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Summary

In this article, some weak convergence results are developed for approximate sums of weakly
dependent stationary Hilbert space valued random variables in a triangular array setting. The
motivations for such results lies in understanding the weak convergence properties of estimators
which are smooth functionals of the empirical process. By regarding the empirical process as an
element of an appropriate Hilbert space, the asymptotic distributional properties can be deduced.
The results are designed to be strong enough to handle the study of estimators under the stationary
bootstrap resampling plan. In Politis and Romano (1991), a resampling procedure, called the
stationary bootstrap, is introduced as a means of calculating standard errors of estimators and
constructing confidence regions for parameters based on weakly dependent stationary observations.
The results derived here support the asymptotic validity of the stationary bootstrap method for a
broad class of estimators. In particular, the class of minimum distance estimators, whose robustness
properties have been well-established by Millar (1981, 1984), are shown to have a robustness of
validity in the sense that confidence intervals constructed by the stationary bootstrap method
based on such estimators are asymptotically valid even when the usual independence assumption

often used in robustness studies is seriously violated.

Some key words: Approximate confidence limit; Bootstrap; Differentiability; Hilbert space; Mini-

mum distance estimators; Stationary; Time Series.



1. INTRODUCTION

In this paper, some weak convergence results are proved for sums and approximate sums
of dependent Hilbert space valued random variables. Some motivation for the present work is
the following. Suppose 3,...,£, are observations from a real-valued stationary time series with
empirical distribution function F,,. Many estimators can be regarded as smooth functionals of the
empirical process Z, defined by Z,(-) = n'/2[F,(-)=F(-)], where F(-) is the cumulative distribution
function of £;. Hence, to understand the behavior of such estimators, it suffices to understand the
behavior of the empirical process. But, Z,(-) = n~Y/% Y, X;(-) itself is a normalized sum of
stationary processes, where X;(t) = 1(§ < t) — F(t). We will regard X; as elements of a certain
Hilbert space, so that the problem is reduced to studying the behavior of a sum of stationary
Hilbert space valued random variables. A very general class of estimators where this approach is
fruitful is the class of minimum distance estimators, where the distance is defined by a Hilbertian

norm.

A goal of this paper is to study the stationary bootstrap resampling method as a means of
constructing confidence intervals based on such estimators. The stationary bootstrap, introduced
in Politis and Romano (1991), is a variant of the moving blocks bootstrap developed by Kiinsch
(1989) and Liu and Singh (1992), and the blocks of blocks bootstrap developed by Politis and Ro-
mano (1992a,b). All these methods are designed to construct nonparametric confidence intervals in
the setting of stationary time series where even asymptotic distribution theory is often intractable.
Specifically, in order to approximate the distribution of 5n(§1,.. .,€n) — 0, we consider the dis-
tribution (conditional on the data &i,...,&,) of 0n(EF, . E5) — O,(Eq,...,En), Where &F,..., &5
is a new pseudo time series generated by the stationary resampling scheme. This algorithm is
presented more clearly later. For now, the motivating remark is that the behavior of this approx-
imating distribution can be deduced by studying the bootstrap empirical process Z; defined by
Zx(-) = nM2[EF*(.) — Fy()], where E¥ is the empirical distribution of £f,...,£;. Again, we are
led to considering the sum of stationary Hilbert space random variables, although in this case the
underlying stochastic mechanism changes with n and is in fact random because it depends on the

original data.

The above considerations motivate the need for the results presented in Section 2. In particular,
we develop simple conditions for tightness of a sum of statiorary Hilbert space valued random

variables in a triangular array setup. Tightness plus examination of finite dimensional projections
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allows one to deduce weak convergence results. The conditions presented in Theorem 2.1 are
particularly simple to apply because they do not involve a particular choice of basis and because
all that is required is a means of getting a handle on second order moments of the underlying

processes.

In Section 3, the weak convergence of the autocovariance estimator sequence is studied, by
regarding the sequence as a random element of the Hilbert space £2. The results are not crucial to

the later development and may be of independent interest.

In Section 4, we prove a bootstrap central limit theorem for the mean of i.i.d. Hilbert space
valued random variables. The point here is to show that the general results of Section 2 reduce to
a simple extension of bootstrap results for the mean in R¥. Moreover, it is hoped this will allow
the reader to understand the strategy in proving a bootstrap central limit theorem before tackling

the case when the observations are dependent.

The paper culminates in Section 5. Here, the stationary bootstrap resampling algorithm is
presented.‘ A general bootstrap central limit theorem is proved under relatively mild dependence
assumptions. The motivation for studying the empirical process and bootstrap empirical process is
elaborated to deduce asymptotic validity of bootstrap confidence intervals. Some effort is spent to
show how these results immediately imply asymptotic distributional results for minimum distance
estimators. Minimum distance estimators have been well-studied in Millar (1981, 1984), where a
certain robustness of these estimators is impressively demonstrated from a decision theoretic point
of view. In short, the efficiency of the estimators does not deteriorate if the underlying model is
misspecified. Our goal is to show that the stationary bootstrap method for constructing confidence
regions based on such estimators has a certain robustness of validity even in the sense that the

usual independence assumption imposed in robustness studies can be seriously violated.



2. BASIC THEOREM

Throughout, H denotes a separable Hilbert space with inner product (-,:) and norm || - |.
Equip H with the usual Borel o-field. A sequence of H-valued random variables Z,, converges
in distribution to Z if E[f(Z,)] — E[f(Z)] for all real-valued bounded continuous functions f.
Alternatively, in terms of probability distributions, a sequence of probability measures p, on H
converges weakly to p if [ fdu, — [ fdu for all real-valued bounded continuous functions f.
The basic theory of weak convergence of Hilbert space valued random variables may be found in

Parthasarathy (1967) and Bergstrom (1982).

