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Abstract

Suppose that X;,...,X, are i.i.d. ~ F, and we wish to test the null hypothesis

that F is a member of the parametric family F = {Fy(z); 6 € ©} where O C R’.

The classical Pearson-Fisher chi-square test involves partitioning the real axis into
O.

k cells Iy,. .., I, and forming the chi-square statistic X? = Sk, (—;f%’g—))z, where

O; is the number of observations falling into cell ¢ and 6 is the value of 6 minimizing
k (o,-_npagl)f . . . . . . .
Dzl Foll - We obtain a generalization of this test to any situation for which

there is available a nonparametric estimator ' of F for which n% (¥ — F) 2w
where W is a continuous zero mean Gaussian process satisfying a mild regularity
condition. We allow the cells to be data dependent. Essentially, we estimate 6
by the value § that minimizes a “distance” between the vectors (F(Iy), ..., F(I}))
and (Fy(I,),...,Fy(I;)), where distance is measured through an arbitrary positive
definite quadratic form, and then form a chi-square type test statistic based on the
difference between (F'(I3),...,F(I})) and (F3(L,),. .., F;(It)). We prove that this
test statistic has asymptotically a chi-square distribution with & — ¢ — 1 degrees of
freedom, and point out some errors in the literature on chi-square tests in survival
analysis. Our procedure is very general and applies to a number of well-known
models in survival analysis, such as right censoring and left truncation. We apply
our method to deal with questions of model selection in the problem of estimating
the distribution of the length of the incubation period of the AIDS virus using the
CDC'’s data on blood-transfusion related AIDS. Our analysis suggests some models
that seem to fit better than those used in the literature.

Keywords and phrases: goodness-of-fit test, Pearson-Fisher chi-square test, chi-squared
statistic, left truncation, right censoring, Aalen model.
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1 Introduction and Summary

Let Xi,...,X, bei.i.d. from a distribution function F'. To test the null hypothesis that F
is equal to a completely specified distribution function Fo, K. Pearson (1900) introduced
the now classical chi-square test, which involves partitioning the real line into & cells and
forming the chi-square statistic X% = % (O; — np;)?/np;, where O; is the number of
observations falling into cell ¢ and np; is the expected value of O; under the null hypothesis.
Pearson showed that for large n, the distribution of X2 is approximately chi-square with
k — 1 degrees of freedom. It is rare that one wants to test the null hypothesis that F
equals a completely specified Fy. The more common situation is that we wish to test the
null hypothesis Hy that F' is a member of a certain parametric family Fy, § € O, where
© is an open subset of RY. In this case, pi,...,pr (k > q) are functions of 8, the true
value of 4, and are no longer known. Fisher (1922, 1924) showed that if 6, is estimated by
the value minimizing 3% , (O; — np;(8))?/np:(6), then X? has, for large n, approximately
a chi-square distribution with £ — ¢ — 1 degrees of freedom. The estimate of 6, obtained
in this fashion is called the minimum chi-square estimator. It is important to note that
Fisher’s result is valid only if 6y is estimated by the minimum chi-square estimator (or
an estimator asymptotically equivalent to it). Chernoff and Lehmann (1954) observed
that if 0y is estimated by the more efficient maximum likelihood estimator based on the
whole sample, then the asymptotic distribution of X2 is that of 3F-¢~! Z2 4 f;kl_q N Z2,
where the Z,’s are independent from the normal distribution with mean 0 and standard
deviation 1, 0 < A; < 1, and the A;’s depend on the unknown 6y. Thus, use of the more
efficient maximum likelihood estimator enables us to “partially recoup” the ¢ lost degrees
of freedom. This is, however, at the cost of complicating the analysis since the limit
distribution is neither tabulated nor independent of 6.

