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Abstract. For the polynomial regression model on the interval [a,b] the optimal design
problem with respect to Elfving’s minimax criterion is considered. It is shown that the
minimax problem is related to the problem of determining optimal designs for the esti-
mation of the individual parameters. Sufficient conditions are given guaranteeing that an
optimal design for an individual parameter in the polynomial regression is also minimax
optimal for a subset of the parameters. The results are applied to polynomial regression
on symmetric intervals [—b,5] (b < 1) and on nonnegative or nonpositive intervals where
the conditions reduce to very simple inequalities, involving the degree of the underlying
regression and the index of the maximum of the absolute coefficients of the Chebyshev
polynomial of the first kind on the given interval. In the most cases the minimax optimal

design can be found explicitly.

1. Introduction. Consider the polynomial regression model of degree d (d>1)

d
y@) =Y v, aelal
=0

where 9 = (2, ...,94)" is the vector of unknown parameters and the controlled variable

z varies between a and b (¢ < b). In order to estimate the unknown parameters 9; n
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uncorrelated observations Y3, . .., Y, are taken at points zy, . . . ,Zn € [a,b] with expectation
y(zi) (i = 1,...,n) and variance 6% > 0. An approximate design £ is a probability measure
on [a,b]. If £ has finite support {z1,...,z:} with corresponding weights ¢, ..., &, then ¢;
represents the proportion of all n observations that have to be taken at z;. The information

matrix of £ is defined by

b
M(€) = / £(2) ' (2)dé(x)

where f(z) = (1,z,...,2%)" denotes the vector of monomials up to the degree d. For a
design £ with finite support and masses ¢; = M. (i =1,...,k) the inverse of the information

matrix M~1(¢) is proportional to the covariance matrix of the least squares estimator for
VY. For a more detailed discussion of the statistical context of this setup we refer the reader

to the textbooks of Fedorov (1972), Silvey (1980), Pazman (1986) and Pukelsheim (1992).

An optimal design maximizes or minimizes an appropriate functional depending on
the information matrix or its inverse. In this paper we are interested in optimal designs
with respect to Elfving’s partial minimax criterion (Elfving (1959)). More precisely, let
I = {i1,...,ix} denote a fixed subset of {0,... ,d} corresponding to the parameters of
interest and define e; = (0,...,0,1,0,...,0) € R%! as the i + 1-th unit vector (Z =
0,...,d). Following the work of Elfving (1959) we will call a design ¢ minimax optimal for
the parameters {;};cy if ¢* allows the estimability of ¥; for all ¢ € I (that is, ¢; € range
(M(€))) and £* minimizes the function

®/(¢) = I?gIX{C:'M_ (€)ei}

(here M~(¢) denotes an arbitrary generalized inverse of M (€)). A general discussion of
minimax designs (including the above criterion) can be found in Wong (1992) and Dette
and Studden (1992). Some numerical results for polynomial regression of lower degree and

the full parameter subset I = {0,...,d} are given in Murty (1971).

In the present paper we show that the minimax problem for the parameters {9; };cr
is intimitately related to the problem of constructing optimal designs for the individual
parameters ¥; (¢ € I). More precisely, in Section 3 sufficient conditions are stated guar-
anteeing that an optimal design for the individual parameter ;- (i.e. the design ¢ that

minimizes €. M~ ({)e;» ) is also minimax optimal. The results are used in Section 4 and 5
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to determine optimal minimax designs on symmetric intervals [—b,5] (b < 1) and on non-
negative or nonpositive intervals. A motivating example is given in Section 2 which also
shows that a conjecture (concerning minimax design on the interval [—1, 1]) stated by

Murty (1971) is not true in general.

2. A Conjecture for the Interval [-1,1]. For the full parameter system {9:}¢,
and the interval [-1, 1] minimax optimal designs for polynomial regression were calculated
numerically by Murty (1971) for degree d < 12 excluding 4 and 11. Based on these
calculations Murty (1971) stated the following conjecture.

Let
14721 |

(2.1) Ti(z) := Z ta—a; 2% = cos(arccos z)
i=0

denote the Chebyshev polynomial of the first kind on the interval [—1,1] and §; the opti-
mal design for the individual coefficient 9;. If there exists a unigue mazimum in the set
{lta—2j| | 5 =0,..., [%J }, say |ta—2k|, then the optimal design for the individual coefficient
Va—2k, namely €]_,;, i3 also minimaz optimal. In the case that the mazimum is not unique
and attained for two indices, say |tq_sk| and |ty_sk42|, a conver combination of Ei_or and

£i_2k12 i minimaz optimal.

