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Abstract

When 6 is a multidimensional parameter, the issue of prior dependence or indepen-
dence of coordinates is a serious concern. This is especially true in robust Bayesian analysis;
Lavine, Wasserman, and Wolpert (1991) show that allowing a wide range of prior dependen-
cies among coordinates can result in near vacuous conclusions. It is sometimes possible,
however, to confidently make the judgement that the coordinates of 8 are independent
apriori and, when this can be done, robust Bayesian conclusions improve dramatically.
In this paper, it is shown how to incorporate the independence assumption into robust
Bayesian analysis involving e-contamination and density band classes of priors. Attention
is restricted to the case 6 = (6y, 6,) for clarity, although the ideas generalize.

* Research supported by the N ational Science Foundation, Grant DMS-8923071.
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1. Introduction

A common approach to prior uncertainty in robust Bayesian analysis is to choose a class,
T, of prior distributions, and compute the range of Bayesian answers as the prior,r, ranges
over I'. Two common classes considered are the e-contamination class

To={r:r=(1-om+eq, g€}, (1)

where 7o is the base elicited prior and Q is the class of allowed contaminations, and the
density band class

I'p = {r:L(6) <=(0) <U(H)}, ()

where L and U are specified measurable functions on the parameter space ©. For motiva-
tion, discussion, and examples of analyses with these classes see DeRobertis and Hartigan
(1981), Berger and Berliner (1986), Sivaganesan and Berger (1989), Bose (1990), Berger
(1990), Moreno and Cano (1991), Moreno and Pericchi (1992), Wasserman and Kadane
(1992), and Wasserman (1992).

For a multidimensional parameter § = (6y,...,6,), the classes (1) and (2) can be quite
large; so large that the range of Bayesian answers can become uselessly wide. One of the
main difficulties with multidimensional Bayesian robustness is that of prior dependence
among coordinates. If too much dependence is allowed, the range of Bayesian answers can
become extremely wide. See Lavine, Wasserman, and Wolpert (1991) for illustration. This
problem may well be unavoidable in certain applications, but in others the elicitor may
be willing to make the prior judgement of independence of the 6;. This is, admittedly, a
strong assumption, but it is a judgement that is accessible to intuition. And making some
type of strong restriction is typically necessary in multidimensional Bayesian robustness.
Thus we encourage elicitors to carefully consider whether or not they would be willing to
judge the 6; to be apriori independent in a given application.

For simplicity of exposition, we restrict ourselves here to the two-dimensional case,
6 = (61,62), where 6; € ©; and 6, € ©,. Let © = ©; x @,. The likelihood function of the
data x will be denoted by f(x|6;,6;), and will be assumed to be appropriately measurable
in 6.

We will use the notation

E™(pf) = /e (61, 62) F(x|61,0,)n(dBs , d6y),

E™(plx) = /9 @ (61,65 £(x161, 82)m(d6y, dB)/ E™ (£).

For simplicity, we henceforth write 7(6;,6,) as a density (w.r.t. Lebesgue measure); this is
a slight abuse of notation, since 7 will be seen to possibly have discrete components, but
no confusion should result.



Directly imposing the constraint of independence in (1) results in a very complicated
class to analyze. We thus consider, instead, the contamination class

Tro = {m(61,02) : m(61,02) = [(1 — e1)m01(61) + €191 (62)][(1 — €2)m02(62) + £292(62)],

q1 € Q1,92 € Q2}; (3)

this not only imposes independence on #; and 6, but also permits the introduction of
different degrees of confidence in the base priors m91(61) and my2(6;) through choice of
the constants £3,62,0 < &1 < 1,0 < g3 < 1. The contaminating classes can be chosen
in accordance with features of mo;(6;) and mo2(0;) that it is desired to keep fixed. This
class is studied in Section 2, when the Q; are quantile classes of distributions or unimodal
quantile classes.

For the class (2), directly imposing independence again results in excessive complica-
tions. Thus we consider the related density band class

Irp = {m(61,0;) : m(61,62) = m1(61)m2(62), Li(6:;) < mi(6;) S Ui(8:), i=1,2}. (4)

Robustness results for this class are presented in Section 3 for certain quantities of interest.
Note that analysis with this class is typically considerably more difficult than analysis with
I'7c. Examples that are considered include the well-studied ECMO trial.