Suppose Z takes values in H and has probability distribution g, so that u(F) is the probability
Z falls in E. If E(||Z||?) < oo, then the covariance operator of Z (or p) is a continuous, linear,

symmetric, positive operator S from H to H satisfying

(Sg,h) = / _(@.0) (e Bu(de) = B(Z,6)(Z,1).

Z has mean vector m € H if E({Z,h)) = (m,h) forall h € H.

Theorem 2.1. Let X,1,...,X,, be H-valued, stationary, mean zero random variables such
that E(||Xn;||?) < oo. Assume, for any integer k¥ > 1, (X, 1,...,Xnk), regarded as a random
element of H*, converges in distribution to (X1,..., Xx), say. Moreover, assume, E[(Xy,1, Xn k)] —

E[{X1,Xk)] as n — oo and

zimn_,oo'zn: E((Xn1, Xnx)) — f: E((X1, X3) < oo. (2.1)
k=1 k=1

Let Z, =n~Y/2¥" | X, ;. Then, Z, is weakly compact.

Proof. Fix a complete orthonormal basis for H, denoted by ey, €3, . ... Let ri(z) = Y52 v [(2, 7).
By Theorem 1.13 of Prokhorov (1956), it is sufficient to show limysup, E[r%,(Z,)] = 0. Moreover,
because r%,(z) monotonically decreases to 0 for every z, it is sufficient to show E[r%(Z,)] — 0 as

N,n — co. Now, E[r}(Z,)] = 3525 Ell{(Zn, 5)|?]. By stationarity,

E|<Zmej>]2 = E]<Xn,1aej>|2 + 22(1._ %)EKXTL,I’ej)<Xn,l+i7eJ')]'

=1

Summing over j yields for N = 1

E[(Z2)] = Bl Xl +2 Y1 = 2)B[(Xn, Xnpsil] —



o0}
B\ X1|* +2) ) E[(X1, X14)] = L < o0,

=1

by the assumptions. Hence, it suffices to show E[r3(Z,) — r3(Z.)] — L as N,n — oco. But,

N-1 n . N-1
E[r}(Zn) ~ rh(Zn)) = Y, El(Xn1,€)(Xn,€5)]+2) (1 - %) Y El(Xns e} Xn1tires)]-
ji=1 i=1 i=1

Hence, it suffices to show for every 7 and j,
E[(Xn1,ei){Xn1+i €i)] — E[(X1, 651 X144,€5)] (2.2)

as n — oo. To show this, first consider the case i = 0. By the continuous mapping theorem,

[(X#n,1,€;)|? converges in distribution to |(X1,e;)|? for every j. Hence,
limin foE|(Xn,1,¢5)° 2 E|(X1, €5)? (2.3)
for every j. But by assumption,

El[Xpal® = Y ElXna,e){Xn16)] = Y El(X1,e){X1,€;)] = E|| Xy|.
j=1 j=1

Hence, the inequality in (2.3) must be an equality for every j. To prove (2.2) for general ¢, by the
continuous mapping theorem, (X, 1 + X 14i,€;) converges in distribution to (X1 + X144,€;). By
the assumptions, E|| X1 + Xn 144> = E||X1 + X144]|2. Hence, the previous argument with i = 0
implies

E|<X'n,,1 + Xn,1+iae.7'>|2 - E|<X1 + X1+iae]')|2'

Expanding the square and applying the case ¢ = 0 (and noting X, 14; has the same distribution as

Xn1) yields (2.2).

Remark 2.1. The assumptions in Theorem 2.1 of the weak convergence of (X, 1,...,Xn ) for
each fixed k actually guaranteed the existence of a single limiting process X3, Xs,... that satisfies
the conditions of the theorem. So, there is no abuse of notation in the theorem>as stated. To see
why a single process satisfies the conditions, apply a variant of Kolmogorov’s Consistency Theorem,

such as Theorem 2, p.42 in Bergstrom (1982).

Remark 2.2. The proof shows the assumption of weak convergence of (X, 1,- - -, Xn k) to (X1, .-, Xi)l}
may be weakened; this condition may be deleted as long as (2.2) holds. In fact, the proof shows
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that, by assuming (2.2), only second order stationarity need be assumed. We have opted for a

cleaner result at the expense of slightly stronger assumptions.

Before writing down limit results, we recall some standard notation. For a stationary time
series X = {X,,n € Z*}, define Rosenblatt’s a-mixing coefficent by ax(j) = sups p|P(AB) —
P(A)P(B)|, where A and B vary over events in the o-fields generated by {X,,n < k} and {X,,,n >

J + k}, respectively. The sequence X is said to be a-mixing if ax(j) — 0 as j — oc.

Remark 2.3. The assumption } . E({X1,Xk)) < oo in Theorem 2.1 follows if the process
X1,X2,... is essentially bounded and has a-mixing coefficients ax(-) that satisfy 3 ja x(J) < oo.
Indeed, a basic inequality (3.1) of Dehling (1983) states (assuming ||X;|| < 1 almost surely) that
E({Xk, Xk+;)) < 10ax(j). Alternatively, if the process is only assumed to satisfy E(||X;]|2T°) < oo
for some & > 0, then a sufficient condition for 37, E({X1, X&) < 00 is 3 ;[ax(5)]*/C9) < co; see
(3.2) of Dehling (1983).

Remark 2.4, The assumptions in Theorem 2.1 yield, for any m,
m m
liMnco 3 E((Xn1, Xn i) = Y E((X1, X))

Hence, to prove condition (2.1) holds, it suffices to show, given any € > 0, there exists N so that

iMoo D |E((Xn1, Xn )l < €.

k=N
For example, if || X, 1|} <1 for all n, then a sufficient condition becomes
[o 0]
limy_oolimsup, oo Z an(j) =0, (2.4)
=N

where a,,(7) is the jth a-mixing coefficient of the sequence Xy, 1,Xn2,.... If E(||Xn1]|)**° < B <
oo for some & > 0, then a,(j) in (2.4) should be replaced by [ay,(5)]%/?+9).

