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Abstract

The theory of nonparametric spectral density estimation based on an observed stretch
X1,..., Xy from a stationary time series has been extensively studied in recent years.
However, the most popular spectral estimators, e.g., the ones proposed by Bartlett, Daniell,
Parzen, Priestley, and Tukey, are plagued by the problem of bias, which effectively prohibits
v/N-convergence of the estimator. This is true even in the case the data are known to be m-
dependent in which case v/N-consistent estimation is possible by a simple plug-in method.

In this report, an intuitive method for the reduction of the bias of a nonparametric
spectral estimator is presented. This will result in a general proposal for bias corrected
estimates that are related to kernel type estimators with lag-windows of trapezoidal shape.
An important application of the proposed bias reduction scheme is found in improving the
standard error estimates obtained by resampling and subsampling time series data.

The asymptotic performance (bias, variance, rate of convergence) of the proposed esti-
mators is investigated; in particular, it is found that the trapezoidal lag-window spectral
estimator is v/ N-consistent in the case of m-dependent data. The finite-sample performance

of the trapezoidal lag-window estimator will be assessed by simulation in a follow-up paper.

Keywords. Bartlett’s window, bias reduction, bootstrap, jackknife, mean squared error, lag-
Yy _ g

windows, nonparametric spectral estimation, variance estimation.



1. Introduction

Suppose Xj,..., Xy are observations from a stationary time series {X,,t € Z} with mean
zero, i.e., EX, = 0. Suppose also the spectral density function f(w) exists, and is defined by
flw) = &350 R(s)e™7**, where R(s) = EX,;X,,), is the autocovariance; note that the
symbol j denotes the imaginary unit /~1. Attention will focus on nonparametric estimators
of the spectral density function f(w), and on designing such estimators with small bias.

One of the first! (and most intuitive) proposals for consistent estimation of f(w) at some

point w € [—m, 7] was given by Bartlett (1946) and goes as follows. Let

1 LG-1)+M

T:,' = X —jtw 2’
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that is, T; a,(w) is the periodogram of block {Xpr-1)41,-.-, Xr(i-1)+m} of the data, where
L, M are integers depending on the sample size N; M is the block’s size, and L is the amount

of ‘lag’ between the starting points of block ¢ and block ¢ + 1. Now define

_ 12
Tn(w) = 0 ;Ti,M,L(w), (1)

where @ = [¥5#] + 1, and [] is the integer part.

Under regularity conditions (cf. Priestléy(1981), Zhurbenko (1986)), T (w) is a consistent
and asymptotically normal estimator of the spectral density function f(w). The regularity con-
ditions are, roughly speaking, moment conditions, weak dependence conditions, e.g., conditions
on the smoothness of f(w), and conditions on the design parameters, typically M — oo, but
with M/N — 0 and L/M — 0 as N — oo.

Notably, there is an alternative (and asymptotically equivalent) way to compute Ty(w),

which amounts to a kernel smoothed spectral estimator using the triangular (Bartlett’s) kernel,

ie.,
fw =g > (- Bhage ©
2r =, M _
where R(s) = %Zf;’ X Xiys is the usual sample autocovariance. It can be shown (cf.

! A proposal from a different prespective was also given by Daniell (1946).



Priestley (1981)) that f(w) ~ Tn(w), and that the two estimators have similar asymptotic
properties (bias, variance, etc.).

In particular, the asymptotic variance of either f(w) or Tn(w) is approximately %% 2(w)(1+
n(w)), where n(w) = 0 if w # 0(modr) and p(w) = 1 if w = 0,+x. In addition, the large
sample distribution of either \/N/M(f(w) — f(w)) or of /N/M(Tn(w)— f(w)) is the normal
N(0,2f*(w)(1 + n(w))), provided M ~ aN*, for some a > 0 and 0 > 8 > 1/3, as N — oo;
following the usual convention, the notation M ~ aN? is a short-hand for M/N? — a, as
N — oc.

However, the asymptotic bias of f(w) or Tw(w) is rather large? (of approximate order
¢1/M, for some ¢, > 0 depending on w and on f), and subsequent research efforts were
expended to obtain spectral estimators with smaller bias. These efforts were pointed to two
main directions that are direct analogs of the construction of f(w) and Ty(w), namely: (a)
using a different kernel, one that is smoother near the origin, than the triangular one for
smoothing (cf. Grenander and Rosenblatt(1957), Blackman and Tukey(1959), Parzen(1957a,
1957b), Priestley(1981)), and (b) averaging the periodograms of consecutive blocks of data that
are ‘tapered’ by an appropriate smooth function that starts and ends on zero (cf. Welch(1967),
Brillinger(1975), Zhurbenko (1986)).

As in the case of Bartlett’s kernel, these two directions are analogous, and there is a corre-
spondence between a kernel for method (a) and a tapering function for method (b) that makes
the estimators obtained by the two methods equivalent (cf. Priestley(1981)). By appropriately
choosing the kernel (or the tapering function), and assuming that f has a continuous second
derivative, one can have an estimator that is nonnegative, and possesses a bias of approximate
order O(1/M?), which is a significant improvement for large samples.

In this paper, a different perpective on the problem of bias reduction will be presented,
and a new way to look at such smoothing problems will be discussed. This will result in a
general proposal for bias corrected estimates that are related to kernel type estimators with
lag-windows of trapezoidal shape. These bias corrected estimates will be shown to possess very

small bias of approximate order O(1/M"), where r can be intuitively interpreted as the number

*More precisely, Ef(w) — f(w) = O(1/M), and ETy(w) — f(w) = O(log M/M), under the assumption that

f is continuously differentiable.



of derivatives that f has.