2. Posterior Ranges for the ¢-Contamination Class with Independence
2.1. Contaminating Classes Defined by Quantile Constraints

Consider the class of priors I';¢ in (3) for contaminating classes Q1, Q5 given by

Q1 = {q1(61) =/ @(db)=a;, i>1, Ta;=1, 0<a; <1},
A;

(8)
Qz={g2(92)=/B o(d)=F;, i1, SB=1, 0<g;<1}.

where {4;, ¢ > 1}, {Bj, j > 1} are specified measurable partitions of the spaces 9, 9,
respectively, and the a; and §; are specified constants. Let (6, 62) be an arbitrary
measurable function. Ranges of the posterior expectation of (6, 6,) as  ranges over ;¢
are given in the following theorem.



Theorem 1.

(1 —e1)(1 — e2)E™r™2(f) + 37 K(ai, bj)aiB;
(1 —e1)(1 — e2) Emrmo2(f) + 3 H(ai, bj)aif;

L2

(1) inf E™(p(61,62)|x) =inf
n€l'zc

where the infimum is over {a; € A;, 1> 1, and b; € B;, j>1},
K(601,02) = (1 — €1)e2E™*(fop) + (1 — €2)e1 E™*(fop) + 162 f(x]61, 62)0(61, 62),

H(6:1,62) = (1 — e1)e2 E™(f) + (1 — £2)e1 E™*(f) + €162 f(x61, 62).

(ii) The supremum of E™(p(6y1,02)|x), as m varies over L'rc, is obtained by interchanging
inf with sup in (i).
Proof. Employing the linearization technique (cf. Lavine, Wasserman, and Wolpert, 1992),

define
A= inf E[p(61, 6/,
w€l'rc

and note that the 7 € T'r¢ (or sequence {;} of priors in I';¢) that minimize E™[p(6;, 6, |x)]
also minimizes

e, a) = / (061, 62) — N F(x161, 62)(6:, 6)d6 b,
- / [#(61,62) — Al F(xl61, 82)[(1 — €2)mx (61) + 11 (61)]

[(1 = e2)m02(82) + €292(82)]d6: db5.

Write
QI(al) = Eiaiqn(al), 92(02) = 2j,3jq2j(92)7

where the ¢1; and ¢35 are (unrestricted) distributions on A; and Bj, respectively, and note
that 1(q1, ¢2) is linear in each of the ¢1; and gz;. Hence the infimum of (g1, ¢2) is achieved
when the ¢q1; and ¢z; are point masses, proving (i). The proof of (ii) is similar. a

Example 1. Let X = (X1, X3) be a M;((61,6,),I) random variable, and suppose the base
prior m(61,02) = mo1(61)m02(62) is elicited, where the my; are N (0,2) densities. We are
interested in the robustness of the posterior probability of Hy : ; < 6, to departures
from this base prior, and are willing to assume prior independence of §; and 6;. Thus we
consider I'rc in (3), and choose the conservative Q; = {all distributions on ©,}, Q3 = {all
distributions on O3}, and €; = e2 = 0.106 (so that (1 —&1)(1 — €2) = 0.8; see below).

To see the effect of the independence constraint, we also consider I'¢ in (1) with
mo(61,02) as above, € = 0.2, and Q = {all distributions}. Although, as mentioned earlier,

Tc is not exactly I'r¢c with the independence constraint removed, it is approximately so.. ..

Indeed, the prior precision, of Hy, defined as
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ArP™(Hy) = sup P™(Hy) — inf P™(H,),
el &l
is the same for both classes, since

Ar.(Hp) = [%(1 —€)+¢]— %(1 —€)=0.2,

Aryo(Ho) = [%(1 —e1)(1—e2) + (1 e1)es +e2(1 — £2) + £162] — %(1 —e)(1—e3) = 0.2.

For various x, the posterior ranges of Hy as the prior ranges over I'y¢ and ¢ are dis-

played in the third and fourth columns of Table 1, respectively. The corresponding values

of the posterior probability of Hyp, for the base prior my, are given in the second col-

umn. The notation used in this table is Po(Hp|x) = rler%f P™(Hy|x), Pc(Hylx) =
C

sup P™(Hy|x), BIC(Hle)ZWéIII‘E P™(Hy|x), and Prc(Holx) = sup P™(Hyl|x).
(o)

n€lc n€lrc

Table 1. Ranges of the Posterior Probability of Hy

X =(z1,22)  P™(Hol|x) (Bo(Ho|x), Pc(Ho|x))  (Prc(Ho|x), Pro(Holx))
(-0.2, 0.2) 0.591 (0.342, 0.768) (0.508, 0.672)
(-0.5, 0.5) 0.718 (0.439, 0.845) (0.646, 0.786)
(-0.8, 0.8) 0.822 (0.552, 0.908) (0.766, 0.873)
(-1.1, 1.1) 0.898 (0.673, 0.952) (0.860, 0.930)
(-1.4, 1.4) 0.947 (0.787, 0.978) (0.924, 0.967)
(-1.7, 1.7) 0.975 (0.879, 0.992) (0.963, 0.986)

Table 1 reveals the dramatic impact of the independence assumption, even though the
Q’s are otherwise unconstrained. The effect of the assumption is to reduce the range of
the posterior probability of Hy by a factor of from 3 to 5.

