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Abstract

This paper reviews the current state of the art of the bootstrap procedure as it applies

primarily to dependent models. There is no unique way of implementing the bootstrap

paradigm in dependent situations. We take a look at several approaches, many of which

are extremely recent and have proven useful in estimating even parameters of the infinite

dimensional stationary distribution, such as the spectral density function evaluated at a

point. We provide a reasonably extensive bibliography and offer possible directions for fu-

ture studies in this exciting and often technically difficult area of research.

* On leave from the Indian Statistical Institute, Calcutta, India.



1. Introduction to bootstrap procedures

Bootstrap perhaps begun as a method to estimate standard error of estimates but has
evolved into a method of estimating any particular feature of a statistic (or more generally
any functional of the data and the underlying distribution) including the entire sampling dis-
tribution. To understand the procedure we will first concentrate on the situation where the
observations are univariate, independent, and identically distributed (i.i.d.).

Suppose Xi,...,X, areii.d. from a distribution F’ which may or may not belong in some
parametric family of distributions. Let T, = T(Xjy,...X,) be any statistic estimating the
parameter T(F). The function 7 may be as complicated as we please. Suppose the problem
is to estimate some feature of T}, such as the variance, percentile or even its entire probability
law which we will denote by Ly (F) as it depends on F.

Let F,, be some reasonable estimate of F'. For example if we know that F' is normal then
F,, could be N (:Z',sé) where Z is the sample mean and s? is the sample variance. If on the
other hand we are in the so-called nonparametric situation and no distributional properties of
F are known then F, could be the empirical distribution function (edf) of Xy,...X,. That is,
F,, puts mass 1/n at each X;. If the smoothness of F' is known then we may use a smoothened
form of the edf as F,. The bootstrap approximation of Lr(F) is just Lt(F,). To explain
this, let X7,... X be i.i.d. observations drawn from F,. This is usually called the bootstrap
sample. (Note that this sample can be drawn on the computer). In particular when F, is the
edf then there are n™ possible values of the bootstrap sample. Consider the distribution of
T* = T(XY,...X;) given X1,...X,. In principle this distribution is completely known. Now,
any distributional feature of the statistic 7,, may be approximated by that of T*. As a case
in point, the variance of T,, may be estimated by the variance of T*. In general, for future
use, we mention that the bootstrap quantities will always be denoted with an asterisk *. (We
may mention that in some situations it is appropriate to choose the bootstrap sample size to
be different from n. This issue has deep theoretical significance, apart from the practical effect

on the bootstrap algorithm. See Politis and Romano (1992b) for some situations where a dif-

ferent bootstrap sample size is necessitated). However, to completely compute it may require .



enormous computer time. For example, in the nonparametric case, this requires ™ computa-
tions. The following repeated sampling is in turn used to approximate the distribution of 7.
Draw m independent bootstrap samples as described above and compute m values of T™*, say
Ty, ..., Tr. The empirical distribution of these values approximates the distribution of 7.
For example the variance of T}, is approximated by that of T*. This, in turn, is approximated
by 7, (T¥ — T*)?/(m — 1). Note that the method involves resampling from the data and is
indeed one of the many methods known to use the sample values to create pseudovalues of T
for estimation or inference purposes. .Some other methods include the jackknife, halfsampling,
random subsampling, etc.; see Efron (1982) for description and examples of these other meth-
ods.. It was the work of Efron (1979, 1982) that really spurred a detailed look at the procedure,
both from theoretical and practical standpoints.

It is clear from the above description that the basic recipe for implementing the bootstrap
procedure may be described as follows:

(a) Express T as a function of Xi,...,Xx.

(b) Find an estimate of F’, say Fj,.

(c) Draw m replicated i.i.d. samples of size n from F, and compute m pseudovalues
Ty...,Tp.

An estimate of the desired quantity is obtained by using the “pseudovalues” from (c) pre-
tending that these are values of T'.

It is clear that the success of this approach depends on the following:

(A) How many replications m have been taken?

(B) How good is F, as an estimate of F'?

(C) How smooth is L7(F') as a function of F?

Generally speaking, the issue in (A) is an issue of the law of large numbers taking hold. If
m = oo then the error due to replication vanishes. So the larger the value of m the better.
However, the choice of m will often be dictated by the available computer time. Moreover,
in practice even moderate values of m yield good approximations. See Hall (1989a) for more

information on this aspect of implementation of the bootstrap algorithm.

