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Abstract

Selection models arise when the data is selected to enter the sample only if it occurs
in a certain region of the sample space. When this selection occurs according to some
probability distribution, the resulting model is often instead called a weighted distribution
model. In either case the “original” density becomes multiplied by a “weight function”
w(z). Often there is considerable uncertainty concerning this weight function; for instance,
it may only be known that w lies between two specified weight functions. We consider
robust Bayesian analysis for this situation, finding the range of posterior quantities of
interest, such as the posterior mean or posterior probability of a set, as w ranges over
the class of weight functions. The variational analysis utilizes concepts from variation

diminishing transformations.

1. INTRODUCTION

Assume that the random variable X € R! is distributed over some population of
interest according to the density f(z|d), § € © = some interval (possibly infinite) in R,
but that, when X = z, the probability of recording = (or the probability that « is selected
to enter the sample) is w(z). Then the true density of an actual observation is

Fulzl6) = % 1)

where v,,(0) = Eg{w(X)]. There is, actually, no reason to require w(z) to be a probability;
all we henceforth require is that w be nonnegative and that 0 < Eg[w(X)] < oo for all
6. Then w can be interpretated as a weight function that distorts (multiplies) the density
f(z|6) that observation z gets selected. Selection models occur very often in practice (Patil
and Rao, 1977; Rao, 1985; Bayarri and DeGroot, 1992).
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Often the specification of w(-) is highly uncertain. It is thus of particular interest
to study the robustness of the analysis to choice of w. We do so here using the global
Bayesian robustness approach of considering a class, W, of possible weight functions, and

computing the range of posterior functionals of interest as w ranges over W.

Previous efforts in this direction for selection models have been informal and mainly
confined to the study of parametric classes of weight functions, such as w(z) = z® (when
X > 0). There is rarely scientific justification for such specific parametric models; we will

thus consider nonparametric classes of weight functions, such as
Wi = {w: wi(z) < w(z) < wy(z)},

W, = {nondecreasing w: w;(z) < w(z) < wa(z)},

where w; () and wz(-) are nondecreasing. The upper and lower limits, w; and ws, are to

be chosen subjectively, representing the extremes of beliefs concerning w.

Example 1. Studies are reported in a journal only if (¢) the result is significant at the
0.05 level of significance (one-sided), or (i7) it is significant at the 0.1 level and is deemed
to be exceptionally “important” by the editors. In terms of, say, a standardized normal
test statistic, X, we might conclude that w € Wy (or W) with w1(z) = 1(1.645, o0)(z) and
wa(z) = 1(1.282, oo)(Z), where “1” stands for the indicator function on the given set. The

multiobservational version of this example can arise in meta-analysis.

The problem becomes particularly interesting in the multi-observational setting, be-
cause the effect of the weight function can then be extremely dramatic. Suppose X1, X>, ...,
X, are i.i.d. from the density (1.1), so that the likelihood function for @ is

Ly(6) o< U(8)[vw(9)]7", (1.2)

n

where [(§) « ][] f(z:|0) would be the likelihood function for the unweighted base density.
=1

If 7(6) is the prior density for § (assumed to be w.r.t. Lebesgue measure) the posterior

density is then
oy O] x(0)
©) = T1Owu(o) ()@’ (13)

assuming 7 is such that the denominator is finite. Expression (1.3) suggests that, at least

for large n, the weight function w can have a considerably greater effect on 7* than might

the prior 7. Hence we will treat m(6) as given here; for instance, it might be chosen to
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be a noninformative prior for the base model f(z;|6). Section 2 in the paper generalizes
trivially to the scenario in which 7 is also specified only up to a class I, but Section 3 is

more difficult to generalize.