In order to apply Theorem 1 to prove a limit result for Z,, the projections of Z,, must be
examined. But, (Zn,h) = n"Y2Y " (X, ;,h) is a sum of weakly dependent, stationary real-

i=1

valued random variables. Moreover, (Z,, k) has mean 0 and variance

El(Zu, W = Var(Xa, 1) 423 (1~ S)eov((Xat, ), (Knzgis ),

i=1



which by the assumptions of Theorem 1 tends to

0} = Var({(Xy,h)) + 2 Z cov({X1, hY, (X14i, h)). (2.5)

i=1

Hence, if anything, Z,, should tend weakly to Z, where Z is asymptotically Gaussian, mean 0, and

covariance operator S satisfying (Sh,h) = o2.

However, in order to conclude the limiting distribution of (Z,, k) is actually Gaussian, further
assumptions are required. Most of the existing Central Limit Theorems for the mean of weakly
dependent stationary real-valued random variables employ mixing conditions and moments assump-
tions. Moreover, there is a tradeoff between the mixing conditions and the moment assumptions
in the sense that if higher moments are assumed, the conditions on the mixing coeflicients can
be less stringent. In addition, the existing results are typically not stated for triangular arrays.
Some of the results that do apply to triangular arrays (e.g. Withers (1981)) assume too strong
mixing conditions that are not applicable when we discuss the stationary bootstrap. One could
easily adapt proofs of the asymptotic normality of sample means of weakly dependent real-valued
sequences of a-mixing variables (or other types of mixing) to sample means in a triangular array
setting. This could be accomplished by imposing conditions on a(j) = supra.(j), where a,(-) is
the mixing sequence corresponding to the nth row of the triangular array. The conditions imposed
on a(-) would then be such that asymptotic normality holds for the sample mean of a dependent
sequence with mixing coefficients a(-). Unfortunately, taking such an approach would not be useful
when we study the stationary bootstrap because, in essence, we will be studying triangular arrays
satisfying suppan(j) = 1 for every j. For now, appealing to Corollary 1 of Withers (1975) does
yield the following useful result.

Theorem 2.2. Assume the X, ; satisfy the conditions of Theorem 2.1, and the nth row of
variables X, 1, Xn 2, ... has a-mixing coefficients denoted by a,(-). Assume, for all n, || X, 1]| < B

with probability one, and
J
> an(i) <Kj”
i=1

for all 1 < j < n and n and some r < 3/2. Then, Z, converges weakly to Z, where Z is Gaussian

with mean 0 and covariance operator § satisfying (Sh,h) = o2, and o2 is given by (2.5).

In the special case when the X, ; = X; form a stationary sequence, the following is true.
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Theorem 2.3. Assume X, Xs,... is a stationary sequence of H-valued random variables with

mean m and mixing sequence ax(-). Let Z, = n"1/2 ¥ " (X; —m).

(1)- ¥ E(||X1]]>*%) < oo for some & > 0 and Y- ;[ex(5)]*/+® < oo, then Z, converges weakly to
a Gaussian measure with mean 0 and covariance operator § satisfying (Sh,h) = o2, where o2 is

given by (2.5).

(ii). If the X; are essentially bounded and 3 jax(j) < oo, then Z, converges weakly to a Gaussian

measure with mean 0 and covariance operator S.

Proof. Tightness follows in each case by Theorem 2.1 and Remark 2.3. The convergence of
finite dimensional distributions follows, for example, from Corollary 8 of Carlstein (1986) under

assumptions (i) and Corollary 9 of Carlstein (1986) under assumptions (ii).

Remark 2.5. Almost sure invariance principles for partial sums of H-valued stationary random
variables have been obtained by Dehling and Philipp (1982) and Dehling (1983). While these results

are stronger than our Theorem 2.3, they depend on heavier assumptions on the mixing sequence

ax()



3. The AUTOCOVARIANCE ESTIMATOR SEQUENCE.

In this section, a limit result is derived for the estimates of autocovariance. Specifically, assume
&1, ...,&, are real-valued observations from a stationary sequence with mean 0, mixing sequence
o¢(+), and autocovariance R(j) = E(£1614;). Let Rp(j) = n 1 N tibiyjfor0 < j <m—1
and R,(j) = 0 otherwise. Let w = (wp,wy,...) satisfy w; > 0 and Y w; = 1. Let Z,(j) =
n'/%(R.(5) — R(4)) and regard Z, as a random element of ¢*(w), the Hilbert space of sequences

z = (zg,21,...) satisfying ¥, 2 w; < o0.

In the following theorem, a limit result is derived for Z,. Typical text book limit theorems
for the autocovariance estimators give the limiting joint distribution of the first d estimates of
autocovariance, where d is fixed as n — co. Moreover, it is usually assumed the underlying process
is linear. Here, we derive a limit result for the entire estimator sequence under minimal depen-
dence assumptions. However, in the theorem below, it is assumed the observations are essentially
bounded. This can be weakened to assuming the process has four moments at the expense of

stronger dependence assumptions. The proof would be essentially the same.

Let k4(s,r,v) denote the fourth joint cumulant of the distribution of (£;,&j+r,Ejtsr Ejtrtstv)s
see (5.3.19) of Priestley (1981).