The problem in (B) has been well studied in the literature. If we have a parametric family .



then, of course, parametric estimates are better. In general, care has to be taken to ensure
that the bootstrap world imitates the original world as closely as possible. The issue becomes
more involved in dependent situations since in such situations there may be several apparently
natural ways of generating the bootstrap samples; see section 2.

Example 1. Suppose F is uniform (0,6) where @ is unknown. Let Xi,...X, be ii.d.
observations from F. The maximum likelihood estimate of # is the maximum order statistic
X(n)- Tofind a confidence interval for # we may be interested in finding the distribution of X).
Note that here the natural pivot is T, = n(8 — X(5))/8 which is asymptotically distributed as
the standard exponential. (T will be called a pivot if its distribution is free of parameters for
every fixed n; or, more generally as n tends to co). How should we bootstrap T in this case?
It can shown that if we bootstrap by using the edf, it fails. See Bickel and Freedman (1981).
However if we resample by using the special nature of F, it works. Let X7,...X; be ii.d.
uniform (0, X(,)). This choice is natural since X(n) is the m.l.e. of 6. A slight reflection will
convince the reader that we should take 7™ = n(X () — X E‘n)) /X (n) where X[, is the maximum
order statistic of the bootstrap sample. The reader can verify that in this case the distribution
of T is exactly equal to that of T* (given the sample X3,...X,). Note that here by choosing
m large we get as close to the distribution of T' as we please. O

The problem in (C) has been looked into from theoretical and the applied standpoints.
Simulation results have vindicated the validity of this step in a variety of situations. The
accuracy question has been studied from the theoretical point in the asymptotic sense (as n
tends to oo). To explain this approach consider the following example.

Example 2. Suppose the problem is to find a confidence interval for the mean p of an
unknown F and for simplicity assume that the variance of F' is known and equals o. The
approximate confidence interval based on the normal approximation for the sample mean has
one obvious shortcoming, namely that it is always symmetric and cannot correct for a possible
presence of skewness in the distribution of the sample mean. The bootstrap algorithm here is
implemented as follows. Let X* be the mean of the bootstrap sample. Then the distribution of
T, = nM/?(X, — )/ is approximated by that of T* = n}/2(X} - X,,)/s where s is the sample

standard deviation. Note that s is the “population” standard deviation of the edf and it would



be inappropriate to use the divisor ¢ in the description of the bootstrap approximation. We
may use this distribution to set the limits of the interval instead of the normal percentiles. Note
that for a fixed n this distribution may be skewed. Indeed, it has been recognized that this
method captures the skewness of the population well and yields better confidence intervals. For
further information on bootstrap confidence intervals and how they perform relative to other
methods see Hall (1986, 1988) and Babu and Bose (1988). In the above example, it can be
shown that under certain assumptions as n tends to oo the (conditional) distribution of T*
converges to the standard normal almost surely. Thus, in the limit, the bootstrap does give
correct result. O

In general, if the distribution of 7' and 7™ agree in the limit then the bootstrap procedure
may be termed consistent. Clearly, an inconsistent bootstrap procedure is useless from our
point of view. We may mention that for many situations this consistency is present for the
bootstrap but not for other methods.

Example 3. The sample median may be used as an estimate of an unknown population
median. Suppose T, is the sample median on n i.i.d. observations from a distribution F,
having a density f. It is desired to estimate the standard error of T,,. It may be shown that
under some conditions (cf. Ghosh et al. (1984)) the bootstrap produces a consistent estimate
whereas the (delete one) jackknife method does not. (The jackknife method can be modified to
yield consistency in this problem). Note that here the asymptotic variance of T), involves the
unknown density at the population median and hence, conventional method of estimating the
standard error boils down to estimating a density, which is a particularly nasty problem. O

It is clear that consistency will hold if steps (B) and (C) above go through. This is indeed
the case in most situations; see Bickel and Freedman (1981). In particular it is consistent
for smooth functions of sample means (for example, the mean, t-statistic, sample correlation,
etc.). under moment assumptions. If these moment assumptions are violated things may go
severely wrong. See Athreya (1987) for more information. In some instances the situation may
be salvaged partly by choosing the resample size to be different from =, and/or by sampling
without replacement (subsampling); see Politis and Romano (1992b).