The optimal designs for the individual coefficients are well known and were determined

by Studden (1968). In that paper it was shown that the support points of §i-2; are the

so called Chebyshev points s, = cos( d;"w) (v=0,...,d) which are the points where the

polynomial |Ty(z)|? attains its maximum in [~1,1]. The masses of §i1—2; at the support
points s, are given by |€,,4-2;|/|ti—2;| where £, ; are the coefficients of the Lagrange

interpolation polynomials L,(x) at the knots sg,...,sq, defined by
d .
L,(z)= ZE,,,]- z? and Ly(su) =6y, (v,np=0,...d).
=0

The second part of the conjecture applies for polynomial regression of degree 4 where the
Chebyshev polynomial is given by Ty(z) = 8z* — 82? + 1. Averaging the designs ¢; and

€5 Murty (1971) claims that the design £ = 3(€&% + &) which puts masses %, 583, %g—, <,
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% at the points —1, —1/v/2, 0, 1//2, 1 is minimax optimal for the full parameter set
{9:}L, with &7(£) = 992/15 ~ 66.1333. We applied a numerical procedure of Remez
type (see Studden and Tsay (1976)) in order to determine the optimal minimax design
for polynomial regression of degree 4. Our calculations showed that the minimax optimal
design £* is supported at the points —1, —0.7086, 0, 0.7086, 1 with masses 0.0958, 0.246,
0.3164, 0.246, 0.0958, respectively. The value of the criterion ®; at the point £* is given
by ®7(¢*) = 66.1137 < ®;(£) which shows that the design ¢ = 7(€% + &) cannot be
the minimax optimal design. Moreover, we see that the minimax optimal design £* can
never be represented as a convex combination of £} and £} because all these designs must
have support {—1, —1/4/2,0,1/+/2,1} (in fact £ is minimax optimal among all designs
supported at these points). This disproves the second part of Murty’s conjecture (even the
numerical calculations which led Murty to his conjecture seem to be incorrect). Although
we cannot present a counterexample to the first part of the conjecture stated in Murty
(1971), the mathematical description of the minimax optimal designs, if the maximum

coefficient of Ty(z) is unique, seems to be not appropriate, as indicated by the following

example.

Consider a polynomial regression model of degree 4 on the interval [—b, b] where b < 1.
The Chebyshev polynomials on this interval are easily obtained from (2.1)
b b aea z taaj 4o
(2:2) Ti(z) = j_zotd—zjfc T = Td(z) = FrRcyE

pd—2j
=0

and the maximum coefficient of T}(z) is unique and given by & = %} = b8—4. By Murty’s
conjecture the optimal design for the highest coefficient ¢ which puts masses proportional
to 1:2:2:2:1 at the points —b, —b/+/2, 0, b/1/2, b should be optimal, at least when b is very
close to 1 (note that the design for the highest coefficient is the D;-optimal design which
can easily be transferred from the interval [—1,1] to arbitrary intervals (see e.g. Studden
(1982))). Straightforward but tedious calculations show that the inverse of the information

matrix of £ is given by

438 0 -12° 0 8b*
0 2055 0 -24* 0
MY =8 —128 0 72b% 0  —64b”
0 246 0 3252 0
8b* 0 -642 0 64
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If /8/9 < b <1, then the maximum of the diagonal elements m® of M~1(¢}) is unique
and attained for m33 = 72b~4. To check if §i is minimax optimal for {9;}%_, we apply the
equivalence theorem for minimax optimality (see e.g. Wong (1992) or Dette and Studden

(1992)). In the case of optimality £} has to satisfy
(es M~UENf(2)? = b718(64b%2* — T2b%22 + 126%)2 < 7267 = efMTI(EN)es

for all z € [—b,b] (+/8/9 < b < 1), which is obviously not fulfilled for z = 0. Therefore
€} cannot be minimax optimal whenever {/8% < b < 1 (note that £} is in fact minimax
optimal if b < \“/-8_/_9 because in this case the maximum of the diagonal elements of M~1 (&)
is m®®). Thus, Murty’s mathematical description of the optimal minimax design seems to

be not appropriate.