2.2. Unimodal Contaminating Classes

The extreme priors for the posterior expectation E™(p(8;, 8;)|x), as 7 ranges over the
I'rc considered in Section 2.1, is given by the mixture

[(1 — e1)m01(61) + €191(61)][(1 — &2)m02(82) + £242(62))],

where ¢ (1) and ¢3(6;) are discrete distributions. If mo(6;, 62 ) is a continuous distribution,
allowing such unusual priors is often inappropriate. A popular method for eliminating
such priors from the class is to also impose the restriction that 7 must be unimodal,
assuming of course, that my is unimodal. Adding the independence constraint, together
with unimodality, turns out to be quite simple. Indeed, the infimum of E™(¢ (6, 6;)|x),
as 7 varies over I'1¢ in (3) with

Q1 = {q1(61) : ¢1 is unimodal with the same mode as that of mp}, . .

Q2 = {q2(62) : ¢ is unimodal with the same mode as that of s},
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is given (assuming, without loss of generality, that the modes are zero) by

: .o (1 —&1)(1 —ea)Em™r™2(fo) + K(ay,az)
£ E™(p(6:,0)x) = inf ,
B B0, 8)lx) = nf S N oo (F) © H(an, 2)

where the a; are allowed to be positive or negative and

1 az 1 al
K(a,a2) = (1— e1)ez— / E™ (f)dbs + (1 — e3)e1 - / E™ (£)dé,

1 [m o1 fe
+eic [ [ o)),
a1 Jo as 0
1 az 1 a)
Har,a2) = (1 — e1)es - / E™(f)df; + (1 — e2)e1 — / E™(f)d6,
ag 0 aq 0

1 a1 1 as
varear: [ [T (i,
a Jo az Jo

This follows directly from the Khinchine representation of a unimodal distribution as a
mixture of uniforms, and Theorem 1. For the supremum of E™((6;, 6,)|x), simply replace
“inf” by “sup” above.

3. Posterior Ranges for the Density Band Class with Independence

The density band class I'g, in (2), is popular because it allows considerable freedom
in the tail behavior of the prior (providing the upper and lower functions L(#) and U (6)
have substantially different tails) and because it is typically the easiest class to handle
computationally. In this section we explore situations in which the associated independence
class, I'rp, is also computationally tractable.

Suppose the quantity of interest is ¢(61) (e.g., ©(61) = 61 or p(6;) = 14(6:)), so
that 6; is effectively a nuisance paramater. The following theorem reduces determination
of the range of E™(¢(6;)|x) to a two dimensional optimization problem.

Theorem 2.

J m(x|62, m1) E™ (81 X2, 62)m2(62)df;

) sup E™(p(60;)|x) = su ,
) o, Frle(0)k) = sup [ (0B, m)m2(62)d6,
where
71(61) = U1(61)1(6,:0(8,) >k} (1) + L1(61)1¢6,:0(6:) <k, 3} (61), (6)

E™ (p(61)[x,62) = {m(x162,71)} " [o(61) f(x1601,82)m1(61)dbr,

and
m2(02) = U2(02)L A(ky ka,x) (02) + L2(02)L gc(iy b, 00 (62), (7

A(k1, kz,x) being the set defined as {03 : E™ (p(61)|x,62) > k3}.
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(ii) To compute é’%f E™(¢(61)[x), simply replace “sup” by “inf” in part (i) and inter-
kg IB
change the U; and the L; in the ezpressions for m;(6;).

Proof. Since the proofs of part (i) and part (ii) are virtually identical, we only prove part
(). Let #(61,02) = #1(6:1) - #2(02) be a prior density in I'sp attaining the supremum of
E™(¢(61)|x). Defining I'; = {m3(6;) : L2(8;) < m2(62) < Ua(6;)}, it is clear that

f (,0(01 )f(x|01 ) 02 )7!'1 (91 )7!'2 (02 )d01 d02
E™(p(0 =
o o) = e e e 16r, 8a )7 (81 (Ba) 061 05
— sup L PEIm(xlfs, F1)ma(6)d6,
w2 €5 f m(xlﬂz, 7?1 )7"2 (02 )d92 ’

where m(x[6s,71) = [ f(x|01,602)%1(61)d6; and $(6;) = E*1((6;)|x, 62). Treating m as
the density of x, DeRobertis and Hartigan (1981) can be applied to show that (62) is as
in (7), with A(ky, k2,x) computed using #;. A similar argument shows that m(6,) should
be of the form (6), completing the proof. 0