However, it came as a surprise to researchers when it was established that more than



consistency is true. To explain this let us look at Example 2 again. It is known that the normal
approximation has error of order O(n‘ll %); this is the celebrated Berry-Esseen Theorem, see
for example Feller (1968). Under sufficient assumptions (see for example Singh (1981)) it may
be shown that the bootstrap approximation has an error of order o(n'l/ %) almost surely, that
is for almost all sequences of the observations. Thus the bootstrap in this sense “beats” the
normal approximation. It may be noted that the result is asymptotic and the improvement is
only from O(n~1/2) to o(n~1/2). For more general results of this nature, see Babu and Singh
(1984). However, as many simulation results have shown, the approximation is remarkably
accurate in finite samples. See Efron (1982) for some examples. The probability of obtaining
a sample for which the bootstrap is not accurate tends to zero since the above error bounds
hold for almost all sample paths. Bose and Babu (1991) show that this probability tends to
zero very fast.

It is interesting to note that the order results are typically known only in situations where
the limiting distribution exists and is, in addition, normal; see Babu (1986) for one example
of a nonnormal situation. A recent unpublished paper of S. Lahiri has an example where the
limiting distribution does not exist but a consistency result is still valid in the sense that the
difference between the bootstrap and the original distribution approaches zero as n tends to
00.

In dependent or non-i.i.d. situations, it is harder to do conventional asymptotics. Even
more critical is the fact that these asymptotic approximations often perform poorly in finite
samples. Thus the bootstrap emerges as a potentially powerful tool in dependent situations.
The consistency of the bootstrap and accuracy results as above are of course harder to establish
in dependent situations. What complicates the matter is that there may be more than one
natural choice of implementing the bootstrap.

Example 4. Suppose X;’s are observations from the linear model

Xi=a+pYi+¢

where the ¢;’s are i.i.d. with mean zero and Y; are known and nonrandom. Suppose it is desired

to approximate the distribution of the least squares estimate 8, of 8. Since the X;’s are not



i.i.d. it is meaningless to do resampling from these. One could here calculate
& =X — BnYi

and proceed as if these are i.i.d. Let F, be their edf (corrected to make it zero mean). Draw
€’ i.i.d. from F), and generate X} by the model using 3, as the “true” value of . The least
squares estimate 3% based on the bootstrap X7 is then a pseudovalue of 3,. This method does
not preserve the pairing of Y¥; with the ¢;. One could device a bootstrap which does preserve it
by choosing X} = 3,Y; + € if ¢! = &;. See Freedman (1981) for general bootstrap consistency
results in linear models of the above form. O

Example 5. A very common time series model is the autoregression model (of order one)
given by

Xi=pX;1+ ¢

where the ¢;’s are i.i.d. with mean zero. The bootstrap here can be implemented as in the
previous example by making obvious changes. See Freedman (1981) for consistency results in
this model when |3| < 1 and Basawa et al. (1989) for the case |3| > 1. See Bose (1988) for
higher order results in the former case.

It may be observed that the bootstrap in the above two examples were implemented by
carefully preserving the structure of the model. Any naive application pretending that the
observations are i.i.d. when in fact they are not, can be disastrous. O

Example 6. The moving average model (of order one) used in time series is given by
X; = € + Bei

where the ¢;’s are i.i.d. with mean zero. The sample mean of X;,...X, has an asymptotic
normal distribution. If we take Fj, as the empirical distribution of the X;’s and generate the
bootstrap sample by drawing an i.i.d. re-sample from F,, and use the distribution of this sample
mean to approximate the distribution of the original sample mean, it is not even asymptotically
correct. (See Singh (1981) for the details of the asymptotics). See Bose (1990) for accuracy
results for a properly implemented bootstrap procedure. This paper also has simulation results

for this model and the autoregression model discussed earlier. O



2. Model-free dependent samples

Although Examples 4, 5, and 6 do not correspond to i.i.d. samples, they are nevertheless
reduced to an i.i.d. setting by looking at the residuals. In the most interesting case of a
model-free dependent sample such a device is not available. Consequently, modifications of
Efron’s bootstrap have been proposed to deal with this scenario, since direct application of the
nonparametric bootstrap in dependent samples is inconsistent; see Singh (1981) for example.