Since Fisher’s (1922, 1924) papers, there has been sustained interest in the general
problem of testing goodness of fit of a parametric family, and in chi-square tests in particu-
lar, and in recent years much of this interest has focused on models arising in survival anal-
ysis which are more complicated than the one in which we observe Xi,..., X, iid.~ F.
The reason for this interest is that in many situations, there are physical reasons that in-
dicate specific parametric families. Exponential distributions arise in a very large number
of contexts; extreme value distributions arise frequently in reliability theory because they
are the limiting distributions of the lifelength of series or parallel systems with a large
number of identically distributed components. There are also cases where preliminary
nonparametric studies suggest a specific parametric model. If a goodness-of-fit test can
lead the investigator to accept a certain parametric model, then this can lead to statistical
procedures that are substantially more efficient than those based on nonparametric mod-
els. Moreover, the analysis is then more parsimonious and so easier to understand, and
can enable some inferences, for example about tail behavior, that are impossible under a
nonparametric model. See Miller (1983).

In survival analysis, the data are often not completely observed. For example, a
very common situation is that of right censoring, where for some values of I, X; is not
observed, but it is known only that X; > ¢; where ¢; is observed. In the expression for
X2, we therefore do not have access to O;. Suppose now that we have an estimator £ of



F with the property that, whether or not the parametric model holds, we have
VAP —F) 2w (1.1)

for some process W, where the convergence is in an appropriate Skorohod space. Let
I, ..., I denote the k cells in the partition of R and define

¢(8) = n'A(E (L) = pa(6),- ., F (L) — pr(0)) (1.2)

To assess the fit of the parametric family it is natural to take an estimator 0 of 6y and
consider the measure of discrepancy ¢ (é) If D(8) is a symmetric matrix, then one can
form the vector £(6) = D(0)¢(9) and estimate 8y by the parameter value minimizing the
quadratic form &'(0)£(0) = ¢'(0)D?*(0)¢(6). Such an estimator is called a minimum chi-
square estimator. The purpose of this paper is to show that some of the original ideas in
Fisher (1922, 1924) can be pushed through to obtain classes of chi-square goodness-of-fit
tests in a very general framework: We show that if

A (1.1) holds and W is a continuous Gaussian process such that
Cov(W(t1),...,W(tk-1)) is nonsingular whenever t; <ty < --- < tg_y, (1.3)

B Cov(W(t1),...,W(tx—1)) can be consistently estimated for all t; < t3 < - -+ < t§_1,

C 4 is the value of 6 minimizing ¢'(6)D?(0)¢(9), where D(8) is positive definite for all 8
and satisfies some mild regularity conditions (see Section 2.1)

then é(é) 4, N(0,X), where X is a nonnegative definite matrix of rank £ — ¢ — 1, and
which can be consistently estimated by an estimator . Let £! denote the Moore-Penrose
inverse of 3. We also show that &'()St¢() -2 Xh—qe1-

We observe that for the classical case considered by Pearson and Fisher, the diagonal
matrix D(8) = diag((pl(O))"%,. .. ,(pk(é?))‘%) has the property that D?(f) is a gener-
alized inverse of the limiting covariance matrix of {(fg) (i.e. the covariance matrix for
the multinomial distribution). In Section 2.3, we consider the natural special case where
D(6o) is the square root of a generalized inverse of the limiting covariance matrix of (o).

Our results apply to a fixed partition of R, or to a partition where the cell boundaries
are chosen as a function of the data. This gives rise to chi-square tests that are very easy
to use.

It is difficult to find examples which violate Condition (1.3) provided neither F' nor
Var(V) have flat spots (i.e. under simple and natural nondegeneracy conditions). In

Section 2 we show that (1.3) is satisfied whenever W has the form W £ (1 — F) .V where
V is a Gaussian martingale, a form intimately connected with Aalen’s multiplicative
intensity model. See Andersen and Borgan (1985) for a description and review. Here,
we will say only that this is an extremely important model which encompasses a very
wide range of situations arising in survival analysis, including quite general forms of
censoring (censoring by fixed constants, Type II censoring, and the important special case
of random censoring), random truncation models, and of course the i.i.d. setup described
earlier. These models are described and discussed in Section 3. There, we show that



in the special case where we observe i.i.d. observations from a distribution function F,
our test statistic reduces to the original Pearson-Fisher chi-square test statistic. For the
case where the data undergo Type II censoring, we obtain a test studied by Mihalko and
Moore (1980).

