1) 2.92 (0.02) | 2.96 (0.02) | 3.23 (0.03) | 3.33 (0.03)
(9,7,5,3,1) 2.92 (0.02) | 2.94 (0.02) | 3.01 (0.02) | 3.13 (0.03)
(16,8,4,2,1) 2.92 (0.02) | 2.94 (0.02) | 3.09 (0.03) | 3.16 (0.03)
(10,108,102, 10, 1) 2.92 (0.02) | 2.96 (0.02) | 3.13 (0.05) | 3.00 (0.04)
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5 Appendix
Lemma 1 With the notation of Section 2, we have
A oo v (1) )
/ / e (trd")R(E, €7, 0)| () ¢(2) @)= () w2 5y dtdz = 0,
—o0 —00
—A1/2 poo are(l) £02)
/ / e (trZd")U(EH, £, 0)|c) g2 0)=(u) @ pydtdz = 0,
—o00

oo

A1/2 poo
/ e~ (tr56")0W DO E(EW, €2, 0)] ) ¢ 0)=(u) 0 5y dlds = 0,
/ _”‘”(trEB*)3(2),23(2)‘I’(§(1),5(2),9)|(g(l),¢(2),@):(u(l),u(i’),z)dtdx =0

Lo L
[

-A31/2 poo . " 1 :
/ e " (trd )3(2) 23(2)\11(5(1),5(2),9)I(g(l),g(2),@)=(”(1),u("’),z)dtd"” = 0,

[o <] —00

1/2 .
/ f —ztm(trza*za*)w(é‘(l),6(2), @)|(5(1)75(2)19)4#(1),,A?),z:)a'tda:

= ¢(_)A1’

—A1/2 oo .
/ / e~ (4r20%)(tr2a*Ta*) U(eM, 63, 0)l(e 6@ 0)=(u») w2 5y dtde

p—-1,4;
- 2 ¢(2)A1’

-A1/2 poo .
/ / e 0 (tr0*)(tr2 20 U (€D, €2, 0)] e ¢ )= (utt) ) 5y dtd2

= %gb(%)Al‘l[A% — (trz7hH)AZ),

~81/2 oo ] . 2g (e )
/ [ ) 87) - (B0 PHED, €5, 0) cn g, 0)m(uc0 0yt
= SEtIPUGHATAS - a7,
and
TAE 0 e (98 2 () £()
/ / e " (tr0*)a\ Lo\ w (£ ¢ s 0)l(e),6 @)=(u0) ,u@ 5y ItdT

= 2¢(—)[pA*3A2 AT (rmTh),

where ¢ denotes the probability density function of the standard normal distribution.

The proof of Lemma 1 is straightforward though somewhat tedious and hence will be omitted.
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