For the rest of this paper suppose that Xi,..., Xy are observations from the (strictly)
stationary multivariate time series {X,,n € Z}, where X; takes values in R?. The time series
{Xn,n € Z} is assumed to have a weak dependence structure. Specifically, the a-mixing (also
called strong mixing) condition will be assumed, i.e. that ax(k) — 0, as & — oo, where
ax(k) = supy g |P(AN B) — P(A)P(B)|, and A € F2,, B € F° are events in the g-algebras
generated by {X,,n < 0} and {X,,n > k} respectively. Recently Kiinsch(1989) and Liu
and Singh(1992) have independently proposed a block- resampling bootstrap that is generally
consistent; related procedures were also proposed in Politis and Romano (1991, 1992c). To
fix ideas, suppose that we are interested in interval estimation of the univariate (d = 1) mean
# = EX;, based on the sample mean Xy = N-1' N, X;, although the procedure applies for
general statistics estimating a parameter of the first-marginal distribution of the {X;} sequence,
i.e., the distribution of X;. The Kiinsch-Liu—Singh ‘mouving blocks’ method, can be described

as follows:

o Define B; to be the block of b consecutive observations starting from X;, that is B; =
(Xiy...y Xitp—1), wherei =1,...,q and ¢ = N — b+ 1. Sampling with replacement from
the set {By,...,B,}, defines a (conditional on the original data) probability measure P*
which is used in the ‘moving blocks’ bootstrap procedure. I k is an integer such that
kb ~ N, then letting &,...,& be drawn i.i.d. from P*, it is seen that each &; is a block
of b observations (&;1,...,&p). If all I = kb of the &; ;’s are concatenated in one long
vector denoted by Yy, ...,Y}, then the ‘moving blocks’ bootstrap estimate of the variance
of VN Xy is the variance of VI¥; under P*, and the ‘moving blocks’ bootstrap estimate
of P{/N(Xn —p) < z} is P*{VI(¥; - Xn) < 2}, where ¥; = } L, Y.



As a final step, confidence intervals for x4 can be obtained either by means of the Central
Limit Theorem using the ‘moving blocks’ bootstrap estimate of variance, or by approximating
the quantiles of the distribution P{v/N(Xy — ) < z} by the corresponding quantiles of
P*{/I(Y; - Xn) < a}. If P* probabilities turn out to be cumbersome to analytically calculate,
one can always resort to Monte Carlo, i.e. drawing a large number of samples §§j ), ceey f,(cj )iid.
from P*, where j = 1,...,J, and evaluating the required probabilities or quantiles empirically
from the Monte Carlo set of the J re-samples. It is obvious that taking b = 1 makes the ‘moving
blocks’ bootstrap coincide with the classical (i.i.d.) bootstrap of Efron(1979).

It can be shown (cf. Lahiri(1992)) that a slightly modified ‘moving blocks’ bootstrap esti-
mate of sampling distribution turns out to be more accurate than the normal approximation,
under some regularity conditions, resulting to more accurate confidence intervals for y. The
modification amounts to approximating the quantiles of P{v/N(Xx — p) < z} by the corre-
sponding quantiles of P*{vI(¥; — E*Y}) < z}, where E*Y; denotes the expected value of ¥
under the P* probability (conditional on the original data).

In Politis and Romano(1992a,d), the ‘blocks of blocks’resampling scheme was introduced, in
order to address the problem of setting confidence intervals for parameters associated with the
whole (infinite-dimensional) distribution of the Xj, X3, ... observations, and not just a finite-
dimensional marginal. A prime example of such a parameter is the spectral density function of
the {X,} sequence, evaluated at a point. As a by-product, the ‘blocks of blocks’ method also
provides more accurate confidence intervals for parameters associated with a finite-dimensional
distribution of the observations, as compared to confidence intervals obtained by the normal
approximation. Examples of such parameters include the autocovariance Cov(Xo, X;) and the
autocorrelation Cov(Xo, X;)/Var(Xo) at lag s. The ‘blocks of blocks’ scheme is a generalization
of the ‘moving blocks’ method, and the two coincide if the parameter under consideration is
the mean FX;.