Hjort (1990) has also developed tests of goodness of fit of a parametric family in
the framework of the Aalen model. His approach involves hazard functions and their
cumulatives, and for the case where we observe i.i.d. observations Xi,...,X,, his tests
do not reduce to the classical Pearson-Fisher chi-square test. To describe his approach,
let Ag(t) = Fy(t)/Fo(t) be the hazard rate and Ag(t) = ffAg(s)ds be the cumulative
hazard rate. Let A™" be the standard Nelson-Aalen estimator of Ag,; this is a non-
parametric estimator which is valid whether or not the parametric model holds. Also let
A”‘"( ) = Jo Asj(s)ds, where § is the maximum likelihood estimate of 6. Hjort’s approach
involves comparing A™"°™ and AP*". More specifically he establishes, using the well-
developed theory of counting processes, that under the null hypothesis, for a large class
of weight functions K,, if H,(t) = [ Ky(s)d(Ame"sm — APem)(s), then H,(t ) converges
in distribution to some process H(t). Results of this sort are very often used to obtain

chi-square tests because of the difficulties in getting a handle on the distribution of the
process H(t). For the cells I, . .., Iy in the partition of ]R let AH,(I;) = [}, dH,(s). Then

the vector w = (AH,(l1),...,AH,(I})) satisfies w - N (0, R) where R is a possibly
singular matrix. Let Rbea con51stent estimate of R and R~ be a generalized inverse of
R. He proposes the test statistic w'R~w and shows that this has a limiting chi-square
distribution with degrees of freedom equal to the rank of R. Unfortunately, the rank of R
depends on the model under consideration and on the parametric family in question, and
so additional work is required for each new application. We point out that each weight
function gives rise to a chi-square test, and if we specialize Hjort’s results to the random
censorship model, then for a particular choice of K, the test is the same as one proposed
independently by Akritas (1988). We discuss Hjort’s paper further in Section 5, where we
also point out some errors in the literature. Qur approach is different from Hjort’s. We
take as our starting point any model for which Conditions A and B hold, and we produce
a test statistic which we show is asymptotically chi-square with number of degrees of
freedom always equal to k — ¢ — 1. This extends the applicability of the Pearson-Fisher
chi-square test while retaining its simplicity.

There is a large literature on goodness-of-fit tests in survival analysis. A recent review
is contained in Hollander and Pefia (1990).

The rest of the paper is organized as follows. Section 2 gives the statements of our
main results. In Section 3 we show how our test reproduces some tests already present in
the literature, and we apply our procedure to obtain chi-square tests for some well-known
models, including models with right-censored data and those with left-truncated data. In
Section 4 we apply our test to deal with some questions of model selection in the problem
of estimating the distribution of the length of the incubation period of the AIDS virus
using data on blood-transfusion related AIDS. We use our procedure to examine some
parametric assumptions made in the literature. Qur analysis suggests some parametric
models that appear to fit better. Section 5 gives proofs of our main theoretical results,
and discusses some problems that need to be addressed when establishing that a quadratic



form has an asymptotic chi-square distribution. In the Appendix we show that minimum
chi-square estimators satisfy the regularity conditions needed for our main results to hold.

2 The Generalized Pearson-Fisher y? Test
Assume that F'is a nonparametric estimator of F' satisfying
ni(F—F)-% W in D[e,M], (2.1)

where W is a continuous Gaussian process with zero mean, D[e, M] is the standard Sko-
rohod space on [e, M], and —o00 < € < M < oo (in survival analysis, € will usually be
greater than or equal to 0). We shall develop a chi-square statistic for testing the null
hypothesis and our statistic will be based on F and any estimator of fy asymptotically
equivalent to a minimum chi-square estimator. Note that g, the true value of 8, is of
course unknown; however, the limiting distribution of our test statistics will not depend
on the value of 6.