Attention will be focused to Bartlett’s estimator because it is both the simplest to calculate,
and is the most needy for a bias correction; in addition, Bartlett’s estimator (evaluated at
point w = 0) comes up rather naturally as a variance estimate in the newly developed areas
of resampling and subsampling dependent data (cf. Kiinsch (1989), Liu and Singh (1992),
Politis and Romano (1992a,b)), and in the steady state simulation literature (cf. Meketon and
Schmeiser (1984), Welch (1987), Song and Schmeiser (1988, 1992)). However, with obvious
modifications, the same intuitive procedure can be carried out for bias reduction of other
spectral estimators, and indeed even for bias reduction of kernel smoothed probability density
estimators in a different context.

The remaining of the paper is organized as follows. In Sections 2.1 and 2.2, the main intu-
itive proposal for bias reduction is presented, and its good asymptotic properties are established.
This basic idea is generalized in Section 3; see Sections 3.1 and 3.2. Section 3.3 is concerned
with the positivity of the proposed estimator, and Section 3.4 establishes its v/N-consistency
in the case of Moving Average data. Finally, Section 3.5 addresses the most important problem
of choosing the bandwidth of the spectral estimator in practice, and Section 4 contains some

comments and conclusions. Proofs of all results are placed in the Appendix.



2. Bias reduction for Bartlett’s spectral estimator: the 2f — f formula

2.1. Some heuristic ideas. From the data X,,..., Xy construct the Bartlett spectral
estimator f(w) at point w as given in equation (2) with some choice of M; the optimal choice
of M will be discussed later. Also construct an over-smoothed Bartlett spectral estimator f(w)
using a different block size 7 < M; f(w) can be thought of as a crude estimate of f(w).

Looking at f(w), Ef(w), E f(w) as functions of w € [-m,7] it is obvious (cf. Priestley
(1981)) that E f(w) is a smoothed version of f(w), and, in turn, E f(w) is a smoothed version

of E f(w). This observation leads to the heuristic approximation

Bias(f(w)) = Ef(w) — f(w) ~ E f(w) — E f(w). (3)

If the approximation (3) were somehow correct, then we could estimate Ejf(w) by f(w)
and E f(w) by f(w), and we could therefore estimate the bias of f(w) to be approximately
Bias(f(w)) = f(w) — f(w). As a consequence, we could form a ‘bias-corrected’ Bartlett’s

estimator by the formula
f(w) = f(w) - Bias(f(w)) = 2f(w) — f(w). (4)

Notably this proposed bias-correction is in the spirit of Quenouille’s (1949) original sug-
gestion of bias reduction for time series statistics. In Quenouille’s scheme, a crude estimate of
f(w) would be obtained by first splitting the series X}, ..., Xy into, say, two subseries of length
N/2, secondly constructing Bartlett estimates from each subseries (obviously using a different
block size m, smaller than the original M), and finally averaging the two estimates arising
from the two subseries. The bias-corrected estimate would then be calculated by subtracting
this crude estimate from twice the original Bartlett estimate f(w). In our proposal, the crude
estimate f(w) is obtained in a slightly more general fashion, employing the whole time series
anew.

Of course, it is most optimistic to expect that the approximation (3) would hold. However,
the following heuristic argument indicates that (3) is at least qualitatively true, in which case

f(w) might still have reduced bias as compared to f(w).



Suppose that the true spectral density f(w) has a peak around w, (see Figure 1). In this
case, the bias of f('w) is intuitively due to either ‘smoothing out’ the peak (for w close to wy),
or to ‘leakage’ from the peak (for w away from wy). It is then easy to see that for w close to
wo, both quantities, f(w)— f(w) and f(w) — f(w) are negative; similarly, for w away from wy,
both f(w) — f(w), as well as f(w) — f(w) are positive.

In other words, the proposed simple estimate of the bias of f(w) will at least have the
right sign. The magnitude of this estimate of bias is of course also of great importance, since
one might ‘over-correct’ by overestimating the (absolute value of the) bias. This is obviously

related to how one chooses 7%, i.e., how ‘over-smoothed’ f(w) is.

2.2. Best choice of m in the 2f — f formula. It is worth noting that the estimator
f(w) as defined in equation (4) is actually a nonparametric spectral estimator of the lag-window
type, ie., f(w) = & % A3 )B(s)e™7*¥, where

21— ) - (1- 1) for|s| <m
)= 2(1—%}) form < |s| <M
0 for |s| > M.

2, 8
/\(—M
In Figure 2, the lag-window ;\(ﬁ) is pictured for different values of the ratio m/M. It is
apparent that taking m << M/2 would not be recommended, as the lag-window would then
give more weight to R(s) for s around 7, than to R(s) for s around zero. Intuitively, taking
m << M/2 would lead to ‘over-correcting’ the bias, by overestimating it. Taking m >> M/2
actually leads to f(w) being very close to the Bartlett estimate f(w), i.e., there is not ‘enough’
bias correction.

It turns out that the best choice of m is M/2 or (M + 1)/2, according to whether M is
even or odd respectively. This choice makes the lag-window S\(ﬁ) to be of trapezoidal shape
(see Figure 2). Since one can always take M to be even, we will henceforth assume so to make
the discussion concrete. As a matter of course, the asymptotic considerations are all the same
if M is even or odd, and if m is M/2 or (M + 1)/2.