Nevertheless, the results of the following sections show that in many cases the optimal
designs for the individual coefficients play a particular role in the determination of the

minimax optimal design.

3. Preliminary Results. Intuitively, one of the optimal designs ¢; for estimating the
individual parameters ¥; (: € I) should be a good candidate for the minimax optimal
design for the parameter system {¥;};c;. In this section we will discuss some general
aspects of the relationship between these two optimality criteria. Throughout this paper it
is assumed that there exists an index k € I such that the optimal design ¢} for estimating
the individual coefficient ¥ (i.e. the designs that minimizes e}, M~ (¢)e;) has a nonsingular
information matrix M(£;). In this case it follows by standard results of optimal design
theory (see e.g. Kiefer (1959)) that there exits an optimal design £ for estimating 9
supported at exactly d + 1 points, say sg < s; < ... < sg4. This property will usually
depend on the index set I C {0,...,d} and on the underlying interval [a, b]. It is obviously
fulfilled for the full index set I = {0,...,d} and arbitrary intervals [a, b]. In the following
sections two other cases which guarantee the existence of an index k € I such that M (&%) 1s
nonsingular are discussed in more detail: In the first case assume that [a, b] is a nonnegative
or nonpositive interval and that I # {0} or 0 ¢ [a,b]. In this case there exists an index
k € I\{0} such that £} is supported at exactly d+ 1 points. Secondly, if [a, b] is symmetric
(i.e.a = —b,b > 0) and I # {0} contains at least one of the integers d—2i (¢ € {0,..., ]_%J b,
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then there exists an index k = d — 2§ € I, such that €} is symmetric and supported at
exactly d + 1 points (see Studden (1968) and Heiligers (1992)).

In the following we want to state a condition guaranteeing that the design €; is also
minimax optimal for estimating the parameter system {;};c;. To this end we introduce

the two (d + 1) x (d + 1) matrices F = [f(so),..., f(s4)] and L = (8u,5)% ico = F71. Let

i\ 0 -« j—1 j+1 --- d
F(V) '_F(O - v—1 v+1 ... d

denote the determinant of the matrix which is obtained from F by deleting the j-th row

and the v-th column, then the elements of L can be represented as

(3.1) by =07 p(7)

(here |F| denotes the determinant of F'). Moreover the elements of L are the coefficients

of the Lagrange interpolation polynomials L,(z) = Z £,,jz’ (defined by L v(8u) =byp) .
7=0

Theorem 3.1. Let & (k € I) denote an optimal design for estimating the individual

coefficient ¥y supported at d + 1 points So < ... < 8q. If the coefficients of the Lagrange

interpolation polynomials L,(z) = E £,jz at these points satisfy for alli € I
7=0

NI
(3.2) » lﬂJkI < Y ek,
v=0 !

then the design £ is also minimaz optimal for the parameter system {U;}ier.

Proof: By an application of Elfving’s theorem (Elfving (1952)) we obtain for the weights
of ¢} at the support points sp < ... < s4

lev,k|

(3.3) o= G({s)) = ———— =0,...,d.
le=0 Ie”)kl
Let P = diag (po,...,pd), then the inverse of the information matrix of €& can be written

as M~1(£f) = L'P~'L and the diagonal elements are given by

d
(M) = elL'P~'Le; = E"“' St

Ivkl



The assertion of the theorem now follows since ¢} is minimax provided
(M7HEDi < (MTHE) .

Theorem 3.1 directs our interests to the coefficients |£, ;| of the Lagrange interpolation
polynomials corresponding to the support points s9 < s; < ... < sy of the optimal
design {} for estimating the individual coefficient 9;. In general these coefficients can
only be calculated by numerical methods. Nevertheless, we can show some monotonicity
properties of the ratios of these coefficients, which turn out to be extremely useful for the

determination of minimax designs in the following sections.

Lemma 3.2. Let {so,...,35a} = {—$0,...,—54}, then the ratio [€y,a—2i—2|/|y,d—2i| s an
increasing function i v € {0,..., [%J} (for every fized ¢ € {0,..., [%J —1}).