2.1 Notation and Assumptions

(n) (n)

For each n, let —c0o =y’ < a;’ < -+ < agn)
(n) —

that each cell boundary a;" = ai(ﬁ' ) is a functional of F and converges in probability to
a constant a;, where € < ay, ax_; < M. Let

pi(0) = Fo(a:) — Fy(ai-1) (2.2)

forall: =1,...,k and 8 € ©. We assume that p;(6) > 0 for all 8. Define the covariance
matrix

= oo be a partition of the real line such

(8, t) = Cov(W(ty),..., W(tr_1)) when F = Fj, (2.3)
and assume that
%W = %M (fy,a) is nonsingular. - (2.4)
This condition is weaker than (1.3), but is in fact all that we will need. Define
A (0) = Fo(al”) - Fy(ei2)) (25)
and . )
pi = F(a”) - Fal2y), (2:6)

and let p(8), p{™(6), and p denote the vectors corresponding to (2.2), (2.5), and (2.6).
(Note: We are assuming tacitly that F'(—oo) = 0 and that F'(co) = 1. If this is not the
case, then p; and pr must be defined as p; = F (a§")) and pr = 1 — F (a}cn_)l)). Denote
a=(ai,...,a4-1),a™ = (agn), - ,a@l)’ and let N(a) be a neighborhood of @ in R*~..
Assume that D(0,t) is a k£ x k symmetric matrix whose elements are (known) functions
of (6,t) on © x N(a) and satisfies the following regularity conditions

R1 D(:,") is continuous at (6o, a),



R2 D7!(,-) exists and is bounded on © x N(a),
R3 5(D*(0,t)) exists at every (4,t) € © xN(a) and 2(D?(9,¢)) is continuous at (o, a).
The choice of D(8,t) is discussed in Section 2.3.

We use D(6) and D,(f) to denote the matrices D(6,a) and D(8,a(™), respectively.

Define
Ca(0) =3 (p—p(6) and &,(6) = Du(0)¢,(0). (27)
We shall use €,,(f) to construct a statistic to test the null hypothesis.

There are two important special cases in the above framework. When fixed cells are
used (i.e. the az(")’s are independent of the data), then the p;’s are random quantities while
the pgn)’s are deterministic. This is the standard setup used in the classical Pearson test.
It is usually more useful to take the quantiles of F" as cell boundaries. In this case, the
pi’s are deterministic quantities while the p,(-n)’s depend on the sample. One can show that
() £ F~1(u) for each u € (F~(e), F~(M)), if (2.1) holds. (Doss and Gill (1990)
give a stronger result about weak convergence of the process nz (F' Y u) — F~1(u)).) One
of the advantages of using random cells is that one can then ensure that the p;’s are not
too small.

The following assumptions are made throughout the paper.

Al Fy(z) is continuously differentiable in 0 and z.

A2 The matrix

8p1!0! . 31)1!0!

ooy |

o : - :
pi(6) 3px(6)
36, "t T80 / kxq
is of rank ¢ for all 8 € ©.
A3 The estimate 6 satisfies
1,4 ' -1 _
n#(0 - 6o) = (C'C) " C'€,(60) + 0,(1) (2.8)

where C = D(oo)a’;(:,").

Remark 2.1 Suppose that 0 is a minimum chi-square estimator, i.e.
f is the value of § minimizing € (0)¢,(9). (2.9)

In the case where we have completely observed data, fized cells, and D(0) is chosen to
be the diagonal matriz D(6) = dz'ag((pl(ﬂ))"%, . .,(pk(H))“%), it is well known (and not
difficult to see) that 9 satisfies (2.8); see e.g. Section 30.3 of Cramér (1946). This is
still true in the general situation. A proof is given in Lemma A.1 in the Appendiz. We

prefer to take (2.8) rather than (2.9) as our condition on 8 because of the slight increase
in generality.



Note that

; op™(0) _ ap(b
P(@) = p(06) +0,(1) and PO 0P ) (2.10)
by Assumptions Al and A3. Also, the existence of the matrix inverse in (2.8) is guaranteed
by Assumption A2.
From now on, 1 denotes a column vector of 1’s where the dimension is taken from
context.

2.2 Main Theorems and Construction of the Test Statistic

Theorems 1, 2, and 3 below give our main findings. Theorem 1 gives the limiting dis-
tribution of 5 ( ) The proof is based on the original ideas of Fisher. Theorem 2 gives
the rank of the asymptotic covariance matrix and also gives the ranks of certain natural
estimates of it. Theorem 3 states that the quadratic form which is the test statistic has
an asymptotic chi-square distribution with k — ¢ — 1 degrees of freedom. This theorem
follows directly from Theorem 1 and both parts of Theorem 2, and constitutes our main
result.