We are interested in posterior functionals of the form

o [HOOb (6] (6)d8
Hyve) = [ WO 00 =

(We assume that these integrals exist for all w, guaranteed if they exist for w;.) Typical
1 of interest include ¢(f) = 6 (yielding the posterior mean, ), ¥(8) = (8 — u)? (yield-
ing the posterior variance corresponding to ), and (6) = 1¢(0) (yielding the posterior
probability of the set C'). The sensitivity of Hy(vy) to w will be determined by finding

(1.4)

H, = inf Hy(vy)and Hy = sup Hy(va). (1.5)
weW weEW

As usual in Bayesian robustness, if (H ,p,ﬁ,p) is a small enough interval then the effect of
uncertainty in w is minor but, if the interval is large, one cannot be assured of a robust
conclusion, and must either collect more data or refine subjective opinion (about w or
7). For general discussion and references concerning this type of Bayesian robustness, see
Berger (1990) and Wasserman (1992). Note that virtually the entire literature considers

robustness w.r.t. the prior — not the likelihood, as here. (Lavine, 1991, is an exception.)

Section 2 exploits rather trivial inequalities to obtain a simple lower bound on H,
and upper bound on Hy, using the technique of DeRobertis and Hartigan (1981). Un-
fortunately, these simple bounds are too disperse to be of much use (unless n is quite
small). Hence, in Section 3 we tackle the variational problem of finding H,, and Hy di-
rectly. Rather simple characterizations of the “extreme points” for these optimizations
are possible when (8) is monotonic, unimodal, or bowl-shaped. The theory of variation
diminishing transformations (cf., Brown, Johnstone, and MacGibbon, 1981) is used in this

analysis.

2. EMPLOYING DEROBERTIS AND HARTIGAN BOUNDS
If w € W, then clearly
vw(0) € T1 = {v(0): vy, (0) < v(0) < vu,(0)}.

Also, if w € W, and f(z|0) has decreasing monotone likelihood ratio in 8 (i.e., 6; < 8; =
f(z]61)/ f(z|02) is nonincreasing), then

vw(8) € T'zs = { nondecreasing v: vy, (8) < v(6) < vw,(0)}.
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(This follows from the MLR property; since w € W, is nondecreasing, so is v,,(6).) Define,
for: =1,2,
Hy = inf Hy(v), Hy= sup Hy(v).

Since w € W; = v, € Ty, it is clear that H :}, <H, and Tf_,p < F:, Thus the bounds
obtained by employing the I'; are conservative, in that they contain the desired W; bounds.
The reason for considering the I'; bounds is that they can be obtained from a relatively

simple DeRobertis and Hartigan (1981) type of analysis.

For use in the following theorems, define
Qo = {6:9(8) > o},

L(8) = U(6)[vw, ()] 7" x(6), U(8) = U(8)[ve, (8)] 7" (6),

L) if6<a
9(0) = { U((o)) if6>a

U@ if6<a
he(0) = ¢ U(a) ifa<0<a*,
L) ifa*<0
where a* = inf {y > a:U(a) = L(y)}; note that h, is defined only for those values of a for

which a* is well-defined.

Theorem 1. IfT'; is considered, then

. i Jo. $O)L(8)dE + [, $()U(6)d6
T R IO+ o, U@

o Ja YOUOW® + [o 4OLO)
v T R UO)d + Jo, L(6)de

Proof. This is essentially just Theorem 4.1 of DeRobertis and Hartigan (1981). O

Theorem 2. If 1(0) is nondecreasing and I'y i3 considered, then
Hj =inf | / $(O)ha(8)d8 | / ha(8)d6),
y=sup ([ 9(0)0u®)d0 / [ 9.(0)as)
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If 1(0) is nonincreasing, these ezpressions hold with h, and g, reversed.
Proof. This is essentially Theorem 2.3.1 of Bose (1990). O

An analogous result could be given for unimodal or bowl-shaped (6), but we defer

such a result until Section 3 and determination of the more accurate H,, and F,/,.