Corollary 1. For any measurable set A C ©1, sup PT™(A|x) can be found from Theorem
m€l'rn

2 by setting ¢(6,) = 14(61),
m1(01) = U1(61)14(61) + L1(61)14-(61), (8)

and eliminating k1 from all expressions. To find érrl‘f P™(Alx), simply interchange the U;
7€lrp

and L; in all ezpressions. (Note that the problem reduces to a one-dimensional optimiza-
tion, over k;.)

Proof. Because ¢(6; ) is itself an indicator function, the priors in (6) either have form (8)
or are m1(61) = U1(61) or m1(6,) = L, (61). These last two possibilities are easily shown to
be inferior to the optimal prior of form (8). O

Example 2. A clinical trial: ECMO

Nine patients were treated with ECMO (extra corporeal membrane oxygenation) of whom
all nine survived. Ten patients were given standard therapy of whom six survived. Let
p1 be the probability of success under standard therapy and let p, be the probability of
success under ECMO. It is desired to compare the two treatments.

This example has been deeply analyzed be Ware (1989), Kass and Greenhouse (1989)
and Lavine, Wasserman, and Wolpert (1991) for a variety of priors. Here we shall carry
out a robust Bayesian analysis for the density band classes of priors, with and without the
independence constraint.

Let n; = log(pi/(1 — pi)),¢ = 1,2, and consider the parameters § = n, — m and
1. With this reparametrization, the quantity of interest is the posterior probability that
6 > 0, and #; is a nuisance parameter.

Priors considered by Kass and Greenhouse (1989) for 7; included Cauchy and N ormal
priors with location parameter equal to -1.7 or 0 and scale parameter equal to 0.769,
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0.419, or 0.838; for 6 the priors were Cauchy and Normal with location at 0 and different
scale values. To globally capture the prior uncertainty underlying their analysis, we shall
consider density band classes defined by the following procedure: if a collection {m;} of
priors is being considered for a parameter ¢, let L({) be the prior with sharpest tails and,
if 7* denotes the prior with the thickest tails, let U(£) be defined by

L(¢)
mi(€)

U(€) = n*(€) mgx{sgp }

It is easy to see that the ensuing density band class includes all of the {r;}. (Note that
multiplicative constants are irrelevant.)

Choosing two, rather extreme, priors considered by Kass and Greenhouse for 7,, say
N(-1.7,.769%) and C(0,.419%), we have that the above lower and upper densities for 7,,
are Ly(m) = N(-1.7,.769%) and Uy(n1) = (15.79)C(0,.419%). Using the same idea, the
lower and upper densities for § are Ly(§) = N(0,.6%) and U,(6) = (2.29)C(0,1.099%). The

actual prior classes we consider are

T = {n(n,6) : L1(n1)L2(8) < 7(n1,8) < Ur(m)V2(6)}

and
L1g = {m(n1,6) : 7(m,6) = m1(m)m2(8), Li(m) < mi(m) < Ui(m),

La(6) < m2(8) < U(6)}.

Note that Kass and Greenhouse suggested that the independence assumption might be
reasonable here.
The infima of the posterior probabilities of Hy : § > 0 for these classes are

inf P"(6§ > 0| Data ) = 0.02159, inf P7(6 > 0| Data ) = 0.6738.
x€lp ®€l'sp

The suprema are both close to one. Again, the independence constraint seems to sharply
reduce the posterior range. Note that the range without independence is uselessly large,
in line with the conclusion obtained by Lavine, Wasserman, and Wolpert (1991) in their
analysis without independence. The lower bound of 0.6738 under the independence as-
sumption certainly suggests that the ECMO treatment is superior, but is not conclusive.
Of course, we were still using a perhaps excessively large class of priors.

Example 3. Let X be a normal random variable with unknown mean 6 and unknown
precision r. The parameter of interest is § with r being a nuisance parameter.