Theorem 3.1. Assume [¢;] < 1, 3, a¢(j) < 00, and 3 w;5°R*(j) < co. Then, Z, converges

weakly to Z, where Z is Gaussian with mean 0 and

E[Z(1)Z(j))= ) [R(m)R(m+ j—i)+ R(m+ j)R(m — i) + Ks(m,i,j - 1)]. (3.1)

m=-oo
Remark 3.1. The condition ) ; w;j2R?(j) < oo follows from 37, e¢(j) < 00 and }=; jw; < oo.

Proof of Theorem 3.1. The proof of tightness may be based on Theorem 2.1; however, we
argue Z, is tight from direct considerations. Let e; € £2(w) be the basis vector with 1 in the jth
component and 0 elsewhere. The tightness condition we must verify is
00
BmNoosupan Y wiB[Ra(5) - R()I* = 0.
i=N
First note ER,(j) = (1 — £)R(j). Hence,

limysupnn Z wilERu(5) — R())? = limnsup,n™! Z w;j?R*(§) =0
j=N j=N



by assumptions. So, it suffices to show

limysupnn Z w;Var[Ra(5)] = 0. (3.2)
j=N

Now, by (5.3.21) of Priestley (1981),

n—j—1

coolBai), Ba(] =0 S (1- LA,
m=-—(n—i)+1 n
[R(m)R(m+ § — i) + R(m + )R(m — i) + ka(m i, — i), (3.3)

where n(m)=mifm >0, p(m)=-m~-(j-9)if —(n—-9)+1<m< —(j—1)and p(m) =0

otherwise. In the case : = j,

k4(m, §,0) = E(o€iéméiem) — E(£0&i)E(bmbm+i) — E(bobm)E(€i€m+i) — E(6o&m+i)E(Eilm)-

By repeated use of the inequality |E(&;€x)| < 4aelk—il), it follows that |x4(m, 7,0)| < 12a¢(|m—j])
if m > 0, and |k4(m, j,0)| < 12a¢(}m + j|) if m < 0. Hence,

n—j—1 0 n—1 oo
Y ma(m0l < ) 120¢(Im+ )+ ) 12a(Im — j]) <487 ac(d).
m=—(n—j)+1 m=-n+1 m=1 =0

The other terms in (3.3) are even easier to bound. Therefore, Var[R,(j)] < C/n, for some C <
oo independent of j. Consequently, (3.2) is true and tightness is proved. To handle the finite
dimensional distributions, simple observe that, for fixed j, n/(n — 7) - Rn(j) is an average (n —
)L (Eikir s — R(G)) of stationary weakly dependent mean 0 random variables. Moreover, the

mixing coefficient of the sequence (&1&1+;,&2€2+j, - - -) satisfies a(k) < ag(maz(0,k — 7)) so that

> a(k) < jag(0)+ Y ag(k - 5) < oo
k=0 k=j

Hence, by Corollary 9 of Carlstein (1986), Rn( j) is asymptotically normal; the covariance calcula-
tion (3.1) follows from (3.3).
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4. TRIANGULAR ARRAYS IN THE I.1.D. CASE

In this section, we apply the results in the Section 2 to triangular arrays of i.i.d. Hilbert space
valued variables. The results are clean generalizations of well-known results for the real-valued
case. The real purpose of this section, however, is to develop a bootstrap limit theorem in the
Hilbert space setting without dealing with the complication of dependence among the observations.

Having understood this situation, the case of dependent data will be studied in the next section.

Theorem 4.1. Let X, 1,..., X, , be independent, identically distributed H-valued random vari-
ables with common distribution g, having mean 0 and E||X,1]|? < co. Suppose u, converges
weakly to p and E|| X, 1]/ — E||X||? < oo, where X has distribution . Let Z, = n~*2 Y7 | X, ;.
Then, Z,, converges weakly to the normal distribution on H having mean 0 and covariance operator

S, where § is the covariance operator of .

Proof. The assumptions of Theorem 2.1 clearly hold. The finite-dimensional distributions converge
appropriately because Theorem 4.1 is well-known in the case H is the real line; indeed, a direct

verification of Lindeberg’s condition is possible.

In the case Xy, X3, ...is an i.i.d. sequence with mean m and covariance operator §, n1/2(X, —
m) converges weakly to the normal distribution with mean 0 and covariance operator S, where
X, =7, Xi/n. Next, a bootstrap central limit theorem is proved, generalizing Theorem 2.1 of
Bickel and Freedman (1981).

Theorem 4.2. Suppose X7, X3, ... are independent and identically distributed H-valued random
variables with common distribution g such that E[}X;f|* < oco. Conditional on Xj,..., X, let
X{,..., X, be independent and identically distributed according the fn, where fi, is the empirical
measure: fn(E) = n 'Y 1(X; € E). Let X, = 30, Xi/n and X = 37" X7 Then,
along almost all sample sequences X1, Xs,..., given (X1,...,X,), the conditional distribution of
nl/2(X* — X,,) converges weakly to the normal distribution on H having mean 0 and covariance

operator S, where S is the covariance operator of X — m when X has distribution p.

Proof. By Theorem 2.1, it suffices to show ji,, converges weakly to u with probability one, X, —
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E(X,) with probability one, and
l n
E(IIXT - Xal?1X1, -, Xn) = 270 ) 1 = Xaf?
=1

converges to E(||X1—m||?) with probability one, where m is the mean of X;. The weak convergence
of the empirical measure fi, to g with probability one holds for general metric spaces by a result
of Varadarajan (1958). The assumptions imply n'/?(X, — m) is asymptotically Gaussian; hence,
X, — m in probability. By Theorem 3.1 of DeAcosta (1981), X,, — m with probability one as
well. Finally,

n n

n Y X = Xl =07 YO NIX - ml? 4 (| X -
i=1

=1
By the strong law, n~/2 Y7 || X; — m||? — E(||X1 — m||?) with probability one. The result

follows.
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5. THE STATIONARY BOOTSTRAP