Example 2. Suppose f(z;|0) = 67! exp{—zi/0}, where z; > 0 and 6 > 0. Then £(6) =
6~" exp{—nz/6}. We will employ the usual noninformative prior, 7(f) = 1/6. Consider
wi(z) = 1(x;,00)(%), T2 < 71, as in Example 1. Then vy,(6) = exp{—7i/}, so that T'; and

T'; are quite simple.

Let ¥(6) = 0, so that Hy(vy) is the posterior mean of §. We then have that Q, =
[a, ), and
L(e) — 0——(n—1)e—n(5—1'2)/0, U(a) — 0-—-(n—1)e—n(?:'—1'1)/0-
Theorem 1 can thus be used to numerically compute H :‘l, and TI—;, the minimum and

maximum of the posterior mean as v,, ranges over I';.

Similarly, for I'; we can numerically compute H;, and -I_{_:l, using Theorem 2. Note
that the range of a for which h, is defined can be shown to be (0,a¢), where ag is the
solution to

L(ap) exp{n(r1 — 12)/ac} = L(n[T — 12]/(n + 1)).
Since () = 0 is increasing, it is easy to see that F; is the same for I'; and 'z, but that
the lower bounds, Hj, differ. These bounds are all given in Figure 1, as a function of d,
for the case 1, =1+ d, 7 =1 —d, and n = 50. The dashed lines are the upper and lower
bounds corresponding to I';, and the dotted line is the lower bound corresponding to I's.
Since the upper bound is unchanged for I';, it is clear that imposing monotonicity on w in

T, provides only a slight improvement over the I'y bounds.

It is of considerable interest to study the effect of the sample size, n. This is done
in Table 1, for the case ; = 0.8 and 73 = 1.2. The startling feature of the results is
that the range of the posterior mean increases with n; thus larger sample sizes result in
less robustness. This is a clear indication that replacing W by I'; or I'; and using the
DeRobertis and Hartigan theory, is too crude; it appears to be necessary to work directly
with the original W.

For this type of situation, it will be shown in the next section that the exact bounds,

H, and H,, corresponding to W, are the minimum and maximum of Hy(vw, ), where
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wr(z) = 1(r,00)(z). It is straightforward to show, for such w,, that the posterior dis-
tribution is Inverse Gamma (n, [n(Z — 7)]7!), so that the posterior mean is Hy(vy,) =

n(Z—)/(n—1). It is then obvious that H, = n(Z—71)/(n—1) and Hy = n(T—72)/(n—1).

Besides being available in closed form, these exact bounds are considerably tighter
than the Hy, and F:/, In Figure 1, the solid lines are the exact bounds. And, in Table 1,
one sees that the range of the exact bounds decreases with n, as intuition would suggest.
But note that this range decreases to the constant (73 — 72) so that, even for an arbitrarily
large sample size, the uncertainty in the posterior mean is not completely resolved. This
is the nature of selection models, and indicates why robustness studies are particularly

important for their analysis.

Table 1. Ranges of the posterior mean over I';, I's,
and W, in the exponential example with sample size n.

n=29 n=10 n =50
for T (0.813,1.711) | (0.610, 1.681) | (0.421, 1.976)
for T'; (1.117, 1.711) | (0.864, 1.681) | (0.582, 1.976)
(Hy,Hy) for W, (1.0, 1.5) (0.889, 1.333) | (0.816, 1.224)
for Ty 0.898 1.071 1.555
(Hy — Hy)
for T'y 0.594 0.817 1.394
(Hy—Hy) for W, 0.5 0.444 0.408

3. DETERMINING THE POSTERIOR BOUNDS

Example 2 in Section 2 demonstrated the need for exact calculation of H,, and Hy
in (1.4). In this section, we indicate how this can be done when W = W,. To keep the
description of the solution manageable, we will only consider the case in which f(z|0) is
a continuous density with respect to Lebesgue measure with support (7, s) (r and s could
be infinite) and we will impose the weak condition on W, that, for every r < z < s,

lim wy(z + €) < lim wa(z — €).
e—0 €—0

(3.1)
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Figure 1. Ranges of the posterior mean over I'; (dashed lines), I'; (upper dashed and
dotted lines), and W, (solid lines) in the exponential example, when 7 = 14 d,
T2=1-—d, andn=50

This simply ensures that w; never jumps past where wy just was. We also assume that w;

is not identically zero.