Theorem 1 Let §,(0) be defined by (2.7) where D(-,-) satisfies RI-R3, and assume Al-
A38. If (2.1) holds, then under Hy

£.(0) = N(0,3), (2.11)
where ¥ = PD(00)JEMJ' D(0)P, M is defined in (2.4), P=1—C(C'C)~'C’, and
(1 0 0 0\
1 0 0
0 -1 1 ... 0
e : (2.12)
0 0 0 .. 1
\ o0 0 0 .. -1}

kx(k-1)
Theorem 2 If (2.4) and the conditions of Theorem 1 hold, then
1 rank(X)=k—q-1.

2 Let 5O be a consistent estimator of £ and let % be obtained by replacing
p(0o), dp(8o)/d8’, D(6o) and BV with p™(8), dp™(§)/dé’, D,(8) and 31 respec-
tively in & = PD(HO)JE(I)J D(80)P. Then the consistent estimator 3 satisfies

rank (£) 25 k—q — 1.

Let &1 and £t denote the Moore-Penrose inverses of 3 and ¥ respectively. We shall

see in Section 5 that Theorem 2 implies that »t L2, ¥f, and this fact underlies the simple
asymptotic distribution of our test statistic.

Theorem 3 Define Q = ¢, (0 )ET fn(ﬁ) Then, under Hy,

Q 4, Xk—q—l as n — oo.

This theorem enables us to test the null hypothesis and obtain p-values in the usual way.

6



2.3 Choice of the Quadratic Form

The procedure described above produces a class of test statistics based on different choices
of the matrix D(0,t) used in (2.7). Following are some important examples that may be
used in practice.

Example 1 Take D(0,t) = I} to be the idehtity matrix. Then, regularity conditions
R1-R3 are satisfied and the test statistic is formed with &,_(0) = n3(p — p™(0)).

Example 2 Take

1

D(8) = diag((p1(0))%,..., (px(6)) 7). (2.13)

(More precisely, D(8,t) = diag((Fg(tl))‘%, oy (1= Fg(tk_l))_%) ). Then, regularity con-
ditions R1-R3 are satisfied. The test statistic is thus formed with

o — (= np(0)  npy—np”(0)

£n( )_ (n) IEERREE) (n) 1 ’
(npi”'(60))? (np(0))?

which is the vector used in the classical i.i.d. Pearson-Fisher setting.

The main advantage of the above examples is their simplicity. We need only minimize
a simple quadratic form to obtain an estimate of §. However, in general there is nothing
special about the matrix (2.13). The motivation for its use is that it is the square root
of a generalized inverse of the multinomial covariance matrix. In more detail, we have in
the classical i.i.d. case (with fixed cells)

Ca(B0) —2> N(0, M(60)),

where M(6y) = diag(pi(6o),.-.,pe(6)) — p(ao)p'(ﬂo). Recall that if A is an arbitrary
matrix, then a generalized inverse is any matrix A~ that satisfies AA~A = A. It is easy
to see that for D(#) given by (2.13), D?(6) is a generalized inverse of M () (we omit
the arguments 6y and a for convenience):

. ! . 1 1 . !
MD'M = (diog(ps,-.,ps) ~ pp)ding(~.... — ) (ding(ps,-...,24) ~ PP

= (I —pl')(diag(ps,...,pr) — PP)
= diag(p1,...,ps) — PP — PP + PP
= diag(pi,...,px) — PP

= M.