To describe the ‘blocks of blocks’ method, first set up the estimation problem in the following
manner. Suppose € RP is a parameter of the m-dimensional joint distribution of sequence
{X,,n € Z}, where m could be infinite. For each N = 1,2,... let B; s, be the block of M

consecutive observations starting from (¢ —1)L+1, i.e., the subseries X(;_1)r.+1,- -, X(i-1)L+M>-



where M, L are integer functions of N. Define T; ar,, = ¢am(Bi L), where ¢pr : RM — RD
is some function. So for fixed N, the T; ar,1, for ¢ € Z constitute a strictly stationary sequence.
In practice we would observe a segment X,..., Xy from the time series {X,}, which would
permit us to compute T; a1, for i = 1,...,Q only, where @ = [-N—'I’II—VL] + 1 and [-] is the integer

part function. Also, define the general linear statistic:
I .
Tv= 13 T (1)
Q=

Under broad regularity conditions T is a consistent estimator of u. Loosely stated, these
regularity conditions consist of a weak dependence structure (allowing the variance of Ty to
tend to zero as N — o), and a condition of unbiasedness or asymptotic unbiasedness of Ty ar,r,
ie., ETy M = p, or ETypp — pas M — oo.

Some examples of time series statistics that can fit in this framework are the following. For
the examples assume X, is univariate, that is d = 1.

Example 7. The sample mean : X = &N, X;. Just take M = L = 1 and ¢p to be the
identity function. O

Example 8. The sample autocovariance at lag s: ﬁ Zﬁ]s XiXits- Take L =1, M =
s+ 1 and ¢p(z1,...,2M) = T120. O

Example 9. The lag-window spectral density estimator, where we take
L(i-1)+M

om(Bim,L) = 5 MI E Wt(M)Xte—jtwl2 (2)
T t=L(i—1)+1

i.e., T; m,(w) is the periodogram of block B; s, of data ‘tapered’ by the function Wt(M), and
evaluated at the point w € [0,27]. (Note that the symbol j denotes the unit of imaginary
numbers v/—1, in order to avoid confusion with 7, the block count.) O

Note that in example 7, p is just EXy, i.e. it is a parameter of the m-dimensional marginal
distribution of sequence {X,,n € Z}, with m=1. Similarly, in example 8, u = EXoX, is a
parameter of the m-dimensional marginal, with m=s + 1, and in example 9, u is the spectral
density evaluated at the point w, i.e. a parameter of the whole (infinite-dimensional) joint
distribution of {X,,,n € Z}.

With the objective of setting confidence intervals for p, the ‘blocks of blocks’ bootstrap

procedure goes as follows:
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o Define B;; to be the block of b consecutive T;as,1’s starting from T a7,1; that is, let
Bip = (TjmL,---»Tj—146m,L). Note that there are ¢ =@ — b+ 1 such Bjp,j=1,...,q.
Sampling with replacement from the set {Bip,...,B,} defines (conditionally on the
original observations X7, ..., Xn) a probability measure denoted by P*, which is used in
the ‘blocks of blocks’ bootstrap procedure. Let Y3, ..., Y% bei.i.d. samples from P*, where
k is of the same asymptotic order as Q/b, (for instance, let k¥ = [@/b] + 1). Obviously,
each Y; is a block of size b which we denote as Y; = (¢i1,...,¥i). Let us concatenate
the y;; in one long vector of size | = kb denoted by T7Y,...,T}", where T} = y,,, for r =
[i/b], v = i — br. Now both P*{I(T} —Tn) < =} and P*{/I(T* — E*T¥) < z} constitute
‘blocks of blocks’ bootstrap estimates of P{y/@(Ty—p) < z}, where Tj* = $ Y4, T, and
the variance matrix of \/ZT,* under the P* probability constitutes the ‘blocks of blocks’

bootstrap estimate of the variance matrix of v/QTn.

Under mixing and moment conditions, consistency of the ‘blocks of blocks’ bootstrap es-
timate of sampling distribution was proved in Politis and Romano(1992a,d) in the general
case (where m might be infinite). It is interesting to note that if u is a parameter of the m-
dimensional marginal distribution of sequence { X}, with m finite, then M could be taken to be
a fized constant equal to m, and L can be taken equal to one in the ‘blocks of blocks’ procedure.
In this case, and under some additional regularity conditions (including that ETy a1 = p,
and that a(k) has an exponential decay), it has been proved (Lahiri(1992), Politis and Ro-
mano(1992a,d)) that the approximation provided by equation

P{VI(T} - E*TY) < 2} ~ P{VQ(Tn — ) < 7} 3)

that holds for any real z, is more than first-order accurate. This fact establishes that the‘blocks
of blocks’ bootstrap approximation is preferrable to the normal approximation to the sampling
distribution of Ty, especially if there is significant skewness in the distribution of the T as,1’s.