The following assumptions are needed in the optimization proof. The assumptions
utilize the concept of variation diminishing transformations (cf., Brown, Johnstone, and
MacGibbon, 1981). We will require that f(z|6) be SVR; or SVR3 (strictly variation
reducing of order 2 or 3, respectively). Note that being SVR; is equivalent to having strict
monotone likelihood ratio (decreasing, by convention). Any distribution in the exponential
family is SVR;3 (indeed, is SV Rw); so is the noncentral ¢, noncentral x?, noncentral F,
and many others (see Karlin, 1968, 3.4).

Assumption 1. (0) and f(z|0) satisfy either

(i) 1¥(0) is nondecreasing (to be denoted 1) or nonincreasing (), and f(z|f) has strictly

decreasing monotone likelihood ratio; or



(i) ¥(8) is nondecreasing for § < 6, and nonincreasing for 8 > 6,(T|), or ¥(8) is nonin-
creasing for § < 6y and nondecreasing for 6 > 6o({1), and f(z|f) is SVRs.

Assumption 2. Forallr <z < s |
/ (1 -+ [(O)IO)[vwn ()] m(8) f(]6)d8 < oo. (3.2)

Note that (3.2) then also holds with w; replaced by any w € Wh.

It will be seen that _IT,/, and H,, are achieved at a w € W, which has one of the four
following forms. Define hi(c) = inf{z: wi(z) < ¢}, and ho(c) = sup{z: wz(z) > c}. Note
that, at points of continuity of w;, hi(c) = w; '(c). Also, let a A b and a V b denote the

minimum and maximum, respectively, of a and b.

Solution Forms:

_Jwi(z) ifr<z<a
L w(z)_{wz(z) fa<z<s

we(z) if r <z < hyc)
II. wz)=<c¢c if ha(c) < = < hy(c)
wi(z) ifhifc)<z<s
(wi(z) fr<z<a
ML w(e)= | @2 Ha<z<aVhy(o) (33)
’ c if aV ha(c) <z < hi(c)
\ wl(x) if hl(c) <zr<s
(wa(z) ifr <z < hy(c)
_Je if ha(c) < z < a A hi(c)
V. w(z) = wi(z) faAhc)<z<a
\ we(z) fa<z<s.

It can be seen that I and II are both limiting cases of III and IV. This might be missed by
an optimization program, however, so it is wise, when optimizing over classes III or IV, to

also check classes I and II.

Note: When w; and w; are (nondecreasing) indicator functions, as in Examples 1 and 2,
it is easy to see that the solution forms I through IV are themselves simply (nondecreasing)

indicator functions.

Theorem 3. H,, and Hy ezist, and are attained, respectively, at some w and W in W,.

If Assumptions 1 and 2 hold, then w and W can be chosen to be of the form indicated in
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the following table.

Extreme Points for Optimization

Shape of T ! Tl i1
Form of w IT I v III
Form of w I II II1 IV
Proof. See the Appendix. a

In the following two examples, we illustrate application of Theorem 3 as well as the nature

of solution forms I through IV.

Example 3. Consider the exponential scenario of Example 2, but now suppose that “size-
biased” weights of the form w(z) = z” are under consideration. In particular, 7, = 0.8
and 7, = 1.2 are considered to be “extreme” weights, and it is decided to consider any
nondecreasing weight function that lies between these extremes. The resulting class is
clearly Ws, with

1.2 0.8
w1($)={x et "’2(1):{;1-2 itf'zfi

208 ifz>1’

3.5 3.5
3 3
2.5 2.5
2 2
1.5 1.5
1 1
0.5 0.5

0.5 1 1.5 2 2.5 3 .
(a) (b)
Figure 2. Graphs of w(z) and w(z) (dark lines in (a) and (b), respectively), together with

wj(z) and ws(z) for Example 3.