5.1. The stationary resampling algorithm.

Suppose {X,j € Z} is a strictly stationary and weakly dependent time series, where the X
may take values in an arbitrary space S. In the mathematical theory developed in this section, S
will be a separable Hilbert space H, but the stationary resampling scheme applies more generally.
Let Py be the marginal distribution of X;. Interest focuses on a parameter T'(F), where T is some
functional of Py. The case where T is a functional of the m-dimensional marginal distribution of
(X1,-++,Xm) can also be considered by a simple reduction to the previous case; just consider a new
series Y; defined by Y; = (Xj,..., Xiym-1)- Given data Xj,--- X, the goal is to make inferences
about T(P,) based on the estimator T, = T(P,), where P, is the empirical measure constructed
from Xy,---,X,. In particular, we are interested in constructing a confidence region for T'(Pp)
or constructing an estimate of the standard error of the estimator 7). Typically, an estimate of
the sampling distribution of T}, is required, and the stationary bootstrap method proposed here
is developed for this purpose. This resampling algorithm is similar to that of Kiinsch (1989) and
Liu and Singh (1992), and has been introduced in Politis and Romano (1991). In general, we are
led to considering a “root” or an approximate pivot R, = R,(X1,---,X,;T(F)), which is just
some functional depending on the data and possibly on T(FP,) as well. For example, R, might
be of the form R, = T, — T(F,), or possibly a studentized version. The idea is that is the true
sampling distribution of R,, were known, probability statements about R,, could be inverted to yield
confidence statements about T'(Fp). The stationary bootstrap is a method that can be applied to

approximate the distribution of R,.

To describe the algorithm, let
Bip = {Xi, Xig1, -+, Xigp-1} (5.1)

be the block consisting of b observations starting from X;. In the case j > n, X is defined to be X,
where ¢ = j (mod n) and Xy = X,,. Let p be a fixed number in [0, 1]. Independént of X1,-+, X,
let Ly, Ls,--- be a sequence of independent and identically distributed random variables having
the geometric distribution, so that the probability of the event {L; = m} is (1 — p)™ 1p for
m = 1,2,--.. Independent of the X; and the L;, let I1,I5,--- be a sequence of independent and
identically distributed variables which have the discrete uniform distribution on {1,---,n}. Now,

a pseudo time series X7, --, X is generated in the following way. Sample a sequence of blocks of
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random length by the prescription By, 1,,Br,,L,, -+ The first L1 observations in the pseudo time
series X{,---, X are determined by the first block By, 1, of observations Xp,,---,Xp,4+1,-1, the
next L, observations in the pseudo time series are the observations in the second sampled block
By, 1,, namely Xp, -, Xr,41,-1. Of course, this process is stopped once n observations in the
pseudo time series have been generated (though it is clear that the resampling method allows for

time series of arbitrary length to be generated).

Once X{,- -, X has been generated, one can compute R,(X{,- -, X; T,) for the pseudo time
series. The conditional distribution of R, (X7, -+, X Ty) given Xy, - -+, X, is the stationary boot-
strap approximation to the true (unconditional) sampling distribution of R,(Xi,:--, Xy, T(Fo)).
By repeatedly resampling and simulating a large number B of pseudo time series in the exact same
manner, the true distribution of R,(Xy,---,Xn;T(Pp)) can be approximated by the empirical
distribution of the B numbers R, (X7, -, X% Ty).

An alternative and perhaps simpler description of the resampling algorithm is the following.
Let X{ be picked at random from the original » observations, so that X; = X ,. With probability p,
let X be picked at random from the original n observations; with probability 1 —p, let X5 = X1, 41
so that X5 would be the “next” observation in the original time series following X,. In general,
given that X} is determined by the Jth observation X; in the original time series, let X[ ; be
equal to Xy, with probability 1 — p and picked at random from the original » observations with
probability p. This description makes it clear that, conditional on Xy,...,X,, the new process

X{,..., X is indeed stationary.

In anticipation of asymptotic results, the parameter p used in the above construction of the

resampling scheme will depend on n and be denoted p,.

Denote by é,,(k) the mixing sequence associated with the series X, XJ,--- based on the
parameter p,. Let us be clear that the probabilities required in calculating &, (k) are conditional

on X1, --,X,. Specifically,
dn(k) = supa g |P(AB| X1, -, Xyn) — P(A| X1, -+, Xn)P(B| X1, -, Xn)|,

where A and B are events in the o-fields generated by {X*,7 < j} and {X*,7 > j + k}. The
following proposition is fundamental. Note in particular that a bound for &,(k) is obtained which

does not depend on the actual sequence X1, --X,.

Proposition 5.1. Conditional on X3, - -+, Xy, the pseudo time series X7, X3, .-+, X is stationary.
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Moreover, &, (k) < 4(1 — p,)*.

5.2. The bootstrap central limit theorem.

The main theorem of this paper is the following. In the theorem, it is assumed that the X; are
essentially bounded. Asin Theorem 2.3, this can easily be weakened, but the case where the X; are
essentially bounded will suffice for our purposes. Indeed, in the statistical applications motivating

the problem, the X; actually represent empirical distribution functions.

Theorem 5.1. Let Xj,..., X, be a stationary sequence of H-valued random variables with mean
m and mixing sequence ax(-). Assume the X; are essentially bounded and }°; ax(j) < co. Let
X, =n713" | X; and Z, = n'/?(X, — m); also, let L(Z,) denote the law of Z,. Conditional
on Xy,...,X,, let X7,..., X} be generated according to the stationary resampling scheme with
P = pn, satisfying p, — 0 and np2 — oo as n — oo. The bootstrap approximation to L(Z,) is the
distribution, conditional on Xj,. .., X,, of Z}, where Z;} = n'/?(X:—X,)and X} = n~1 31 | X7,
denote this distribution by L(Z%|X,...,X,). Then,

p(L(Zn), L(Z2) X1, - .., X)) — O

in probability, where p is any metric metrizing weak convergence on H.