To justify that the choice of m = M/2 achieves the claimed bias reduction, the following



theorem is presented. Note that the choice of 7 here is based only on bias considerations, since

the large-sample variance of f(w) is of order O(M/N) whatever the choice of m/M may be.

Theorem 1 Let w be any point in [—7, ], and assume® that 35w _ . ||| R(s)| < oo, for some
positive integer v. Also assume that m ~ M/2, and that M — oo, as N — oo, but with
MT™/N — 0. Then

Bias(f(w)) = O(1/M"). (5)

Suppose in addition that the time series {X,} is such* that the Bartlett spectral estimator f(w)

has a large-sample variance of order O(M/N). Then we also have

Var(f(w)) = O(M/N). (6)

The interpretation of Theorem 1 is that for the case 7 > 1, the bias of f(w) is smaller than
the bias of the Bartlett estimator f (w) by orders of magnitude, and thus the ‘2f — f’ formula of
equation (4) achieves its purpose of bias-correction without changing the asymptotic order of
the variance. If » = 1, i.e., if f is not smooth enough, then the performance of f(w) is similar

to that of the Bartlett estimator f(w).

o0

®Note that the assumption |s|"|R(3)| < oo implies that f has r continuous derivatives; conversely, if

$= =00
f has r+1 derivatives and the (7 +1)th derivative is square-integrable, then ) o> __ |s|7|R(s)| < co follows (cf.
Katznelson (1968)). .

“There is a variety of assumptions to guarantee that Var(f(w)) = O(M/N); for example (cf. Priestley

(1981)) a sufficient condition is that {X.} is a linear process given by X: = > v

i=—o00

0:Z:—i, where the Z;’s are

iid. with EZ, =0, and EZ{ < oo, and the 0;’s are constants satisfying o 1i]*/?16:] < oo.

1=—o00



3. Bias reduction for Bartlett’s spectral estimator: a more general formula

3.1. The general bias correction formula. As it was argued in Section 2.1, it is
intuitively clear that the simple bias estimate B/izs( f(w)) = f(w) — f(w) will capture the sign
of Bias(f(w)), although not necessarily its absolute value. Hence, a reasonable next step is
to approximate Bias(f(w)) by hB/z'Es( f(w)), where h is a positive constant to be specified
later. So, by defining Bﬁs(f(w)) = hB/z'Es(f(w)) = h(f(w) — f(w)), we are led to a new

bias-corrected estimator given by
f(w) = f(w) - Bias(f(w)) = f(w) - hBias(F(w)) = (h + 1) f(w) - hf(w). (7)

This new estimator f(w) is also of the lag-window type, i.e., f(w) = & ¥ __ M) R(s)e™ v,

$=—00

where the lag-window A(s%) is defined by
(h+D)A-Eh-r1-L) for|s|<m
A(—Afl-)z (h+1)(1- Ly for m < |s| < M
0 for |s| > M.

By similar considerations as in Section 2.2, it follows that the best choice of 7 in this case
is /M ~ h/(h+1), in which case the lag-window A(35) is flat around the origin, and possesses
the general trapezoidal shape (see Figure 3). Hence, given m and M, the value of A is also
determined and is A = m/(M — ).

It is interesting to note that empirical results of Song and Schmeiser (1988) concerning
estimation of f(w) at the point w = 0, pointed to a formula analogous to (7) as the linear
combination of spectral estimators with minimum mean squared error. This most desirable

feature of the proposed estimator will be investigated in the next section.

3.2. Performance of the general trapezoidal lag-window. It is apparent that the
proposed bias-corrected estimators f(w) (with @ ~ M/2) and f(w) (with m ~ Mh/(h + 1))
are special cases of the nonparametric spectral estimator

Fo(w) = % f: A(—EJ—)R(s)e‘j’“’, (8)

$=—00



with the general trapezoidal lag-window A(35) defined by

1 for |s| < m
/\(%)z 1-22 form<|s|<M
0 for |s| > M.

A more precise notation for the above trapezoidal lag-window might be As(57), where
h = m/(M — ), but we will generally drop the subscript & since it does not lead to confusion.
As elaborated upon in Section 3.1, the estimator fh(w) can be computed as a linear combination

of the two Bartlett estimators f(w) and f(w), by the formula

fa(w) = (h+ 1) f(w) = hf(w). (9)

The assumption that h is a constant is equivalent to assuming that m is proportional to M. If
h = 1, then the estimator f,(w) is identical to f(w) defined in equation (4). At the extreme

points where A = 0 or & = 00, that correspond to m = 0 and m = M respectively, fh(w) reduces
M

to a Bartlett estimator or the ‘truncated periodogram’ 51; Y e M R(s)e"-" *¥ respectively.

Note (cf., for example, Brockwell and Davis (1991)) that the estimator f,(w) can also be
written as fo(w) = J7, Ap(w')In(w + w')dw’, where Iy(w) = & s——N+1 R(s)e~*" is the

w

periodogram, and

1 X e
)= 9 Z_: ) (10)

is the so-called spectral window corresponding to the lag-window A(s;). By the previous

Ag(w) = 27r1M (Slsz({uu/lé?))z

is the well-known Fejér spectral kernel corresponding to the Bartlett estimator f(w), we have

discussion, and since

an explicit formula for A,(w), that is,

i1 (e b (s

- 27r(Ml— ) { (81:1(1]({;%?))2 - (%)2} ' (11)

Since the extreme case h = oo corresponds to the truncated periodogram, it follows that

Ah(w) =

A(w) = sin(ﬁ%;l)ﬂ)/%r sin(w/2) is the familiar Dirichlet kernel. Note that, in view of

9



representation (11), the spectral kernel Aj(w), for 0 < A < 0o possesses many interesting

properties that are summarized in the following lemma.