If we are again interested in the posterior mean, so that ¥(6) = @ which is increasing,
Theorem 3 states that H, is achieved at w of form I while H,, is achieved at @ of form

II. Numerical computation for the situation T = 2 and n = 10 shows that w is of form
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I with a = 2.097, while @ is of form II with hy(c) = 1.826, hi(c) = (1.826)12/%8 and
¢ = (1.826)!:2. These are graphed, as the dark lines, in Figures 2a and 2b, respectively;
the lighter lines are w; and wy; and the dashed lines are a and hs(c), respectively. The
corresponding bounds (H 1/,,_I:_f,/,) are (0.943, 1.189).

Example 4. Consider the exponential scenario of previous examples, but now suppose
that “length-biased” weights of the form w(z) = Tz are considered. The “extremes” are
thought to be wi(z) = (0.8)z and wy(z) = (1.2)z, which we directly use to define W;.

______________

|l \S] w [ wn o)}
[ [\ w > m o}
T

(a) (b)

Figure 3. Graphs of w(z) and w(z) (dark lines in (a) and (b), respectively), together with

wiy(z) and wz(z) for Example 4.

If the “standard” length bias w(z) = = were used, then the posterior distribution for
8 would be Inverse Gamma (2n,(nZ)~!). For n = 10 and T = 2, the posterior mean plus
or minus one posterior standard deviation would be the interval I = (0.805,1.301), and
Pr(0 € I|data) = 0.714. We wish to study the robustness of this posterior coverage as w
varies over W,. To do so, we set () = 17(6), and apply Theorem 3. Note that (-) is 1|,
so that Theorem 3 asserts that w is of form III and w is of form IV. Numerical computation
reveals that w is of form III, but with @ = 0 and ¢ = 2.458; thus the solution is actually of
form II, illustrating the need to consider limiting cases. The maximizer, W, is of form IV
with a = 4.150 and ¢ = 0.768. Figures 3a and 3b graph w and w, respectively (the dark
lines); the lighter lines are w; and ws; and the dashed lines are ¢ (Figure 3a) and ¢ and a
(Figure 3b). The corresponding bounds (H.,, Hy) are (0.647, 0.755).

Appendix: Proof of Theorem 3.

Because the numerator and denominator in (1.4) are bounded above and below by w;

and wy, it is straightforward to show that H,, and H, exist. To show that w and @ exist,
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note first that W; is compact in the topology of pointwise convergence. Hence to prove
existence of w and W we need only show that Hy(vy) is a continuous function of w (under

pointwise convergence), i.e., that
lim Hy(vw) = Hy(ves) i lim wg)(z) = w*(2). (A1)

But since we require v,,,(8) < oo and w(-) > 0, the Lebesgue dominated convergence
theorem yields

}H{.lo V(i (0) = var (9) if }_}H}o w(i)(z) = w¥(z),
from which it is clear that
i [y (6)] ™ — [ (6]

(using also vy, (6) > 0). But since [vy;,(0)]™ < [1w,(6)]7", and the integrals in (1.4)
are assumed to exist for w;, the dominated convergence theorem can again be applied to

establish (A1l).

We proceed with determination of the form of w; the proof for w is similar. For a

function g(z), we will use the notation
g () = limg(z +¢), g7(z) = limg(e —¢).