(Of course, this was not the motivation used by Pearson and Fisher.)
Let us now turn to the general case and to make our explanations simpler, we tem-
porarily continue to consider only the case of fixed cells. Let 5{!) be the vector of length

k — 1 defined by

Note that ¢,(0o) = Jn{), and that rank(J) = k — 1 (the matrix formed by the first & — 1
rows of J is lower triangular, and so its determinant is easily seen to be 1, which implies

7



that rank(J) > k — 1; since J is a k x (k — 1) matrix, its rank is at most k£ — 1). Thus,
by (2.1) and (2.3), we have

Ca(80) —2 N'(0,M(65)) where M(6) = JEM(6,a)J . (2.14)

Thus, it seems natural to use for the matrix D(6) a square root of a generalized inverse of
M (0) In fact, the quadratic form ¢'(8)M~(6)¢(6) is invariant under the choice of M~(6),
since ¢(@) is in the space spanned by the columns of M(#). This is because M (8)1 =
JEM(9)J'1 = JEM ()0 = 0; furthermore, ¢'(6)1 = 0. Since rank(M () = k—1 by (2.4),
we see that (@) is in the space spanned by the columns of M (). Thus, by Lemma 5.1
in Section 5, the quadratic form ¢’ (H)M (0)¢(0) is uniquely defined.

In the case of random cells, (2.14) is still true; see (5.5) in the proof of Theorem 1.

In the development of our theory, we need the matrix D(:,-) to satisfy Conditions
R1-R3, essentially that D?(-,-) be an invertible generalized inverse of M, which also has
some continuity and differentiability properties in  and t. We produce such a D(-,-) in
the next example.

Example 3 Let M(0,t) = JXM)(0,t)J". Since rank(J) = k —1, the (k —1) x (k— 1)
matrix J'J is invertible, and so we may write

M(6,¢) = [J(J' )2 [(J NSO, 8)(T 0)3] [(J' )3T ] = GAG, )G, (2.15)

where G and A(,t) denote the matrices appearing in the first and second sets of brackets,
respectively. Then Hyxx = [G,1/Vk] is an orthogonal matrix since

HH— ( GG G1/\/‘>_(Ik71 O)zn.

U'G/VE 11/k 0 1
Moreover,
M(0,8) = GA(9, )G = H( AGn )H‘. (2.16)
Since A(8,1) is invertible, we may define
D(6,8) = H( A_E()(,"’t) X )H'. (2.17)

(Strictly speaking, we take Az (0,t) to be a positive definite square root of A(8,t) to ensure

continuity). Then, regularity conditions R1-R3 reduce to (mild) regularity conditions on
Y(1)(0,t). We also see that D?(8,t) is a generalized inverse of M (6, 1) since

2ns AO) (A10>,<A0> (A0>,_
MDM_H(O,OHH v 1 )EHE(y o )HE=H(y o )H =M

(here we have dropped the notation (0,t) for brevity). Hence, we estimate 6, by the
parameter value that minimizes

’

£.(0)€.(0) = €, (0)D*(8,a™)¢,.(0) = ¢,
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and construct a test statistic as in Section 2.2.

We know by Theorem 3 that for this special choice of D the test statistic has an
asymptotic xi_q_l distribution. The next result states that for this D, the test statistic
essentially reduces to a simpler quadratic form.

Proposition 2.1 Let § be the parameter value that minimizes the (well-defined) quad-
ratic form ¢, (0)M~(0,a™)¢,(8). Let D(0,t) be given by (2.17), let Q be defined as in

Theorem 8, and let ; . ) .
Q = ¢, (60)M~(6,a™)¢,.(9).

Assume (2.1), Al and A2, and that TO)(-,-) and 05W)(.,-)/06 are continuous at (6o, a),
and XW(-,-) is bounded in © x N(a), where N(a) is a neighborhood of a in IR*™'. Then
D(0,t) satisfies R1-R3, and @ satisfies

Q=Q+0,(n™") under Hy. (2.18)

In particular,

Q 4, xi_q_l as n — oo. (2.19)

Remark 2.2 One might suspect that Q = Q; this is not the case, however, and the
Op(n~1) term in (2.18) is really needed.

Remark 2.3 We have not been able to prove (2.19) directly. The only way that we know
of for obtaining (2.19) is to apply (2.18) together with Theorem 3.

Remark 2.4 The choice of D(-,-) is clearly an interesting and important problem. One
can conjecture that choosing D(-,-) to be the square root of a generalized inverse of M(-,-)
will lead to some optimality properties. We have not investigated this question.

3 Applications to Commonly Arising Models

We first give a result that shows that the nonsingularity assumption (2.4) is satisfied for
a class of models arising in survival analysis.