For 6, a N(0,1) prior was elicited, but the elicitor was known to typically give overly
precise elicitations. Also, thick tails for m(6) were quite possible. These considerations
led to choice of a flat upper bound, U;(9) = (2#)‘%, while only a modestly smaller lower
bound, L;(6) = (.9)N(0,1), was deemed necessary. For r, a Gamma (2,1) prior was
elicited, but as above could well be too concentrated, so that the upper bound Us(r) = 1
was employed. A lower bound, Ly(r), of 2/3 times the Gamma (2,1) density was chosen,
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there being somewhat more uncertainty for 72(r) than for 7;(8). Finally, independence of
0 and r is assumed. Thus the elicited class of priors is

Lrg = {n(0,r) : 7(6,7) = m1(0)m2(r), -r exp(—r) <m(f) <1,

(.9)(27)~ % exp(—62/2) < ma(r) < (2m)" %),

Suppose the data yields z = 0,52 = 2, n = 5. Then the sup and inf of the posterior
mean for 6 is given by sup E™(6|Zz = 0,5 = 2,n = 5) = 0.1244 and inf E™(6|z =

n€l'rp T€l'rn
0,32 = 2,n = 5) = —0.1872. If the prior independence of # and r is dropped and g is
formed from the lower bound L;(6) L (r) and upper bound U,(8)U,(r), then sup E™(8]z =

n€l'p
0,52 = 2,n = 5) = 0.533 and Jnf E7(8]7=0,5" =2,n = 5) = ~0.533.

4.2 Comparing Two Parameters and Generalizations

Another situation in which a robust Bayesian analysis for I'rg can be carried out is
the following. Suppose that interest is focused on a quantity h(6;, ;) satisfying:

Condition 1. h(6y,6;) is nonincreasing in 6, and nondecreasing in 65.
Note that any function g(6; — 6 ), where g is a nonincreasing real function, satisfies Condi-
tion 1. An important example is k(61,62) = 1((s,,0,):0,<6,} (61,02), which arises in testing
Hy : 0, < 6. We also will need:
Condition 2. f(x|61,62) = fi(x|6:1)f2(x|6>).
Then, for 7(8y,60;) = m1(01)72(6:) € Trp, it is clear that, under Condition 2,
(01, 02[x) = m1 (61 [x)m2(82]x),
while, under Condition 1 and for ¢ # j,
i(Bilm;) = E™ D (h(61,6,)[x)

is nonincreasing for ¢ = 1 and nondecreasing for ; = 2. The following theorem shows
that, under these conditions, obtaining the posterior range reduces to a two-dimensional
optimization problem.

Theorem 3. Under Conditions 1 and 2,

() sup E"(h(61,62)[x) = E™ (h(61,62)[x),
n€l'rp

where 7*(8y,60;) = n$(01)73(62) and 7} and 7} are of the form, for some ky and ks,

m1(61) = U1(61)1(0,<k,)(61) + L1(61)1 (6, >k,)(61), 9)
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73(02) = L2(02)1(6,<k,)(02) + U2(02)1(6,>%,)(02); (10)
(47) inf E™(h(6y,0,)|x) = E™ (h(6y,6:)|x),
w€l'rn

where 7* 13 as in part 1, but with the U; and L; being interchanged.

Proof. To prove part (i), let # = %%, be a prior in I'7p that achieves the supremum (this
is easily shown to exist), and observe that

sup E™(h(61,62)[x) = sup E™ (41(61]72)Ix), (11)

w€l'rp mels

where I'1 = {m(61) : L1(61) < m(61) < Ui(61)}. Since 91(61]%2) is nonincreasing,
DeRobertis and Hartigan (1981) can be applied to show that the right hand side of (11) is
maximized at some 7, of the form (9). An identical argument shows that the maximizing

g is of the form (10), completing the proof. The proof for part (ii) is identical. O

Example 4. Suppose X = (X1, X3) is M2((61,62), I), and that it is desired to test Hy : 6; <
62. It is known that 6, and 6, are apriori independent, and N(0, 1) prior distributions are
thought to be reasonable for the ;. There is, however, considerable uncertainty concern-
ing the M(0,1) assessment, and it is determined that this uncertainty is (conservatively)
captured by the class I'rp with, for i = 1,2,

(9)(2r) "~ exp{~67) < mi(6:) < (2m)E.

For several observations x, the range of the posterior probability of Hy, as 7 varies over
I';B, is displayed in Table 2. The ranges are rather moderate in size. If the independence
constraint is dropped, (i.e., an analogous class of the form I'p in (2) is considered), it
can be shown that the infimum of the posterior probability of Hy is close to zero, and the
supremum is close to one. Thus, once again, we see that the adoption of prior independence
has a dramatic effect.

Table 2. Range of Posterior Probabilities of Hy

x=(z1,82)  (_inf P"(Holx), sup P"(Holx))

m€lrp
(-0.2,0.2) (0.43,0.60)
(—0.5,0.5) (0.57,0.73)
(—0.8,0.8) (0.70,0.84)
(-1.1,1.1) (0.80,0.91)
(=1.7,1.7) (0.94,0.98)
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