Lemma 1 Ifh € [0,00), then

(a) Ap(w) is an even function of w, with period 27;

(6) 2, An(w) = 1;

(c) for any € > 0, [° Ap(w) = 1, as M — oo.

(d) If h € (0,00), and k is any even positive integer, then [* w*Ao(w)dw ~ by/M, while

[I wkAp(w)dw = O(1/M?), as M — oo, where by, is a nonzero constant depending on k only.

The fact that ["_w*A,(w)dw is of smaller order of magnitude than [ w*Aq(w)dw seems
to indicate that fh(w) has smaller bias than fo(w) = f(w). This is indeed true, and the
following theorem quantifies the bias-variance performance of f,(w) as an estimator of f(w),
for 0 < h < oo. If f is smooth enough, the estimator f,(w) is shown to have smaller (by orders
of magnitude) bias than the Bartlett estimator f(w), while its variance remains of the same
order of magnitude. From the theorem’s proof it is obvious that the small bias of f,(w) is a

consequence of the ‘flatness’ of the trapezoidal lag-window A(37) for [s| < .

o0
$=—00

Theorem 2 Let w be any point in [—, 7], and assume that 3 |s|"|R(s)| < o0, for some

positive integer . Also assume that ™ ~ cM, for some constant ¢ € (0,1), and that M — oo,

as N — oo, but with M"/N — 0. Then
Bias(fo(w)) = O(1/M"). (12)

Suppose in addition that the time series {X,} is such that the Bartlett spectral estimator f(w)

has a large-sample variance of order O(M/N). Then we also have

Var(fy(w)) = O(M/N). (13)

Similarly to the ‘2f — f’ rule of equation (4), the estimator fh(w) has very small bias as

well, of asymptotic order O(1/M"). In particular, if f is smooth enough, (i.e., if 7 is large),

10



the bias of fh(w) can be considered negligible even for moderately large M. An important
class of time series possessing smooth spectral densities is the family of ARMA models; see the
discussion after Theorem 3 in Section 3.3.

Note that, under the assumptions of Theorem 2, the estimator fj(w) is consistent for f(w),
since its mean squared error M S E( fy(w)) = E(fu(w)— f(w))? — 0,as N — co. Returning now
to the deferred question of proper choice of M, it follows that the M SE(f,(w)) is minimized
asymptotically by letting M ~ aN'/?+1)_for some constant a > 0, in which case the minimized
MSE(f»(w)) is of order O(N~2/(3+1)). One can further try to choose the constant a to also
minimize the proportionality constant in M SE( fy(w)) = O(N~2r/(2r+1)) although this is quite
more difficult and will not be pursued here.

It is interesting to observe that the bias of fi(w) will be of asymptotic order O(1/M")
regardless of the choice of h (or, equivalently, of the choice of m). This goes to show that the
choice of h is not as important as the choice of M, and thus the 2f — f rule of equation (4)
might be preferred in practice to the more general (9) in view of its simplicity. What is, of
course, of great importance concerning the design of a spectral estimator, is the choice of M

in practical applications; this problem will be taken up again in Section 3.5.

3.3. Taking the positive part. A question that has been overlooked until now is whether
the estimator fh(w) is nonnegative or not. Since the spectral density is nonnegative, it is quite
important that its estimators be nonnegative as well. Following Parzen (1957a), define the
‘characteristic exponent’ of a lag-window k(s) to be the largest positive integer k; such that
lim,_,q 1|—:|k,§§2 exists, is finite, and is non-zero. If lim,_, 1|_T|k’=(oﬂ exists for any positive integer kg,
the characteristic exponent is said to be oco. It is apparent that the characteristic exponent
quantifies the smoothness of the lag-window near the origin.

Classifying all lag-windows according to their characteristic exponent yields the following
insights: (a) lag-windows with characteristic exponent equal to 1 (e.g., the Bartlett triangular
lag-window) lead to heavily biased spectral estimates; and (b) lag-wimiows with characteristic

exponent greater than 2 correspond to spectral kernels that are not everywhere nonnegative,

11



and hence may lead to negative spectral density estimates (cf. Priestley (1981, p. 568)). In
view of this, the focus of researchers in the spectral estimation literature has been focused
to those lag-windows with characteristic exponent equal to 2 that correspond to nonnegative
spectral kernels (cf. Priestley (1981, p. 463) for a list of examples).

However, it is easy to see that the characteristic exponent of the trapezoidal lag-window
A(37) is 0o, and hence fh(w) is not necessarily nonnegative. To intuitively see this, consider
fu(w) with B = 1, ie., fi(w) = 2f(w) — f(w), with m = M/2. It is apparent that the
spectral (Fejér) kernel of f(w), i.e., Ag(w), has twice as many zeroes as the spectral kernel
of f(w); consequently, at the location of a zero of Ag(w) that is not a zero of the spectral
kernel of f(w), the spectral kernel of fi(w), i.e., A;(w), goes negative. In Figure 4, the spectral
kernel Aq(w) is plotted (for M = 40), while in Figure 5, the spectral kernel A;(w) is shown.
For further comparison, the spectral (Dirichlet) kernel Ao, (w) corresponding to the ‘truncated
periodogram’ (where again M = 40) is plotted in Figure 6.