Proof: Observing that the coefficients of the Lagrange interpolation polynomials have
the sign pattern sign(£,,a—2:) = (=1)4="*! (see e.g. Pukelsheim and Studden (1993)) we
obtain that the assertion of the lemma is equivalent to

eu,d—Zi £u+1,d—2i
(3.4) ‘ (E )

> 0
v,d—2i-2 Lut1,d—2i—2

where v € {0,..., 2] — 1} (here |A| denotes the determinant of the matrix A). Recalling
the definition of F (i) in (3.1) we see that (3.4) is equivalent to

P() 0 F(0)
(39) (=1 pd-2-2\ p(d-2-2 2 0
v v+1
In the following we will make use of the fact that

(3.6) F(d—2z) = czi(so,...,s,,_l,s,,+1,...,sd)F(d)

v v
where ¢; (S0,..., Sy—1, Sy41, - - ., Sq) is the j-th elementary symmetric function of sy, ...,
8y—1; Sy+1, -, $d, that is the coeficient of ¢4 (—1)?~7 in the polynomial
d
II -5 .
=0,5%v



To prove (3.6) observe the identity

1 - 1 1 . 1 1
d

s Sy—1 Sut 84
.0 ' .1 . = H (a:—s_,-)-F(d)
: : S v

- - 7=0,j#v
d d d d d
so o s 0 sy—l Su+1 L) sd w

d
d o
= F(y) . Z;pd ](-—1)]6]'(30,...,8y—1,$y+1,..o,sd)

=0

(both polynomials have the same zeros 50y -+8y—1,8v+1,...,54 and the same leading
coefficient) and equate the coefficients of 2¢~%, For any symmetric set o1 <...< ag we

obtain for the corresponding symmetric functions
c2it1(o,...,aq) =0, czi(a,...,aq) = (—l)ic,-(a%, cee, aﬁ)

if d is even and
ci(ag,...,aq) =
ci(ay,..., a(a-1)/2,0, ®(ay3)/2,. .., aa) = ci(aq,... y O(d—1) /25 O(d+3) /25 - - - » Od)
if d is odd (here we used that a(441)/2 = 0). This shows that (note that s, = —sy_, and
that v € {0,...,|2]})
€2i(805+ + + 5 Su—1,Sut1,- -, 5d) = €2i(50, -+ + 1 Sy1, Syt . . - 38d—v—1,Sd—p41y-+-Sd)
+ 8a-22i-1(80, - -+, S0—1,Sut15+ + + » Sd—v—15Sd—pt1, . . - y8d)
= (=1)’ci(sZ,...,s%_,, S2i1ye ey 82).

Observing the last identity, (3.6), (3.5) and (3.4) the assertion of the theorem can now be

written as

(3.7)

(o2 2 2 2 (g2 2 2 2

( 01(30?2""su;hsu-zl-l""’sd) Ci(8gy-++585,8240,...,83) > 0
. 2 . 2 2 2 2 .

Cz+1(30,...,SV_1,3V+1,...,Sd) c,+1(80,...,SV,SV+2,...,Sd)

Finally, we remark that
(<2 2 2 2\ _ (2 2 2 2
Ci( 501+ v v 1851, Spp1ye--253) = Ci(80s+++ 1851550421+ -+155)
2 . 2 2 2 2
+ Sy+1cl—1(30"' . ’SV—178V+2’°" ,Sd)
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and straightforward algebra shows that (3.7) and (therefore the assertion of the lemma) is

equivalent to

(312/ - 33+1) :

(o2 2 2 2 (2 2 2 2
c,(so,2...,s,,__l,s,,_zi_z,...,sdg c,_l(;o,...,5,,_1,59,,_,_2,...,2sd)) > 0
Ci+1(80,...,-$y_1,3y+2,...,Sd) Ci(So,...,8”_1,3y+2,...,8d) -

We have s2 — s2. | > 0 (because v € {0, ..., |£] — 1} and the nonnegativity of the second

factor is a well known result in the theory of symmetric functions (see e.g. Beckenbach and

Bellman (1965), p. 11). This completes the proof of Lemma 3.2. "

The following two lemmas state similar results for the nonnegative and the nonpositive
real axis. In this case the proof of the monotonicity of the ratios 1€,,:]/14v,i4+1| is more

transparent.

Lemma 3.3.

a) Let 0 < 59 < ... < sq, then the ratio [€0,il/€viv1| i3 a decreasing function in v €
{0,...,d} (for every fized i € {0,...,d — 1}).

b) Let s9 < ... < sq < 0, then the ratio |€0,ix1]/18s,:| is a decreasing function in v €
{0,...,d} (for every fized i € {0,...,d —1}).