An important implication of the multivariate approximation (3) is that we can get asymp-
totically correct approximations to the sampling distributions of continuous functions of Ty.
For example, approximations to the distribution of ma.xn=1,2,m,p{\/a|T1(\7 ) _ ,u(”)|} can be
obtained with no extra effort; this allows for the possibility of constructing simultaneous confi-

dence intervals for all coordinates of u (cf. Politis and Romano (1990d)). In particular, u can

11



be taken to be the spectral or cross-spectral density function sampled at a grid of points and
a confidence band using the ‘blocks of blocks’ bootstrap can be constructed.

Example 10. As our final example, consider the important case where the parameter of
interest is the autocorrelation coefficient at lag s, i.e. the parameter p(s) = R(s)/R(0), where
R(s) = EXoX, and for simplicity it is assumed that EXo = 0. In that case, the linear statistic
Tn is (s + 1)-dimensional, with T](J') = 7 YN *XiXiyn-1,and L = 1, M = s+ 1 and

¢§\7})(z1,...,zM) = z12,,forn=1,...,8+ 1. It is easy to see that TI(\?), for n = s+ 1, is just

the sample autocovariance R(s) at lag s. By the ‘blocks of blocks’ resampling scheme applied
to the linear statistic Ty, accurate confidence intervals for the autocovariances can be obtained,
as well as variance estimates for the sample autocovariances. Considering the complicated form
of the asymptotic variance of the sample autocovariances (that involves estimates of the fourth
order cumulants, cf. Priestley(1981), the advantage of using an automatic procedure like the

bootstrap is apparent.

Now the estimator p(s) = TI(\;H)/T](V}) is a smooth function of the linear statistic Ty,
and its statistical properties can be analyzed via the ‘blocks of blocks’ bootstrap. Of course,
if we are only interested in p(s), a 2-dimensional linear statistic, consisting of just T](Vl ) =
R(0) and TI(\;H) = R(s), would suffice. The usefulness of considering the (s + 1)-dimensional
statistic Ty lies in that we can instantly obtain simultaneous confidence intervals (confidence
band) for p(k),k = 1,...,s (and for R(0)), that are not available by classical methods (cf.
Priestley(1981)). An obvious use of such confidence bands is in testing hypotheses regarding
the covariance structure.

The way this can be done is as follows. For concreteness, assume that we are looking
for a 95% confidence band for p(k),k = 1,...,s. That is, we are looking for two sequences
c1(k), ca(k) such that P{Vk € {1,...,s} : p(k) — c1(k) < p(k) < p(k) + c2(k)} = 0.95. To start
with, apply Fisher’s z transformation to approximately stabilize the variance of the estimates
at different lags, i.e. let (k) = 1log %, and {(k) = log }fg : ,fork=1,...,s. Then, by
the ‘blocks of blocks’ bootstrap, obtain an approximation to the distribution of the ‘maximum
modulus’ /N maxg—; ., |((k) = ((k)|. This immediately leads to a uniform width (i.e. ¢1(k) =

¢; and co(k) = e,k = 1,...,s) and symmetric (i.e. c¢i(k) = c2(k)) confidence band for

12



¢(k),k = 1,...,s, and can be translated to a confidence band (of non-uniform width) for
p(k),k =1,...,s. Alternatively, we can get a (non-symmetric in general) equal-tailed uniform
width confidence band for {(k),k = 1,...,s, by finding bootstrap approximations to z and y
such that P{v/N maxz=1 .. .((k) — ¢(k)) < z} = 0.975, and P{V'N mins=1,...s(((k) — ¢(k)) <
y} =0.025. O

In this paper, a brief review of the bootstrap methodology as applies to dependent data
was provided, along with illustrative examples and references to the bibliography. Some recent
research problems related to the bootstrap can also be found in the compilation of research
papers by LePage and Billard (1992), the book by Hall (1992), and the forthcoming textbook
by Efron and Tibshirani.
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