Nevertheless, the good asymptotic performance of f,(w) as demonstrated in Theorem 2
shows that, at least for large samples, the probability of f;.(w) being negative is negligible. As
far as small samples are concerned, the following immediate modification of fh('w) is proposed

to yield a surely nonnegative spectral estimator. Define
f}f(w) = max(fh(w)70)7 (14)

ie., f,f (w) is the positive part of fh(w). In the following theorem it is shown that taking the

positive part results in a better (with respect to MSE) estimator.
Theorem 3 Let w be any point in [-x,7]. Then, MSE(fi(w)) < MSE(fi(w)).

It now follows that, under the assumptions of Theorem 2, the estimator f,','" (w) is also
consistent for f(w), and has the desirable property of being nonnegative. Furthermore, by
letting M ~ aN/C+1), for some constant a > 0, the mean squared error of fi (w) is of very
small order as well, i.e., MSE(fif(w)) = O(N~-2/@+1), In particular, if f is smooth enough,
(i-e., if 7 as defined in the assumptions of Theorem 1 or 2 is large), the bias of f,;" (w) can be
considered negligible even for moderately large M, and the rate of convergence of f (w) can

be very close to v/N.

12



A comparison of the performance of f,;" (w) to the performance of the usual nonparametric
estimators possessing characteristic exponent equal to 2 is in order. Each of the latter results
to an estimate with bias of order O(1/M?), while f;t(w) has bias of order O(1/M7). In other
words, the fact that the characteristic exponent is finite and equal to 2 sets a ceiling on the bias-
performance of the usual estimators, and does not allow the bias to become of smaller order,
even if the true spectral density is known to be very smooth. It is worthwhile to note that for a
large class of stationary time series, namely the class of Auto-Regressive processes with Moving
Average residuals (ARMA), the spectral density f possesses any number of derivatives, (that
is, 7 can be thought of as being infinite), and thus the bias of fi (w) is negligible.

To see this, recall that the time series {X,} is said to follow an ARMA (n,m) model if it

satisfies the difference equation
Xt - ¢1Xt—1 -t ¢nXt—n = Zt + ¢1Zt—l +- 4 ¢mZt—m7 (15)

for any integer t, where the Z,’s are uncorrelated random variables, with mean zero, and
common variance o?. It is easy to show (cf., for example, Brockwell and Davis (1991)) that,
provided the characteristic polynomial 1—¢;z—- - -—¢, 2" = 0 has no roots on the unit circle, the
autocovariance R(s) of {X,} decreases geometrically fast, in which case Y ;o _ |s|"|R(s)| < oo,
for any positive integer r.

In the next section it will be shown that, in the special case where the time series {X,}
can be thought to follow a Moving Average model of order m, i.e., {X,} satisfies equation (15)
with ¢, = 0,k > 1, the rate of convergence of f,f(w) is actually ezactly v'N, and M can be

taken to be a fized number, not necessarily increasing to infinity.

3.4. The case of m-dependence and /N-consistency. Suppose now that the station-
ary time series {X,} is m-dependent, meaning that the set of random variables {X;,t < 0}
is independent of the set of random variables {X,,t > m}. Alternatively, just suppose that
R(s) = 0, for all |s| > m, i.e., that the time series {X;} can be thought of as arising from a
Moving Average (MA) model of order m, (cf. Brockwell and Davis (1991)). In both cases, the

spectral density is given by the finite sum f(w) = 5= Y 7=_,. R(s)e™**, and it is quite obvious

13



that the simple ‘plug-in’ estimate 5= 3772 _ R(s)e™** is a v/N-consistent estimator of f(w).
Similarly, the ‘truncated periodogram’ 5~ Zf{:_ M R(s)e‘j ¥ is v/ N-consistent, if M is fized to
the constant value M = m.

However, a nonparametric spectral estimator with finite characteristic exponent will not
estimate f(w) at VN rate of convergence, even if it is known that m-dependence holds. This
loss of accuracy is of course due to the fact that if the lag-window is not exactly flat at the
origin, there is a bias in the spectral estimator that can be made negligible only by letting M
tend to infinity as N tends to infinity. On the other hand, since the variance of a nonparametric
spectral estimator is generally proportional to M/N, it follows that the rate of convergence is
VN/M << V/N.

Note however that the truncated periodogram is just an extreme case (with A = 00) of the
estimator f,(w). It would be quite interesting if fu(w) (and therefore, in view of Theorem 3,
fit(w) as well) share this desirable property of v/ N-consistency in the case R(s) = 0, for all
|s| > m. This is in fact true, and heuristically follows from equation (12) of Theorem 2 with

T = O0.

Theorem 4 Let w be any point in [—7, 7], and assume that R(s) = 0, for all |s| > m. Let

m, M be constants satisfying m < m < M. Then, as N — oo,

MSE(fu(w)) = O(1/N) (16)
and
MSE(f#(w)) = O(1/N). (17)

The point to be made here is that nonparametric spectral estimators given by f(w) =
3= Y rmmoo k(ﬁ)]ﬁl(s)e‘j“", with lag-window k(3;) = 0, for |s|] > M, are essentially spectral
densities of the Moving Average type of order M. Hence it might be reasonable to expect that
the performance (bias, variance, rate of convergence) of f(w) should be significantly better if
the true spectral density f(w) is itself of Moving Average type of order m < M, i.e., if the data
arise from an MA(m) model. This is indeed true for the trapezoidal lag-window, although this
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is not the case for the more popular lag-windows possessing finite characteristic exponents.

