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Abstract

In this note, a family of kernels of ‘infinite order’ is introduced. The resulting nonpara-
metric density estimators have bias of order O(1/MT), where r can be intuitively interpreted
as the number of continuous derivatives the unknown probability density f possesses, and
M1 is the bandwidth. These kernels may be obtained as a convex combination of kernels
without moments. This may appear paradoxical because a convex combination of kernels

possessing moments may be utilized to reduce bias by only a factor of M~2.
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1. Introduction.

Suppose Xi,...,Xx are real-valued, independent identically distributed observations, from
a population with absolutely continuous distribution function F', and probability density func-
tion f. The density f is known to possess some smoothness, but is otherwise unknown and
should be estimated using the data. In particular, it will be assumed that the characteristic
function @(s) = [ e?** f(z)dz, satisfies [ |s|"|¢(s)|ds < oo, for some positive integer r;
this implies that f has r bounded and continuous derivatives f(),..., f(.

The nonparametric kernel smoothed estimator of f(z), for some z € R, is given by

-0

f@)= 32 AE-X)= [ As)ou(s)eor=ds, 1)

where A(-) is the smoothing kernel, satisfying [° A(z)dz = 1, ¢n(s) = & ToiL, €2 is
the sample characteristic function, and A(s) = [, A(z)e*****dz is the Fourier transform of
the kernel. In general, A(-) and A(-) both depend on a parameter M although it will not be
explicitly denoted, (1/M is usually called the ‘bandwidth’ of the kernel); in particular, it will
be assumed that A(z) = M¥(Mz), where ¥(-) is some fixed (not depending on M) given
function. In the asymptotic results below, M depends on N and M -+ co as N — 0.

It is well known (cf., for example, Rosenblatt (1991)) that in this case

Var(f(@)) = 3 1(2) | ¥(a)dz +o(M/N), )

as N — oo and M — oo, but with M/N — 0. The ‘order’ of the kernel is the maximum integer
g, such that [*° z!A(z)dz =0, for I =1,...,¢ — 1; it then follows, provided [, |z'A(z)|dz <

o, forl=1,...,q, that

Bias(f(z)) = Mik!

£8)(g) /_ Z 24U(z)dz + o 1/M*), (3)

where £ = min(g,r). If, in fact, r > ¢ + 2, then the error term in (3) can be replaced by
O(M~t5+2)); see Theorem 1 of Schucany and Sommers (1977). This idea of choosing a kernel
of order ¢ in order to get the Bias(f(z)) to be O(1/M*) seems to date back to Parzen (1962)
and Bartlett (1963).



Note that the asymptotic order of the bias is limited by the order of the kernel if the true
spectral density is very smooth, i.e., 7 is large. It would be reasonable to say that a kernel has
infinite order if it results in an estimator with bias of order O(1/M™), for any given r. In this

correspondence a family of such kernels will be constructed.

2. Construction of kernels of order ¢ + 2 from kernels of order q.

Typically, kernels of order two are utilized since they correspond to probability densities.
We now show how, given a symmetric kernel of order ¢, a symmetric kernel of order ¢ + 2 may
be constructed, thus leading to a density estimator with smaller bias; see equation (3). The
method has been described in Schucany and Sommers (1977) to construct kernels of order six,
where it is suggested the method is more general. We discuss such a generalization explicitly.
By starting with a symmetric kernel of order two and iterating the construction below, a
symmetric kernel of arbitrary high (but finite) order may be determined.

Suppose ¥ is a symmetric kernel of order q. Let [;(¥) = [/ ¥(z)dz, which is assumed

finite for j = ¢ + 2. Also, assume » > ¢ + 2. Consider a linear combination of kernels:
U, (z)=0a¥(z)+ (1 - a)c¥(cz) (4)

for some constants @ and ¢ with ¢ > 0. The estimator f defined in (1) with A(z) = M ¥, (Mz)

has bias
FO(2)1,(T) - _
i [t (1= ) + 006,
by equation (3). Hence, for a given choice of ¢, the choice of « satisfying o + (1 — a)c™? =0
results in a kernel so that the corresponding density estimator has bias of order M —(¢+2);

specifically, & = ¢79/[¢™? — 1].



3. A family of smoothing kernels of infinite order.

Suppose now you start with the kernel ¥(z) = sin®(7z)/(r%z?), a symmetric kernel of order
two. Let c = 1/2, for example, and apply the construction of the previous section to yield a
kernel of order four by taking ¥, . with a = 4/3. In fact, the argument based on (3) leading to
W4/3,1/2 having bias of order M —4 breaks down because ¥ does not have any positive moments.
Paradoxically, we show that, by starting with such a ¥, the kernel ¥, 1/, has bias o(M ~"); that
is, an appropriate linear combination of ¥(z) and ¥(z/2)/2 already yields a kernel with a full
bias correction! Notice that this choice of a = 2 for the fixed choice ¢ = 1/2 is different than
the choice o = 4/3 that eliminates the dominant term in the bias expansion when the initial
kernel does have moments.