Proof: Because both parts are proved similarly we will restrict ourselves to case a). Using

(3.1) and Sylvester’s identity (see e.g. Graybill (1983)) we have

7 z
‘( oil Wyt )‘ _ 1 F(V) F(”"‘l)

. . = T2 . .
Izu,z+1l |£u+1,z+1| F P (Z + 1) P ( t+1 )
v v+1

1 i, i+1
_ FF( u+1) > 0

where F (Z’ 141 is the determinant of the matrix that omits rows i and 3 4+ 1 and

v, v+1
columns v and v + 1 from F. The last inequality follows from the total positivity of the

kernel K(z,y) = exp(zy) (see e.g. Karlin and Studden (1966) p. 9) which completes the

proof of Lemma 3.3 (in the case a)). .



4. Minimax Designs on Symmetric Intervals. Throughout this section we assume a
symmetric interval [—b, b] for the controlled variable z where 0 < b < 1. For the index set

I we require the assumption
(4.1) d—2-1€l = d-2iel

which will become essential in the proof of the following theorem. Note that (4.1) was also
assumed by Heiligers (1992) and Pukelsheim and Studden (1993) who determined the E-
optimal design for parameter subsystems. If I # {0} then there exists an index d — 2k € T
and the results of Studden (1968) show, that the optimal design £i_op for estimating the

individual coefficient is supported at the transformed Chebyshev points s, = b- cos( d;"w

d
(v =0,...,d) with masses Eior(sv) = |lu,a—2k|/ E |€y,4—2%| where £, 4—5) denotes the

d-2k in the v-th Lagrange 1nterpolat10n polynomial with knots s, ..., sq.

coefficient of z
In the following t4_3; denotes the coefficient of 4~%/ in the Chebyshev polynom1al of the

first kind on the interval [1,1] defined in (2.1) (see e.g. Rivlin (1990)).

Theorem 4.1. If the index set I # {0} satisfies (4.1) and there ezists an indez 0 #
d — 2k € I such that

. 2
(4.2) j‘;;__ ?4k 0 ¢ for alld—2i € T withi < k
- d—21
and
dd+1)—2 d—2k+1 _ |ta—sk |’ 40y . o
. — >
(4.3) Ad+D) -2k d—2i+1 Y b Jor alld —2i € T with : > k

holds, then the optimal design £5_,, for estimating the individual coefficient 94— of a
polynomial regression on the interval [—b,b] (0 < b < 1) is also minimaz optimal for the
parameter subset {J;}ic;. Moreover, the only index d — 2k € I, where (4.2) and (4.5)
could be satisfied, is the index where the mazimum in the set {|tg_q;|/b4 2 | d— 2 € I}

18 attained.

Proof: We will show that the conditions (4.2) and (4.3) imply the assumption of Theo-

rem 3.1. In a first step we note that it is sufficient to prove

d
el/ 2 . .
(4.4) }ﬂ -2l <Y byl  ifd—2%€l.
v=0

12y d—2k]
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To show that (4.4) implies condition (3.2) of Theorem 3.1 we have to prove that (3.2) holds
also for the remaining indices d — 2i — 1 € I which differ from d by an odd number. To this
end we use the assumption (4.1) and the fact that 1€y,a—2i—1| = |30 ||€,a—2:] < blly a—ai| <
[€,,d—2i| which is an immediate consequence of the definition of the Lagrange interpolation

polynomials (see e.g. Cantor (1977)). Thus we obtain from (4.4) for all d— 2 — 1 € I that

d
E Ieyd 2:— 1| Z Ie"d 2,| < Zleu,d—ZkI .

ot ley,a—ax] 1ev,a—2x] ot

In a second step we will now prove that (4.4) (and therefore (3.2)) follows from the as-
sertions stated in the theorem. To this end we note that every polynomial of degree d

Py(z) = E aq—;z%7 can be written as
3=0

d
Py(z) = Z Ly, (z)Py(sy)

which yields for the coefficients az_» j—1

ag—2j-1 = ZPd(su)Eyd —2j-1 = ZPd(s,,)s,, v,d—2j (jzo’”"LEJ)'

v=0

Inserting for Py(z) the Chebyshev polynomial of the second kind (of degree d — 1)

sin(arccos ¥)

d—1 ]
. sin(d arccos £
Uar(3) = Lusmaay(Pit = TESE) oy,
=

(see Szegd (1976)) we obtain

d
Ud—925—
b:—:;—ll = ZUd—l(su)Sueu,d—% = bd - {(—=1)%p,a-2j + La,a—3;}

v=0
= 2bd- (—1)? - £y 4
where we have used in the last equality that
Ug—1(sy) = 0 (v=1,...,d=1)
Ua-1(sa) = (=1)*"W4_1(s0) = d
o,a—2; = (—1)"g,4-2; -