3.5. Choosing M in practice. Theorem 4 is extremely important for practical applica-
tions where the choice of the bandwidth parameter M is crucial. As mentioned in Section 3.2,
the choice of A, or equivalently the choice of m, is not nearly as important, and one might opt
for the simple choice h = 1 and m = M/2.

To choose M given the data X,,..., Xy, a practitioner will usually employ diagnostic tools,
the prime of which is a correlogram, i.e., a plot of f?,(s); see Priestley (1981, p. 539). If it is
observed that R(s) ~ 0, for all |s| > some number 77, then it may be inferred that s is an
estimate of m appearing in the assumptions of Theorem 4. It would then follow that m may
be taken equal to 77, M may be taken equal to m(h + 1)/h, and the resulting estimators fh(w)
and f;f (w) will be very accurate, i.e., the error in the approximation of f(w) by fu(w) or by
fi¥(w) will be of order O(1/+v/N) with high probability.

Note that this simple procedure for choosing M does not work well for the nonparametric
spectral estimators possessing finite characteristic exponents. To see this, consider the simplest
example where the time series {X,} is produced by the MA(1) model X; = Z; + Z;_;, and the
Z,’s are i.i.d. normal N(0,1). Suppose that the sample size NV is large enough so that from the
correlogram it can easily be identified that /n» = 1. From the above discussion it follows that
fit (w), with 72 = 1 and M = 2, will be an accurate estimator of f(w). However, it is apparent
that estimating f(w) by, say, a Bartlett estimator f (w) with M = 2 will be highly inaccurate.
In particular, since the sample is large enough to ensure that R(s) ~ R(s), for a large range
of s values, the absolute value of the systematic error in estimating 27 f(w) by 27 f(w) will
be approximately equal to |cosw|/2M, which can be made negligible only by taking M big

enough, certainly much bigger than two.
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4. Comments and conclusions

In Sections 2 and 3, an intuitive proposal for bias-corrected nonparametric spectral esti-
mators was presented and analyzed, and it was shown that it essentially reduces to taking
the positive part of a spectral estimator with trapezoidal lag-window. It was also shown that
the proposed estimator can be easily computed as (the positive part of) a linear combination
of two Bartlett estimators with different bandwidths. However, the presented bias reduction
methodology is not limited to the example studied here in detail; indeed, a general method
was introduced to combine two function estimators in order to obtain a third estimator with
smaller bias.

To focus on a specific important application of the proposed bias reduction scheme, con-
sider the case in which the objective is estimation of Var(\/JVXN), where Xy = N1 Ef;l X;
is the sample mean. It is easy to see that 27Ty (0), which is a constant multiple of the Bartlett
spectral estimator evaluated at point 0, is a consistent estimator of Var(\/lv X N); Imore pre-
cisely, E (QWTN(O) - Var(\,/JVX'N))2 — 0, as N — oo. As a matter of fact, the estimator
27 Tn(0) comes up very naturally as the resampling (‘moving blocks’ bootstrap) and subsam-
pling (‘moving blocks’ jackknife) variance estimator ((cf. Kiinsch (1989), Liu and Singh (1992),
Politis and Romano (1992a,b)); it also comes up as the ‘batch means’ variance estimator in
the steady state simulation literature (cf. Meketon and Schmeiser (1984), Welch (1987), Song
and Schmeiser (1988, 1992)). The bias reduction methodology developed in Sections 2 and 3,
can be used to combine two such estimators (with different block-batch sizes) to obtain a more
accurate variance estimate.

A criticism that might be raised is that the results offered in this paper are asymptotic. For
example, it was proved that the variance of f,(w)is O(M/N), similarly to the variance of f(w),
but it is expected that the proportionality constants are different. This is in fact true, and is
intuitively due to the bias-variance trade-off in smoothing. The finite-sample performance of
fh(w) deserves further study and will be investigated by simulation in a follow-up report.

It should be mentioned that this proportionality constant can acf:ua.]ly be calculated ex-

plicitly; preliminary results of Pedrosa and Schmeiser (1992) indicate that the large-sample
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correlation coeficient between f(w) and f(w) is equal to (1 + M=) /m/M. It follows that
Var(fu(w)) ~ 3LV ar( f(w)) = 3EL2M £2(4)(1 4 p(w)). For the 2f — f rule, i.e., the esti-

B+l h+1 3N
mator f;(w), it is seen that Var(fi(w)) ~ 2Var(f(w)) = 4 f2(w)(1 + n(w)). Since %E'l—l goes

from 1 to 3 as h goes from 0 to oo, this provides a further justification for the notion of the
case h = 1 corresponding to the ‘midpoint’ between h = 0 (Bartlett) and A = co (truncated
periodogram).

The question may be asked, ”since Var(fi(w)) ~ 2Var(f(w)), how can it be that fi(w) has
smaller MSE than the Bartleit?”; the answer lies with the choice of M. For a given sample
size N, one would pick an M of the order of N/ to use in conjunction with the Bartlett
estimator, while the same researcher would pick an M of the order of N/r+1) to use with
fu(w). In other words, Var(fi(w)) = O(NY D /N) = O(N~2r/+0): if » > 1, this is orders
of magnitude less than the variance of the Bartlett estimator which is O(N/3/N) = O(N~-%3).
Arguably, the number of derivatives r will not be given in practice but, considering the simple
example in Section 3.5, it is apparent that even a data-dependent choice would yield a much
smaller M for use with f,(w) than it would for use with the Bartlett estimator.