The first step of the proof is to apply the usual linearization argument (cf., Lavine, Wasser-

man and Wolpert, 1993), rewriting

Hy = sup Hy(w) = Hy()

weEW;
as
0= sup Gy(w)= Gy(w), (A2)
weEW:
where

Gow) = [(4(6) = F O lpu(8) " x(6)do.
Define (existence guaranteed by Assumption 2)
A@) = [ - IOk "+ n(O)(zl0)ds
Lemma 1. Let I C (r,s) be an interval, and
B(z) = B(z) + 8(2)L1(z),
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where 6(-) is of constant sign (or zero) on I. Assume A(z) is of constant (nonzero) sign
on I and, for all0 € O,

| [ s@salt)ds | frse) < (43)
Then, -
G () = —n(1 + 0(e)) /I §(2)K(2)dz.
Proof. Clearly

va(8) = va(6) + /I §(z)f(z|6)ds.
Hence, using (A3) and the constant sign of §(-) on I,

wa(®)] ™ = @)1 - 20O [ 50 (z(6)da),
Vw(a) I

and

6y(@) = [0 - Fo@e@)™ (1- "D [ s(0) 1tttz ) (o)

= Gy(@) = n(1 +0(9) [(4(6) ~ FO(@)] -+ ( / 6(w)f(w|9)dz) ~(8)d0
=-n(l+ 0(6))/6(.7:)X(:v)dz,
I

using (A2), Assumption 2 (to justify interchanging the order of integration), and the

assumption that A(z) is nonzero and of constant sign on I. [

Lemma 2. The number of sign changes of A(-) (counting any zero as a sign change) is
less than or equal to one when () is T or is |, and is less than or equal to two when (6)
s T| or is |1. And, if the number of sign changes i3 the mazimal one or two, respectively,

then the sign changes must occur in the order given below:

Shape of 9 | 1 | ! | 1l | 11

Sign Changes of A ’ — to + ‘ + to — ‘ — to + to — + to — to +

Proof. Thisis a direct consequence of the variation reducing properties of f(z|6), specified

in Assumption 1, when applied to

($(8) — Hy)I(8)[va(8)]"+Vm(6),
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the sign changes of which are clearly determined by those of (¥() — Hy), which occur as

indicated in the lemma. 0O

Lemma 3. Let z* be a jump point of w.

(1) Suppose € > 0 and § > 0 can be found for which w(z) > 0 on (z* — ¢,z*) and
W_(x) =W(z) + 61(ze—c,z7)(Z) € Wha. (A4)

Then A(z) > 0 for z € (z* —€,z*) and small enough e.

(i) Suppose € >0 and § > 0 can be found for which
1I)+($) = TU—(:I:) - 51(2‘,z‘+e)(x) E W2- (A5)

Then A(z) < 0 for z € (z*,z* + €) and small enough e.

Proof. Condition (A3) must first be verified. In case (z), one can choose € small enough
so W(z* — €) > 0. Then

| 6)f(alO)de| _ [ f(=lO)dz s
var(6) T w(e* —e) [h_ f(zlf)dz  W(z*—¢)

Since é can be made arbitrarily small, (A3) is satisfied. Verification of (A3) for case (i?) is

similar.

Application of Lemma 1 thus yields

I.

Go(i-) = —n(1+0(8)3s [ ez,
z'+e_
Gy (1) = n(1 + 0(8))6 / A(z)ds.

z.

For (A2) to be true, Gy(w-) and/or Gy (¥4 ) must be less than or equal to zero. Since
A(z) has at most 2 sign changes (including zeroes) and is continuous, € can be chosen small
enough so that A(z) is nonzero and has constant sign on (z* — ¢,z*) or on (z*,z* + ¢).

The conclusions of the lemma are immediate. O

Lemma 4. If A(z) > 0 for r < z < zo, then W(z) = wi(z) forr <z < zo. IfA(z) <0

for zo < = < 3, then W(x) = wa(z) for zo < z < s.
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Proof. To prove the first part, suppose not. Then let

) B w(z) forrg<z<s
50 = { piune), 1 - 95)) forr < s < o
= W(z) + 6(2)1(s,20)(2),

where
§(z) = —min{w(z) — wi(z), ew(z)}.