11



An application of the well known relationship T)j(z) = d - Ua—1(z) yields ug_pjy =

d;dzitd_g ; and for the coefficients of the Lagrange interpolation polynomial Lo(z)

d—27. _(1_o; ) d
(4.5) [€o,a—25| = |ta—zj|- 5z (4=2) (J=0,---,L§J)-
Assume now that : < k then Lemma 3.2 and (4.5) yield that
k k
[0y, a—2i [€,a—2j+2] [€o,a—2j+2] [€o,q4—2i
ydz2e] rva=2y+2l . ’ = :
€s,d—2k] 11 [€y,a-2;1 11 [€o,d—2;] |€0,d~2k|

=i+l j=it1
d—2 [ta-zil joi-k)

4.6 =
( ) d— 2k |td—2k|

for all v € {0,..., I_%J} and i < k. Applying this inequality, the assumption (4.2) and the
“symmetry” |€,,4—2;| = |€a—y,4—2;| (see e.g. Cantor (1977)) we obtain (for: < k, d—2i € I)

d . d
|£y d—2i|2 d—22 td—2i 2(i—k
2 < . R b ? ) . e Y
VZ=0 'EV,d—2k| - d- 2k td—2k I;) I v,d 21,
td—2k o d
< td_— bz(k'—') . Z ley,d_zil = Z |£V,d—2k|
—2i

v=0 v=0

where we have used the identity E 1€y,a—-25] = |ta-2;]-674=29 (for j = ¢, k) which follows
by similar arguments as given in Pukelshe1m and Studden (1993) for the case b = 1. This
shows that (4.2) implies (4.4) if 7 < k and d — 2i € I. Using similar arguments it can
be proved that in the case i > k the inequality (4.4) follows from the assumption (4.3),
which completes the proof of the first part of the theorem. For the remaining part observe
that the left hand sides of (4.2) and (4.3) are always greater or equal than 1 while this is
only possible for all terms appearing on the right hand sides if the maximum in the set
{lta—2il/b%=% | d — 2 € I} is attained for the index d — 2k. S

Corollary 4.2. If I = {0,...,d} and there exists an index d — 2k € I such that

16(d — k)2k? .
(4.7) ([d—2m)(d -2k +2)(d—2hF 1 = °
and
(45 16(k + 1)2(d — k — 1)2 d(d+1) — 2k o

(d—2k—1)(d—2k+1)(d—2k)? d(d+1)—2k—2 —
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then the optimal design £3_,, for estimating the individual coefficient 94_s1 of a polynomial
regression on the interval [—b, b] is also minimaz optimal for the full parameter set {9:}4_,.
Moreover, the only index d—2k, where (4.7) and (4.8) could be satisfied, is the indez where

the mazimum in the set {[t4—2:|/b%% | i € {0,..., 14|} is attained.

Proof: Using a similar argument as given in (4.6) it can be seen that (4.2) and (4.3) in

Theorem 4.1 follow from

d—2+2 of tamz |2 4 [(d=24+1)(d-2i+2)]°
. _— < _— = b*. .
(4 9) d—22 - b td—2i+2 4z(d——z) ’
if : <k, and
(4.10) dd+1)—20-2d-2+1 _ po | _ta—ai ? _ e [HitD)E-i-1)]?
' dd+1)—-2% d-2i—1 = ta_2is (d—2—1)(d—2i)| °

if ¢ > k. Here we used the well known representation

(4.11) [ti—ai| = d- 2'1—1-2"(3(%‘2;)3!

for the coefficients of the Chebyshev polynomial of the first kind (see e.g. Rivlin (1990)).
Observing that the left hand sides of (4.7) and (4.8) are increasing functions in k we obtain
that (4.9) and (4.10) are implied by (4.7) and (4.8) and the assertion of the Corollary follows

by an application of Theorem 4.1. =

Remark 4.3. Note that a similar argument as given in the proof of Theorem 4.1 shows
that the conditions (4.2) and (4.3) will never be fulfilled if the maximum of the absolute
values of the coeflicients lta—2;1/ 5?2 is obtained for two indices d — 2ky, d —2ky € I. Tt
is also worthwhile to mention that the index d — 2k where the maximum is attained will

depend heavily on the size of the interval [—b, b].