Proof. Assume without loss of generality that m = 0. Observe that, conditional on X3, X»,..., the
variables X{,..., X are really part of a triangular array of variables; as such, they should perhaps
be called X ,,..., X in keeping with the notation of Theorem 2.1. However, this notation is

not used without risk of confusion.

By Theorem 2.3(ii), Z,, converges weakly to the law of Z, denoted L(Z), where Z is a Gaussian
H-valued random variable with mean 0 and E({Z,h))? = o2, where o2 is given by (2.5). Consider,

for any i € H, the projection
(Z;:’h> = n_1/2 Z[(Xz*7h> - (Xnah)],
i=1

a normalized sum of weakly dependent real-valued stationary random vari;'i,bles. In Politis and
Romano (1991), the stationary bootstrap approximation for means is shown to be valid under our
conditions. Specifically, the bootstrap approximation, L{{Z}, h)| X1, ..., X,), to the distribution of
n~2[(X,, ) — (m, k)] satisfies
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in probability, where p; is any metric metrizing weak convergence of probability measures on the

real line.

We now consider the issue of tightness of the distribution of Z; (conditional on Xj,...,X,)
by appealing to Theorem 2.1. Of course, the variables in Theorem 2.1 are centered to have mean
0, so that the triangular array of variables we really consider is X; — X,,,..., X — X,,. Note that
X, — 0 almost surely under the assumed mixing conditions. So, depending on the condition in

Theorem 2.1 we need to verify, we may not need to worry about recentering.

First, note that for any fixed k¥ > 1, the conditional distribution of (X¥,..., X)) converges
weakly to the distribution of (Xi,...,X,) for almost all sample sequences X3, X2,.... To see
why, let Fn,k be the empirical distribution of the (n — k + 1) H k_valued random variables B; =
(X, Xig1y. -y Xigg—1) for 1 < i < n—k+1. Then, it is easy to see that the conditional distribution
of (X7,..., X)) is equal to (1 — en)ﬁ’n,k + €, Ry, k, Where

k-1
€n = (1~ —=)(1—pa)"".
To see why, X is X with probability 1/n, where I is chosen at random from 1,...,7n. Then, given
I<n—k+1and X5 = Xr, (X$,..-,X}) = (X1, X141, -, X 146-1) With probability (1 — p,)*~1.
Since, p, — 0 and k is fixed here, €, — 0 as n — 00. So, it suffices to show I:‘n,k converges weakly
to the distribution of (Xl,...',Xk) for almost all sample sequences X7, X3,.... But, for fixed
k, Bi,...,B,_ry1 is a stationary sequence of H*-valued random variables with mixing sequence
tending to 0. Hence (by applying the Ergodic theorem or the inequalities of Roussas and Ioannides
(1987) which hold under the mixing assumptions of our theorem), if E is any (measurable) subset

of H*,

n—k+1
Fow(B)=(n—k+1)" E 1(B; € E) = Fy(E) = P((Xy,...,Xi) € E)

almost surely. Of course, the exceptional set where this fails may depend on F, but the above
holds for all E in some countable collection of sets, and the set where it does not hold for all F in
such a countable collection has probability zero. In particular, consider all sets E which are finite
intersections of spheres centered at z and radius r, where z varies over a sense subset of H* and r
is rational. By the separability of H* and Corollary 1 of Billingsley (1968, p.29), this entails the

weak convergence of F’n,k to F for almost all sample sequences X3, Xs, .. ..

Second, in order to invoke Theorem 2.1, we show

E*[(XT, X)) — E[(X1, Xx)] (5.2)
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with probability one, where the starred expectation denotes expectation conditional on X1,..., X,,.
Now, recall Ly in the construction of the stationary resampling scheme. Also, with n fixed, let X

for j > n be defined to be X;_p. Set

Rop=n"" n_zkfl(Xj = X0)( Xtk — Xn)-
=1
Then,
E*((XT,X5)) = E*((X{, XQ)| L1 > k)P(Ly > k) + E*((X{, XQ)| L1 < k)P(L1 < k)
=n"" zn:XjXHk—l(l =) T+ X0 - (1 - pa)* Y (5.3)
j=1
So, J

E*((X7 = X, X = X)) = 07 (1= 2a)* 7 ) (X = Xu)(Xjk-1 — Xn)
i=1

= (1 - p’n)k_l(Rn,k—l + Rn,n—k+1)-
For fixed &, |Rnn_ks1] < k/n — 0, and (1 — pp)*~1 — 1. Also, Rp 1 — Rx_1 = E({X1, X))

almost surely, because (X1, Xj), (X2, Xk+2),. .. is a stationary strong mixing sequence. Therefore,

the convergence (5.2) holds almost surely.

Finally, to show tightness of Z* for almost all sample sequences, it would suffice to show
limnoo D E*((X7 = Xn, X; = Xa)) = Y Riy (5.4)
k=1 k=1
almost surely. We now show this convergence at least holds in probability. First, note that
n
> (1-pa)1XE -0
k=1

in probability, because nX2 is tight and
n ) (1= pa) < (np) ™ 5 0
k=1

by assumption on p. This observation, in conjunction with (5.3), shows that (5.4) holds in proba-

bility provided

n

> (1= 2n)*H(Crpt1 + Crjnk1) = Y Bioa, (5.5)

k=1 k=1



17

where Cp, = n™} E;:lk"'l(Xj,XHk_l). The left side of (5.5) has mean

Zn:(l —pa)* (1 - %)Rk—l + %Rn—k+1)- (5.6)
k=1

It is easy to see the first term in (5.6) tends to Y, Rk—1, so it suffices to show the second term is

negligible. But, the second term can be rewritten (by letting j = n — k 4 1) as
Z(l — )" (n -7+ 1Ri/n < Z(l ~ )" R;/n.