Regarding the important problem of setting confidence intervals for f(w) on the basis of
fr(w) or fif (w) there are two avenues, one based on a central limit theorem, and the other using
resampling and subsampling methods (cf. Politis and Romano (1992a,b), and Politis, Romano,
and Lai (1992)). To elaborate on the first method, note that fu(w) will be asymptotically
normal under regularity conditions (cf. Hannan (1970), Brillinger (1975), Rosenblatt (1984)),
and (by the delta-method) so will f,f (w). As a matter of fact, use of the delta-method also

shows the following interesting result.

Lemma 2 If f(w) > 0, then Var(fif(w)) ~ Var(fi(w)), as N — oo; if f(w) = 0, then the
asymptotic distribution of either \/N/th(w) or \/N/Mf,f'(w) degenerates to a point mass at

the origin.

Spectral density estimation is now an almost 50 year old field, and it would seem at first
that whatever could be said about it has already been said, and one should be able to look it
up in a textbook, say Priestley’s (1981) treatise. Nevertheless, this premise is not necessarily

true; to make the point we will now compare the results of the present paper to its closest
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relative, namely the general theory of Parzen (1957a,b).

To start, note that in Parzen’s (1957a,b) pioneering development it was apparent that, if the
characteristic exponent of a lag-window exceeds r as defined in the assumptions of our Theorem
2, then the bias of the corresponding spectral estimator is of order O(1/M"). However, the
possible nonpositivity of such estimators was considered to be a major drawback, sufficient
to limit consideration to lag-windows with characteristic exponent not greater than two. In
Section 3.3 it was shown how this nonpositivity is easily side-stepped without sacrificing the
good MSE performance of the estimator.

In the same vein, Parzen (1957a) did not consider estimators with infinite characteristic
exponent other than the truncated periodogram, which is well known to possess undesirable
properties (cf. Hannan(1970)). Observe that the spectral window A (w) of the truncated
periodogram (see Figure 6) exhibits quite prominent positive side-lobes which may introduce
spurious details in the estimate of a spectral density containing sharp peaks. It is important
to point out that the spectral window A,(w) of the 2f — f trapezoidal rule (see Figure 5) does
not exhibit such behaviour.

Furthermore, Parzen (1957a) introduced the family of lag-windows given by

k(—f—)= {1—|S/M|q for [s| < M

M 0 for |s| > M,
where ¢ is the characteristic exponent. Similarly to the family of trapezoidal lag-windows,
Parzen’s family has the Bartlett estimator and the truncated periodogram at its extreme points
(¢ =1 and ¢ = c0). Nonetheless, the two families of lag-windows are remarkably different; in
particular, all lag-windows in the trapezoidal family for 0 < A < oo have an infinite character-

istic exponent, and share the same properties that are summarized below.

e fi¥(w) can be computed easily and fast, taking into account that the actual computation

of Bartlett’s estimator via formula (1) is extremely fast.

o The MSE of fif(w) is of very small order provided the function _ f(w) is smooth, having

a number of derivatives.

o The rate of convergence of f}(w)is v/N if the data are MA(m) or m-dependent.
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o Last but not least in importance is that working with f,f (w) significantly simplifies the
difficult problem of choosing the bandwidth of the spectral estimator in practice, at least

in the case where the sample autocovariances seem to be negligible from some point on.
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Appendix: Technical proofs.
Proor oF THEOREM 1. Omitted in view of the proof of the more general Theorem 2 below.

Proor oF LEMMA 1. Parts (a)—(c) follow immediately from representation (11) and the
properties of the Fejér kernel (cf. Brockwell and Davis (1991)).

To prove part (d) first note that the Fejér kernel has the properties of a probability density
with finite support and, in view of part (c), it is immediate that [ w*Aq(w)dw = O(1/M), as
M — o0; however, we will now show that ["_ w*Aq(w)dw ~ by/M, for some constant by # 0,
i.e., that this kth moment of the Fejér kernel is of ezact order O(1/M).

Note that

/_7r w* Ag(w)dw = ./_7r _Z: (1- e’”"d

= Z (1- ITI ) w'c cos(rw)dw.

r=—-M
Assuming r # 0, it is easily calculated by integration by parts that
/W k 2kr*(-1)  k(k-1) [7 wh=2

W cos(rw)dw = ) - .

cos(rw)dw.

What should be noted is that in general, [ w* cos(rw)dw = C; 3 + O(%), where C} is a
constant depending on k only; in particular,

w dn(=1)"/r? ifr 0
/ w? cos(rw)dw = { (=) *
9273/3 if r = 0.

-7

To complete the computation define

Lir = (1= 1/M)(=1)/r* = 3 (=1) /1 = (/M) 3 (-1) /.

The second term above is (1/M) M (~1)"/r ~ log2/M, since 322, (—1)"/r = log 2; the first
term is M, (—1)7 /7% = —72/12 + O(1/M?). To see the last assertion, write "re, (—1)7/r? =
— M 1/ + 25°M/21/(2r)?, where for convenience and without loss of generality it was

assumed that M is even.
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Since Y_22, 1/7? = n2/6, it follows that

_Zl/rzz—w2/6+ i 1/r?

r=M+1

- —7r2/6+/ ggdz—}-O(l/Mz) = —n2/6+ 1/M + O(1/M?),
r=M+1

and that
M/2 M/2 oo
2y 1/@r)=2"1)"1/rP==2"Y(x?/6- Y 1/r%)
r=1 r=1 r=(M/[2)+1

= 72/12— (1/2) /°° L do+0(1/M?) = 72/12 = 1/M + O(1/M?).

r=(M/2)+1 T?
Adding the two we get that M (—1)"/r? = —12/12 4+ O(1/M?).
It now follows that Ly = —n%/12 —log2/M + O(1/M?); therefore, for the specific case

k = 2 we have
/ w?Ao(w)dw = 4Ly + 7%/3 = —4log2/M + O(1/M?),
and it is similarly calculated that in general,

/ w* Ao(w)dw = by /M + O(1/M?),
where by, is a nonzero constant depending on k only.