More generally, for some choice of the parameter h > 0, define the Fourier pair A4(z) and

An(s) satisfying Ax(z) = [7 An(s)e™***""ds, where

1 for [s] < m
An(s) = 1—';’}—__—% form<|s| <M
0 for |s| > M;

here m = Mh/(h + 1), and

sin?(rz M) — sin®(rzm)
r2z?(M — m)

Ap(z) = (5)

Some motivation for the introduction of kernel Ax(z), for A > 0, is given in Politis and Romano
(1992).

It is obvious that Ag(z) = sin®(rzM)/(r*22M), is just the Fejér kernel, and that Ax(z) =
(h+1)sin*(mzM)/(r%22M) — hsin*(rzm)/(x2z>m), i.e., Ay(z) is a linear combination of Fejér
kernels with different bandwidths. From the fact (cf. Papoulis (1962)) that the Fejér kernel
integrates to unity, it follows that [*° As(z)dz = 1 as well; similarly, using the properties of
the Fejér kernel, [, Ax(z)dz — 1, as M — oo, for any € > 0.

Note that, for any A > 0, the function Ax(s) is of trapezoidal shape, with all deriva-
tives existing and equal to zero at the origin s = 0. It follows (cf. Papoulis (1962)) that
ff‘; z'Ax(z)dz = 0, for any positive integer /; note however that these integrals should be in-

terpreted as Cauchy principal values because the integrals [ |z!||Ax(z)|dz are not finite. For
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this reason, equation (3) can not be applied to claim that the bias of fulz) = ¥ TN Az - X))
is O(1/M"), for any given r. Nevertheless, this is a true statement as demonstrated by the

following theorem.

Theorem 1 Let z be a real number, and h > 0. Assume [~ |s|"|$(s)lds < oo, for some
positive integer r; also assume that m = Mh/(h + 1), and that M — oo, as N — oo, but with
M/N — 0. Then |

Bias(fu(z)) = o(1/M"). (6)

Proof. Observe that
Bias(fy(z)) = Efu(z) — f(z) = A; + 4,
where

A= /IM (An(s) = 1) @(s)e~ " ds

Ap = —/ B(s)e~**""ds.
[si2M

But (A < fiy 0 19(5)lds € M7 fs 0 IsT19(s)lds = o(1/M"), since [72, lsl"|6(s)]ds < oo.
To complete the proof of equation (6), note that A, can be split into two terms, A; = a; + as,

where
a = / (A(s) — 1) é(s)e=*"ds
lsl<m

as = / (A(s) = 1) $(s)e=""=ds.
m<|s|<M

First observe that a; = 0, because A(s) =1 for |s| < m. Now

ol < [ 1) = Lllo()lds
m<|s|<M

But A(s) =1 - !—3{}:— for m < |s] < M. Thus,

ol s [ 1= 5 ds.

<sig M —m
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It is obvious that if » = 1, then a; = o(1/M). On the other hand, if » > 1, we have

1
mr—l

las| <

/""<isl<wI oI 1I5| |¢(3)|d8 = o(1/M"),

where it was used that [7_|s|"|#(s)lds < oo, and that both m and M — m are asymptotically
proportional to M. QED.

Remark 1. That the bias of f,(z) turns out to be o(1/M") instead of just O(1/M") should
not be surprising as it was mentioned that the assumption [ _|s|"|¢(s)|ds < oo is stronger than
assuming f has r bounded and continuous derivatives f),..., f¢. However, it is not much
stronger; for example, it is satisfied if it is assumed that f has r absolutely integrable deriva-
tives, and the the rth derivative f() satisfies a uniform Lipschitz condition of order a > 1/2.
Note that since f is absolutely integrable, the characteristic function ¢(s) is continuous, and
satisfies ¢(s) — 0, as |s| — oo (by the Riemann-Lebesgue lemma). Hence, the assumption

£ 1s|"|é(s)|ds < oo is actually equivalent to [ |s|'|¢(s)lds < oo, for { = 0,1,...,7

Remark 2. The asymptotic variance of fy(z) can be calculated from equation (2). To
compute [0 A}(z)dz in the case M = 1, it is easier to use the isometric properties of the

Fourier transform, i.e., Parseval’s theorem; one then finds that

Var(fi(a)) = 2M (3h+1

) Ha) + oM/, ™

It follows from Theorem 1 that if the unknown density is quite smooth, that is, if r in the
assumptions of the theorem is large, then the bias of f,.(:z:) will be of very small order, even
when the bandwidth 1/M is not small. Note that due to equation (2) the rate of convergence of
any kernel smoothed estimator f(z)is /NJM << /N, since one generally has to let M — oo
to make the asymptotic bias of f(:z:) vanish. In this connection, it is interesting to point out
that the estimator fh(z) outperforms any estimator corresponding to a kernel of finite order

in case the true density is extremely smooth, satisfying ¢(s) = 0, for all s > some so. Consis-

tency of fy(z) is then achieved with a fized bandwidth, and fu(z) is finite-sample unbiased;



therefore, f,(z) is actually v/ N-consistent in this case.