This, in turn can be rewritten as

J n
> (1-pn)""Ri/n+ Y Rj/n.

j=1 j=J+1
For fixed €, J could be chosen to make the second term less than e¢. Then, for fixed J, the first
term tends to zero because (1 — p,)*~# < (1 —pn)"~7 — 0.if np, — o0, which holds under the
assumptions. So, to show (5.4) holds in probability, it suffices to show the variance of the left hand

side of (5.5) tends to 0; that is, we must show

n—1

var(z bpxCn i) — 0,

k=0

where by, , = (1 — p¥) + (1 - p, )" *. Now,

n—1 n-1n-1
’l)aT(Z bn,kCn,k) = Z Z bn,kbn,jcov(Cn,k, Cn,j) (5.7)
k=0 k=0 j=0
and
n—j n—j i+j
n*var(Cry) = D var((Xi, Xig ) + 2 Y cov({Xi, Xigs), (X0 X145))+
i=1 i=1 l=i+1
n—j n—j

237 3 cov({Xi, Xigg)y (X1, Xigj))- (5.8)

i=1 I=itj4+1

But,fori <1< i+7,
leov({Xi, Xt ), (X1, X))l = |E({Xis Xy 5( X1, Xi150)) - E*((Xi, Xt 5))| < 10ax(1-3)+100% (5)
by repeated use of Dehling’s inequality. Similarly, if [ > i + 7,

lcov((Xs, Xit ), (X1, Xig5))] < 10ex (1 - = §) + 100a%(5).
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Substituting into (5.8) and calling B = Y, ax (%) yields
var(Cn ;) < n (1 + 40B + 40050%(5)).

But, the summability assumption and monotonicity of the ax(:) sequence implies jox(j) — 0
as j — oo. (To appreciate why, think of the ax(-) sequence as tail probabilities P(X > j7) for
some nonnegative, integrable random variable Z; then, a variant of Chebychev’s inequality implies
JP(Z > j) — 0 as j — 00.) Hence, there is a constant D independent of n and j (which depends
only on the ax(-) sequence) such that var(C, ;) < D/n. Hence, applying Cauchy-Schwarz to (5.7)

results in ine1
n—1n—
var(z bn o k) < Dn~ -1 Z an kan = O((npn) 1) -0
k=0 j=0
as 1 — O0.

Now, because the convergence (5.4) has been shown to hold in probability and not almost
surely, we cannot deduce tightness of Z for almost all sample sequences. However, given any
subsequence n;, there exists a further subsequence n;, such that the convergence in (5.4) holds

almost surely along this subsequence. This implies Z;;‘jk is tight for almost all sample sequences.

Now, to show p(L(Z}|X1,...,Xn),Z) — 0 in probability, it suffices to show that given any
subsequence n;, there exists a further subsequence where this convergence holds almost surely.
But, by the above, there exists a further subsequence such that Z;:jk is tight with probability one.

Moreover, if necessary, we could extract yet a further subsequence Ty, satisfying

p(L({Zz;, )X, Xy, ), L((Z,5))) — O

almost surely. In fact, the exceptional set can be taken so this holds for all A in a countable
dense subset of H. But, tightness and convergence of a dense subset of projections entails weak
convergence. Thus,

p(L(Z;‘;J_k‘ | X1, X0n), I(Z))— 0
almost surely, and the result now follows.
5.3. Confidence limits for stationary time series.

By assuming the X; take values in H = R, the previous results imply a bootstrap central

limit theorem for a multivariate mean. Using standard delta method arguments, this implies a
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bootstrap central limit theorem for estimators that are smooth functions of means; see Section
4.2 of Politis and Romano (1991). Hence, immediate applications lie in the construction of joint
confidence bands for the first £ autocorrelations of the time series. Below, we focus on differentiable

functionals.

Let &,...,&, be real-valued observations from a stationary time series with mixing sequence
ag(-). Let F be the marginal cumulative distribution function (cdf) of £;. Interest now focuses on
some functional T'(-) of F, as F varies in some class F. (The case where interest focuses on some
functional of (£1,...,&,) with m fixed can be handled similarly.) Let F}, be the empirical distri-
bution of &1,...,&,. Let &F,...,&; be generated according to the stationary bootstrap resampling

scheme, with empirical cdf F*.

We will regard F,, — F and F* — F, as elements of a certain Hilbert space, namely H = L2(v),
where v is a sigma finite measure on the real line. The case where v is only assumed sigma finite
can be handled as long as a further assumption on the tails of these distributions is made as in
(2.9) of Millar (1981). Specifically, the added assumption is that, for all F € F, [ F(1 - F)dv < co.
(To see why, E||F, — F||? < co implies F}, — F is square integrable against v with probability one.)

Assume T is Fréchet differentiable in the sense that, for fixed F, and as G varies in F,
T(G)-T(F) = (¢,G~ F) + o(||G - FI|)

as ||G — F|| — 0, where (-,-) is the L?(v) inner product and ¥ € L%(v).

Corollary 5.1. Under the above setup, assume Y, a¢(k) < 00, np2 — o0, and p, — 0. Let L,
be the -(true) distribution function of n'/2(T(F,,) — T(F)), and let L,, be the distribution function
(conditional on &1, ...,&,) of nt/2(T(Ey) — T(F,)). Then, py(Ln, Ly,) — 0 in probability, where p;
is any metric metrizing weak convergence of distribution functions on the real line. Moreover, L,
converges weakly to a Gaussian distribution with mean 0 and variance afp, where ai is given by

(2.5) with X;(-) = 1(¢; < -). Let
én(l=a)=inf{t: L,(t) >1-a}.