Note that 6§(z) < 0 on (r,zg) with positive measure (else W(z) = wi(z)). It is easy to see
that @ € Ws. Also,

|J7* 6@)f(zl6)dz| _ e [ w(z)f(ald)dz _
ve(0) - va(0) =

so (A3) is satisfied. Lemma 1 then yields
Gy(w) = —-n(1+ O(e))/ 8(z)A(z)dz.

Since A(z) > 0, it follows that, for small enough €, Gy () > 0, which contradicts the

maximality of w.

To prove the second part of the lemma, define
w(z) =B(x) + 8(z)1(z,,9) (),

where §(z) = min {wz(z) — wW(z),ew(z)}. Again Lemma 1 applies, and yields a contradic-
tion unless §(z) = 0 almost everywhere. Since w cannot be identically zero (w; isn’t), this
last can be true only if W(z) = 1(,, 5)(z)wz(z) for some o < z; < 5. But wa(z) > A >0
on a small enough interval (z; — €, 1) and for small enough A; else, wa(z) = 0 for z < z;
and W = w; as claimed. Hence (A4) in Lemma 3 could be satisfied, so part (¢) of that

lemma would contradict the assumption that A(z) < 0 for z > =z,. O
Lemma 5. If wi(z) < ©(z) < wa(z) for a < z < b, then W(z) is constant on (a,b).

Proof. First consider the case where W(z) is strictly increasing or strictly decreasing on
some subinterval (a',b'), without jumps. Then there is a subinterval [c,d] of (a’,b') in
which, for some € > 0, w1(z) + ¢ < W(z) < wa(z) — ¢, and in which A() is always positive
or always negative (using, again, the fact that A(-) has at most two sign changes, including

zeroes). It follows directly, from Lemma 1, that such a W is not maximal; simply shift @

14



on [c,d] towards either w(c) or w(d) (depending on the sign of A(-)); the details of proof

are similar to those in Lemma 3.

It follows that W must be a step function on (a,b). Let z* € (a,b) be a jump point.
Note that @W(z) < wa(z) + A for z € (2* — €,2*) and small enough A > 0 and e > 0; this
follows from W being constant over a small enough interval, w, being nondecreasing, and
W < wy on (a,b). It can be concluded from Lemma 3 (i) that A(z) > 0 on (z* — ¢, z*),
for small enough e. A similar argument shows that A(z) < 0 on (z*,z* + ¢), for small
enough e. But then, either A(z) > 0 for z < z* or A(z) < 0 for = > z*; if neither of these
were true, there would have to be at least three sign changes of A(+), which is not possible.
But then Lemma 4 would yield that either W(z) = w1(z) for z < z* or W(z) = wz(z) for
z > z*, contradicting the assumptions here. Hence W cannot have a jump at z*, and the

lemma is proved. Ol

Lemma 6. (i) If A(z) <0 for r < z < z* and W(z) > 0, then there ezists r < 7o < z*
such that W(z) = wa(z) for r < T < z9, and W(z) = ¢ > wi(z*) for zo < z < z*.

(ii) If A(z) > 0 for z* < z < s, then there ezists 2* < 71 < s such that W(z) = wi(z) for

r1 <z <s, and W(z) =c L w, (z*) for z* <z < 1.

Proof. To prove part (), let zo = sup{z < z*:wW(z) = wa(z)}, defined to be o = r if
equality is never satisfied. Then W(z) < wa(z) for zg < z < z*. Also, Lemma 1 can be
used to show that W(z) = wa(z) for r < z < 2o (the argument is similar to the second part
of the proof of Lemma 4). Now, if W(z) < wy(z*) for a subinterval of (zo,z*), Lemma
1 could again be used to contradict the maximality of w; simply shift @ over this range

towards min{w;(z), w (z*)}.