Finally, if the index set I consists only of indices that differ from d by an even number,
then a detailed investigation of the proof of Theorem 4.1 shows that the assertion of this

theorem holds for all b > 0.

Example 4.4. Let [a,0] = [-1,1], I = {0,...,d} and 1 < d < 15. Straightforward

calculations show that the conditions of Corollary 4.2 are satisfied except in the cases d =
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4,5,11 (note that for d = 4 and 11 the maximum of the absolute values of the coefficients
of Ty(x) occurs at two positions (see e.g. Davis (1963)). Corollary 4.2 yields that for
d = 1,2,3 the designs {j, for d = 6,7,8,9,10 the design €;_, and for d = 12,13,14,15

the design £]_, is minimax optimal for the full parameter set {9:}%,. By the results of

Studden (1968) all these designs are supported at the Chebyshev points s, = cos( d;” )
(v =0,...,d) and the masses are given by (3.3). Finally in the case d = 5 we obtain
by direct calculations that £} is minimax optimal which shows that the conditions in

Theorem 4.1 and Corollary 4.2 are only sufficient but not necessary.

To give an example for the application of Theorem 4.1 consider the case d = 6 and the
interval [—1,1]. Here Tg(z) = 322° — 482* + 1822 — 1 and we obtain that for the index sets
{0,4}, {2,4} {4,6}, {0,2,4}, {0,4,6}, {2,4,6}, {0,2,4,6} the minimax optimal design for
the parameter subsystem {J;}icr is given by £} while for the index sets {0,6} and {2, 6},
{0,2,6} the optimal design for the highest coefficient £* is minimax optimal. Finally, for
the parameter {1y, ?;} the minimax optimal designs is given by £5. All minimax optimal
designs for these subsets are supported at the Chebyshev points —1, —\/éﬁ, —0.5,0, 0.5,
\/3/—4 and 1 while the masses will depend on the particular index set I and are given by
(3.3). The results still hold if the index sets I contain also indices d — 2i — 1 according to
condition (4.1). n

5. Minimax Designs on Nonnegative or Nonpositive Intervals. Throughout this
section we will assume that 0 < a < b. The case a < b < 0 can be treated in exactly the
same way and is omitted for the sake of brevity. The arguments are essentially the same as
in Section 4 (involving more complicated algebra) and we will only sketch the main steps.

In what follows let
d .
Ti(z) = Tu(2e—1) = Y ¢35 2*77,  ze[0,1]
j=0

denote the Chebyshev polynomial of the first kind on the interval [0,1] (orthogonal with
respect to the measure dz/\/z(1 — ) with TJ(1) = 1) and let

— a)cos(&5En a
sy = (b — @) cos( ‘12 )+ (b+a) (v=0,...,m)
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be the transformed Chebyshev points on the interval [a,b]. It is well known (see e.g.

Abramowitz and Stegun (1964)) that

V7 dT(2d - j)
PG+DM(d—-j+1)I(d—j+3)

(5.1) ti_; = (-1)

d .
(e.g. Ty(z) = 822 — 8z +1). If L,(z) = ]E:o ¢, ;x? denotes the Lagrange interpolation
polynomial corresponding to a = s§ < s} < ... < s%_, < sy = b, then we obtain in the
d .
same way as in Section 4 for every polynomial Py(z) = ) aj2’ of degree d that

j=0

d
(5.2) aj = Y Pu(s3)s;  (5=0,...,d).
" v=0

Consider the interval [0,1] and insert in (5.2) the two polynomials (1 — z)Uj;_,(z) and

zU;_,(z), where

L(3I(d+1+3)

TG+ 906 T T ="

d-1 d—1
Ui1(z) = Ua-122-1) = Z“;"’] — Z(__l)d_l_]
j=0 7=0

is the Chebyshev polynomial of the second kind transformed to the interval [0,1]. Thus
a straighforward calculation yields for the coefficients of the Lagrange interpolation poly-
nomials LE)O’I](:I:) and LElO’I](:v) with knots s} = (cos(45%7) 4+ 1)/2 on the interval [0,1]