Then, _
Prob{n}/2[T(Fp) - T(F) < én(1-0a)} = 1-a

as n — oo; in other words, the asymptotic coverage of the interval (T(F},) — n™1/2¢,(1 — a), ) is

1-a.
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Proof. Apply Theorem 5.1 with X;(¢) = 1(§; < t). The rest of the argument is then routine.

5.4. Minimum distance estimation. An important class of estimators that satisfy the assump-
tions imposed in subsection 5.3 is the class of minimum distance estimators, where the distance is
defined by a Hilbertian norm. To define the estimators, let {Fy,0 € O} be a parametric family of
distribution functions on the line, indexed by ©, an open subset of R2. Given data &,...,§, with

empirical cdf F,, let 6,, satisfy
infol|Fo — Fuoll = || Fy, — Full;

here, ||-{|is a certain Hilbertian norm. For now, we do not dwell on issues of existence or uniqueness
of 8,,. The statistical problem is to estimate 8 based on some assumed parametric model for the
distribution of the &;. Of course, if the true distribution F’ is not in the parametric family, we are led
to estimating a certain minimum distance functional ( F’). The properties of these estimators have
been systematically developed in Millar (1981, 1984). By taking an appropriate decision theoretic
point of view, Millar has established desirable robustness properties of such minimum distance
estimators. In short, the efficiency of minimum distance estimators does not break down if the

model is not correctly specified.

While the kinds of contamination of the data considered by Millar is quite large (and is de-
scribed in terms of Hilbertian neighborhoods of the parametric family), the assumption of inde-
pendence is not questioned. The goal here then is to show that confidence intervals resulting from
minimum distance estimators have a certain robustness of validity. That is, confidence intervals
constructed by the stationary resampling scheme are asymptotically valid when the data are sta-
tionary and weakly dependent. In summary, a statistician using such minimum distance estimators

has guarded against both a misspecified model and a certain lack of independence in the data.

Rather than repeat the asymptotic arguments presented in Millar for the i.i.d. case, we sum-
marize the key assumptions needed to reduce the problem to one of studying the empirical process.
In this way, it is clear that the key mathematical results needed to extend the distributional results

of Millar’s to the stationary case are already developed in Theorem 5.1 and Corollary 5.1.

Here, we only consider the case d = 1 for simplicity, though our Corollary 5.1 is strong enough
to handle more general situations. Assume the identifiability hypothesis: if || Fy, — Fy|| — 0, then

0, — 6. Assume the differentiability hypothesis: there exists a real-valued function 5 of a real
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variable such that € L%(v) and
|| Fs — Fa, — (6 — 6o)nll = o(]6])

as 6 — Oy. As before, let Z,(-) = nl/2[F,(-) — F(-)], where F is the true marginal distribution

function of &. Then, the asymptotic arguments presented in Millar show that
n'/2(8, — 6) = (Zn,n)/|In|l* + 0p(1); (5.9)
see (2.8) of Millar (1981) or (2.11) of Millar (1984). Similarly, one can argue that
'/ (85 — bn) = (Zy, m)/lInll?,

where Z* is the corresponding stationary bootstrap process. By Corollary 5.1, both Z, and Z;
behave asymptotically like Z, an L%(v)-valued mean 0, Gaussian random variable with the same
covariance structure. It follows that the stationary bootstrap approximation to the sampling distri-
bution of nl/ Z(én — ) is asymptotically valid and confidence intervals based on this approximation
are asymptotically of the nominal level. (In actuality, a slight generalization of Theorem 5.1 and
Corollary 5.1 is required to handle the case that F falls outside of the parametric model; in partic-
ular, one should prove the analogous results when the underlying distribution is perhaps changing
with n. This would require no major change in the proofs of these results. In our robustness prob-
lem here, it would enable us to consider the behavior of the estimator and bootstrap counterpart

when the underlying distribution falls in some shrinking neighborhood of the fixed model.)

The expansion (5.9) allows us to identify the so-called influence function of the estimator. First,
specialize further to the case of a location model where Fy(t) = Fo(t — 8), the most well-studied
model in the robustness literature. Assume Fp has a density f with respect to Lebesgue measure.
Under weak conditions, 7(t) = — f(t). Then (see section (3B) of Millar (1981)), b, =n"1 S IC(E),
where IC(t) = b[G(t)—¢], f G(t) = fioo f(s)v(ds), c = [ G(t)Fo(dt) and b~ = [ f2(t)v(dt). Thus,
if v is a finite measure, the influence curve IC(-) is monotone and bounded. If v is nonatomic, then
IC(+) is continuous. Also, if v and f are symmetric about 0, then IC(-) is odd. By varying the choice
of v, Millar (1981) has shown that one can recover the influence curves of famous estimators, such
as the class of trimmed means or the Hodges-Lehmann estimator. Thus, even in this specialized
model, our asymptotic justification of the stationary bootstrap method applies to a broad range of

estimators.

In summary, in order to deduce asymptotic distributional properties of minimum distance es-

timators defined by a Hilbertian norm, it is necessary to develop limit theorems for the empirical
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process. This has been accomplished in Theorem 5.1 for general H. Hence, for other choices of
Hilbertian norm considered in Millar (1984), the asymptotic distribution of the resulting estima-
tors can be be deduced even when the data are stationary. In the abstract setup considered by
Millar (1984), we have verified his convergence hypothesis (2.5) under the assumption the data
are stationary and weakly dependent for a large class of estimation problems. Thus, very similar
considerations allow us to deduce analogous results for other minimum distance procedures, such

as minimum chi-squared methods, minimum Hellinger methods, and other Hilbertian distances.
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