It remains to show that W is constant over (zg,z*). To prove this, let (zg,z2) be
the (possibly empty) interval over which @W(z) = w{(z*). (It is an interval because w is
nondecreasing.) On the interval (z2,z*) we have wi(z) < wi(z*) < W(z) < wy(z), so
that Lemma 5 implies that W is a constant, ¢, over this interval. But this constant cannot
differ from that over (zo,z2); else, Lemma 1 could be used to contradict the maximality

of w, by shifting @ on (z¢,z,) towards min{ws(z), c}. The proof of part (iz) is similar. [

Completion of Proof: Assume first that w;(z) > 0 for £ > r, so that w > 0 and w > 0.

Case 1: ¥(-) |
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By Lemma 2, either A(-) has no sign change, or it has one sign change going from +
to —. In the latter case, Lemma 4 applies, showing that ® is of Form I from (3.3). If A(-)
has no sign change, Lemma 4 still applies with ¢ = s or 9 = r, with W being w; or wy,

respectively. Since these are special cases of Form I, the proof is complete.

Case 2: () 1
By Lemma 2, either A(-) has no sign change or A(-) has one sign change going from — to +,

with the change occurring at, say, z*. In the latter case, Lemma 6 asserts that there exist
r < zg9 < z* and z* < 77 < s such that W(z) = we(z) for r < z < ¢ and W(z) = wi(z) for
z; < z < 8, with W(z) being constant over the intervals (zq,z*) and (z*,z1). It is easy to
see that these constants must be the same; again apply Lemma 1, and use the assumption

(3.1). This form of solution can be written as Form II from (3.3).

If A(-) has no sign changes, the argument proceeds similarly to Case I, yielding the
conclusion that w is either w; or ws. Either of these is also a limiting case of Form II,

completing the proof.
Case 8. ¥(-) |1

Now A(-) has at most two sign changes. The cases of zero and one sign change are
handled as before. If there are two sign changes, Lemma 2 shows that the order must
be + to — to +. Letting a be the location of the first sign change, Lemma 4 shows that
w(z) = wi(z) for z < a. But the problem for £ > a is then identical to the Case 2
problem. Combining the solutions over these domains with the constraint that w(:) be

nondecreasing results in a solution of Form III of (3.3).

Case 4. ¥(-) 11

The only new case is that in which A(-) has two sign changes from — to + to —.
Letting a be the point of the second sign change, Lemma 4 shows that W(z) = wy(z) for
z > a. The problem for z < a is then a Case 2 problem. Combining the solutions over

these domains with the constraint that @w(-) be nondecreasing results in a solution of Form

IV of (3.3).

To deal with the case wi(z) = 0 on (r, c), define a sequence w; ; of strictly increasing
functions such that wy i(z) — wi(z) pointwise and w, i(z) = wi(z) on (¢',s). Let w;
and w; be the minimizers and maximizers of Hy(vy) over the W, ; = {nondecreasing w :

wy,i(z) < w(z) < we(x)}; these solutions exist by the above results.

From the compactness of W; ;, it follows that {w;} and {w;} have subsequences {w;_}
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and {@;, } with limits w* and W*, respectively. It is straightforward to verify that the class
of functions of form II or the class of form IV in (3.3) are closed under pointwise limits.
Hence, if the {w; } (or {wi,}) are of form II or IV (the only cases we need worry about),

then so is w* (or W*).

Next, define Hfﬁ as in (1.4) with W = W, ;. An argument similar to that proving
(A1) yields
lim Hp(vw, )= Hy(vy+), lim Hy (vw,,) = Hy(ver)- (A6)

Finally, since
Hp(vw, ) S Hp (vw), Hy(ve,) 2 Hy (va),

it can easily be shown from (A6) that
Hy(vw) < Hy(vw), Hy(ver) 2 Hy(ve).

Hence w* is a minimizer of Hy(v,) and w* is a maximizer, proving that solutions of the
form IT and/or IV exist. (Note that we did not rule out the existence of solutions with an

initial zero segment; we just showed that a solution of form II or IV always exists.)
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