Theorem 2 Let z be a real number, and h > 0. Assume @(s) = 0, for all |s| > some so; also
assume that M is a fized constant satisfying s < m = Mh/(h+1). Then Bias(fy(z)) = 0,
forall N > M.

Proof. Consider the decomposition of the Bias(fy(z)) in the proof of Theorem 1, and
note that now the terms A, and a, are both exactly equal to zero, because ¢(s) = 0 for all

ls| > M > m > sy. QED.

Remark 3. It should be noted that the class of densities satisfying ¢(s) = 0, for all |s| >
some $q is quite large. For example, densities that are mixtures of Fejér kernels, satisfy this
requirement; in fact, by taking a mixture of Fejér kernels with different bandwidths, a density
can be constructed that approximates arbitrarily closely any given density with characteristic
function that is symmetric, and convex on the positive half-axis. This is known in the literature
as Pélya’s construction of convex characteristic functions.

Of course, such densities have no moments; To construct densities possessing finite moments
that satisfy ¢(s) = 0, for |s| > some sg, one can take mixtures of integer powers of Fejér kernels
with different bandwidths. For example, the density given by the square of the Fejér kernel
normalized, i.e., A(z)/ [°°, A3(t)dt, has finite second moments, and a characteristic function
that vanishes outside the interval [-—2M,'2M J; this characteristic function is usually called
Parzen’s window in the time series literature, and is given by a convolution of the triangular
window Ag(+) with itself. Convolving A¢(-) with itself & times, where k is a positive integer, yields
a valid characteristic function that vanishes outside the interval [—-kM, kM| and corresponds to
a probability density possessing at least k finite moments; if & is large, this k-fold convolution

of triangles will approximate to a Gaussian density, by the Central Limit Theorem.

-l



4. Some concluding remarks.

Because of the simple trapezoidal shape of A4(s), the actual computation of f,,(:z:) might
be performed more easily by a Fourier transform of the sample characteristic function on(s)
after it is multiplied (‘tapered’) by Ax(s), that is, using the right-hand-side of equation (1); see
Silverman (1986, p. 61) for details.

As a matter of course, the kernel A,(z) is not everywhere nonnegative. To ensure a strictly
nonnegative estimator one would take FH(z) = max(fy(x),0), which has the additional ad-
vantage of possessing smaller (or equal) mean squared error as compared to fh(z), (cf., for
example, Politis and Romano (1992)). Note that, if f(z) >0, fu(z) and fit(z) have the same
large-sample variance (by the é-method), while if f(z) = 0, the asymptotic distribution of
either \/N/M f,(z) or of /N/M f(z) degenerates to a point mass at zero.

An interesting question concerns the choice of A; the whole family £ = {Ax(-),h > 0}
consists of kernels of infinite order, but in any given situation only one of these kernels will
be used. Now it was mentioned that Aq(z) is the Fejér kernel, and it can also be verified that
Aco(z) is the Dirichlet kernel which is equal to sin(2rzM)/rz. The extreme points Ax(-) for
h =0 and h = oo are not considered to be in the family £. In particular, the Fejér kernel has
no finite moments and, regardless of the degree of smoothness of f, the Bias( fo(x)) ~ce /M,
for some constant ¢, ; # 0; on the other hand, although an argument similar to the proof
of Theorem 1 actually goes through for the extreme case h = 00, the Dirichlet kernel is well
known to have many prominent positive and negative side-lobes which is a most undesirable
feature. This observation indicates that taking A very small (close to 0) or very large should
be avoided. A choice of h in the neighborhood of 1 seems about right; taking A = 1 results
in a kernel A;(z) that has no significant positive side-lobes, and only one negative side-lobe of
much smaller area than the main lobe at the origin.

In the case it is known that f has finite support, say the interval [0,1], it follows that
f can be reconstructed from the values of ¢ on the integers by the Fourier series f(z) =
Y o 9(s)e™*?™%, and can be estimated by Oy = 5% Ay(s)én(s)e=2*=. Since ¢(s)

is a continuous function of the real variable s, the assumption [°._ |s|"|#(s)|ds < co implies that



3% o 8I7|#(s)] < o0; hence, Theorems 1 and 2 are true verbatim for the estimator f,[,o'”(z)
as well.

Last but not least it should be mentioned that choosing the bandwidth of a kernel estimator
in practical applications is a most important and difficult problem. Adaptive (data-dependent)
optimal bandwidth selection works asymptotically (see Woodroofe (1970), Hall (1983), Stone
(1984)), but not much can be said regarding finite sample sizes. Nevertheless, Theorem 2
suggests a simple procedure for choosing the bandwidth of the estimator f,.(:c) in practice; this
procedure parallels ideas from time series analysis, namely examination of the correlogram, and
can be described as follows.

Suppose that by looking at a plot of the magnitude of the sample characteristic function
it is observed that |¢n(s)| =~ 0, for all s > some 3. Then it might be inferred that 3y is an
estimate of so appearing in the assumptions of Theorem 2. It would then follow that m may be

taken equal to 3, M may be taken equal to 5o(h+1)/h, and the resulting estimators fa(z) and

f,f (z) will both have bias of very small order, and variance approximately as given by equation

(7)-
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