As a consequence of the above calculations, it follows that [7_ w*Au(w)dw = (h+1)b;/M —
hby [ + O(1/M?). 1t is now apparent that the choice h = m/(M — ) minimizes asymptoti-

cally this kth moment [ w*A,(w)dw, making it of order O(1/M?), and the lemma is proven.

ProoF or THEOREM 2. Observe (cf. Parzen (1957a), Priestley (1981, p. 459)) that
Bias(fy(w)) = Efy(w) — f(w) = A1 + Az + As

where
LS (xS -1) e
A= — </\(— - 1) R(s)e77**
2m s=—N+1 M

1 N_l s .
_ § : —jsw
A2 - 27TN |S|A(M)R(S)e

s=—N+1
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1 .
—_— —Jsw
A3 = o E R(S)C .

[sI>N
But |[As] < 5w [R(S)| S 5 Zjajpw ISIIR(s)] = O(1/N), since 3o |s||R(s)| < oo.
Similarly, |A;| = O(1/N), using the fact that |A(3F)] < 1.
To complete the proof of equation (12), the term A; will now be shown to be of order

O(1/MT). Note that A, can be split into three terms, 4, = a; + a2 + a3, where

= % (/\(%) - 1) R(s)e™7*¥

[s|<m

g = % ) (A(%) - 1) R(s)ei*v

m<|s|<M

a3 = 5 Z ()\(-;7) - 1) R(s)e™ v,

M<|s|<N

ay

First observe that a; = 0, because A(3;) = 1 for |s| < m. Now

las| <

el

> A(gp) ~ UIRG):

m<s<M

But A\(%) =1— &2 for m < s < M. Thus,

1 s—m
ol < = 3 2 RGs)]

m<s<M

5

It is obvious that if r = 1, then ay = O(1/M). On the other hand, if » > 1, we have

Y o122 p(s) = (1)) = O(1/M"),

|(12| < -
m<s<M M —mn

er—l

where it was used that ) |s|"|R(s)| < oo, and that both m and M — m are asymptotically
proportional to M. By a similar argument it is also shown that a3 = O(1/M") as well, and
equation (12) is proven.

From equation (9) it now follows that the estimator fi(w) is a linear combination of the
two Bartlett spectral estimators f('w) and f(w), the first having variance of asymptotic order
O(M/N), and the second having variance of asymptotic order O(m/N) = O(M/N). By the
Cauchy-Schwarz inequality, the covariance between f(w) and f(w) is also of order O(M/N);
therefore, Var(f(w)) = O(M/N) as well, and the theorem is proven.
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Proor or THEOREM 3. The proof of Theorem 3 is a consequence of the following general
lemma. Note that for the lemma, no assumptions whatsoever are required (independence,

stationarity, etc.) regarding the probability structure of the sample.

Lemma 3 Let § > 0 be an unknown parameter, and let Oy be an estimator of 0 based on a

sample of size N. Then, MSE(6;) < MSE(bx), where §}; = max(dy,0).
ProoF orF LEMMA 3. Note that
6% — 6] < |6y - 6] (18)

always. Indeed, either 97(, = 6y and equality holds in the above, or 6y < 0.?\_' = 0, in which case

|0 — 6] < |dn — 6]. Squaring and taking expectations in equation (18) proves the lemma.

Theorem 3 now follows from Lemma 3, by making the obvious identification § = f(w),

by = fh(w), and 97(, = A,T(w).

Proor or THEOREM 4. Note that since N — oo, we can assume without loss of generality

that ¥ > M. Recall from the proof of Theorem 2 that
Bias(fy(w)) = A1 + Ay + As

where A, is of order O(1/N) (see the proof of Theorem 2), and now Az = 0, since it is assumed
that R(s) = 0, for |s| > m. The term A; now can be written as

t= T (E-1) e =k 3 (A -1) R

LT or M ©T T o M ’

s=—N-+1 s=—-m

where again it was used that R(s) = 0, for |s| > m. But A($) = 1 for |s| < 7, and since it is
assumed that 7 > m, it follows that 4, = 0. _

Putting it all together, it is seen that Bias(fy(w)) = O(1/N). Now Var(fy(w)) =
O(M/N) = O(1/N) by Theorem 2 and the assumption that M is a constant. Hence, equa-
tion (16) follows. To complete the proof of the theorem, note that equation (17) follows from

equation (16) and Theorem 3.
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CAPTIONS FOR FIGURES.
FIGURE 1. True spectral density (the most peaked curve), a smoothed esti-
mate (middle line), and an oversmoothed estimate.
FIGURE 2. The lag-window :\(—151—) for different values of the ratio m/M.
(a) Case m << M/2.
(b) Case m >> M/2.
(c) Case m = M/2.
FIGURE 3. The general trapezoidal lag-window A(5).
FIGURE 4. The spectral (Fejér) kernel Aq(w); case M = 40.

FIGURE 5. The spectral kernel A,(w); case M = 40.

FIGURE 6. The spectral (Dirichlet) kernel A, (w); case M = 40.
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