(uty = uj = 0)

L)T(d +j)

[0,1] (_1)j ut —u* — (—l)j 2 l
i T T T S R - G A D ¢ T2
gon _ (G0 (=D I'(3)I(d + j)

b d 7 d TG+ -j+1) "

The coeflicients of the Lagrange interpolation polynomials Lo(z) and L4(z) with knots
5§ < ... < sy for an arbitrary interval [a,b] can now easily be obtained by a linear

transformation and are given by

. d .. . 3 ) .
. _ (1) o’ (J) I'(3)0(d + ) 2 | J
£, = : . - : d°+ =
R N =6 sy ey G
(5.3)  { ’

PG (J) [(3)T(d + )
i/ DGITG + T - +1)
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or equivalently (using (5.1))
bi="3a — (b— a)J 25 +1

£ = (‘21;“ W ()l il

\
We are now in a position to state a result analogous to Theorem 4.1. The proof uses the

(5.4)

same arguments as the proof of the corresponding result in Section 4 (where Lemma 3.2

has to be replaced by Lemma 3.3) and is therefore omitted.

Theorem 5.1. If I # {0} and there exists an index k € I such that

Gl < (1) : (]) =k
5.5 — - < t;| foralli <k withiel
( ) eo’k ; (b (l)]l Jl Z (b ) | |
and
Zz d g d j al—k
, Zdi | < e N
(5.6) Ez,k Z ( ) (b a)J ]| < Fz% (k) G—ay ItJI foralli >k with:i € I

hold, where the quantities £ ; and £} ; are defined in (5.3) or (5.4), then the optimal design

§x for estimating the individual coefficient 9y is also minimaz optimal for the parameter

system {9; }ier.

Remark 5.2. As in Section 4, the only appropriate candidate k in Theorem 5.1 is the
index k € I where the absolute value of the coefficient of the Chebyshev polynomial
Tu(322) = Tino 7 1o

J=0"j
d . j_k
et = 3 (J) —lt}] (ke
2\ 0=a)

1s maximal. n

Example 5.3. Consider the interval [a,b] = [1,2], I = {0,...,d} and polynomial regres-
sion models of degree 1 < d < 20. Then it can easily be shown that the conditions (5.5)
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and (5.6) are satisfied except for d = 1 and d = 4. In these cases a direct calculation
shows that the minimax optimal designs are given by & and €3, respectively. All other
cases are covered by Theorem 5.1, and we obtain the following minimax optimal designs
for the full parameter set {9;}L,; for d = 2,3 the design £3_1, for d = 4,5,6 the design
€j_o, for d = 7,8 the design £]_,, for d = 9,10,11 the design £5_4, for d = 12,13 the
design {j_5, for d = 14,15,16 the design ¢}_¢, for d = 17,18 the design £4_7 and for
d = 19,20 the design {j_5. All these designs are supported at the Chebyshev points on
[1,2], s} = (cos( d;" ) +3)/2 (v=0,...,d) and the masses of §3-; at the support points

%
”5d—j

a=1 and b= 2 (see Studden (1968)). ]

| where the quantities £} ; are given in (5.3) (or (5.4)) for

s, are proportional to |¢ Vi

The situation in Theorem 5.1 becomes more transparent in the case a = 0, where
ZL[ (f_,) (l;%:)ﬂtﬂ (€ = 1,k) reduces to the term [t}] - 5~¢ and the conditions (5.5) and
(5.6) have the same form as the corresponding conditions in Theorem 4.1. For the full
parameter set I = {0,...,d} we obtain in this case an analogue of Corollary 4.2 which is

stated here for the sake of completeness.

Corollary 5.4 IfI ={0,...,d} and there exists an indez k such that
(d—k)*(d +k)?

5.7 < b?
61 HEF D+ DE =
and
—1N2( 1 — 2 2
(5.8) (d+k-1)*d—k+1) 2d° + k > B2

k2(k2 —1/4) 2P+ k—1 ©

holds, then the optimal design £ for estimating the individual coefficient of a polynomial
d

1=0-
Moreover, the only indez k where (5.7) and (5.8) could be satisfied, is the index where the
mazimum in the set {|t}|/8 | j =0,...,d} is attained.

regression on the interval [0,8] is also minimaz optimal for the full parameter set {9;}
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