Proposition 3.1 If the process W in (2.1) has the form W LF-Vuwhere F=1-F
and V is a Gaussian martingale for which the variance function v(t) = Var(V (t)) satisfies
[v(a;) — v(ai-1)] > 0 for all 3, then (2.4) is satisfied.

Proof Note that the (i,7)" element of £(1) is az(;) = Fy,(a;)Fy,(a;)v(min(a;, a;)). We
will show that .

k-1

det(SV) = IT (Fa(a:))’ (v(@) - v(ais)) > 0. (3.1)

To see (3.1), we consider the linear operator £; acting on (k— 1) X (k— 1) matrices which
adds —ﬁ% x row (2 — 1) to row i. This operator does not change the determinant
o (@i—

of a matrix. Applying Li_1,Lxr_2,...,Ls successively to £() reduces (1) to an upper
triangular matrix with diagonal elements [Fy,(a;)]?[v(a;) —v(a;-1)], ¢ = 1,...,k—1. This
implies (3.1) immediately.



3.1 The Pearson-Fisher Test, with Random Cells

Let X1,...,X, be i.i.d. ~ F and let F' be the empirical distribution function. Then
(2.1) holds with W £ F .V where V is the Gaussian martingale with variance func-
tion v(t) = F(t)/F( ). As explained in Section 2.3, M(4,a™) = JEM)(9,a™)J" =
diag(p{" (0),..., o (6)) ~ P (8)p™Y (6), for which diag(1/p™(0), .., 1/p{(6)) is a gen-
eralized inverse. Thus, the chi-square statistic Q constructed in Proposmon 2.1 coincides
exactly with the cla,sswa,l Pearson-Fisher statistic, except that the cells may be random.

For the development of Pearson-Fisher test with random cells, see e.g. éebyéev (1971),
Moore (1971), Moore and Spruill (1975), and Pollard (1979).

3.2 Chi-Square Tests for Left-Truncated Data

Let (X,Y) be a pair of independent nonnegative random variables with distribution
functions F' and G respectively. Random left-truncated data consists of n i.i.d. draws,

(X3, Y1), ..., (X5, Yr), from the conditional distribution of (X,Y), given that ¥ < X.
Here, X is called the random variable of interest and Y is called the truncation variable,
and the objective is to make inference on F. Left truncation arises when individuals come
under observation only some known time after the natural time origin of the phenomenon
under study. That is, for any given individual, had failure occurred before the truncation
variable in question, variables pertaining to that individual would not have been recorded.

This kind of data arises frequently in medical survival studies when one wants to study
the length of survival after the start of the disease: If X denotes the time elapsed between
the onset of the disease and death, and if the followup period starts Y units of time after
the onset of the disease, then clearly X is left truncated by Y.

Certain studies on AIDS give rise to a slightly different form of the random truncation
model, and in Section 4 we illustrate the methods of this paper in an analysis of a data
set from the Center for Disease Control (CDC) that is used to study the latency of the
AIDS virus. }

Random truncation models arise also in fields other than survival analysis. For a
general overview of the model and references to the literature see Woodroofe (1985).

The Product Limit Estimate and its Asymptotics Nonparametric estimation of
F based on left-truncated data was first studied by Lynden-Bell (1971) who proposed the
product-limit estimate (PLE) F given by

1— F(z) = ﬁ (1 —~ M) | (3.2)

where J(t) = XL, I(Y* < t < X;). Keiding and Gill (1990) have shown that this
estimator is the nonparametric maximum likelihood estimate of F' for the model in which
F and G are completely unknown, provided that J (X(*)) >lforl=1,...,n—1.

Weak convergence results for the PLE were later established by Woodroofe (1985)
and Keiding and Gill (1990). Here we follow the notation of Keiding and Gill (1990).

For convenience, we assume that F' and G are continuous, and that ess sup(F') = o0,

ess inf(G) =0, and a = P(Y < X) > 0.
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Weak convergence of the process ns (ﬁ’ — F) involves delicate problems near 0, and to
obtain weak convergence in D|0, co] one must impose the condition

* dF(t)
o G(t)

(see Section 5 of Woodroofe (1985) ‘and Section 5.2 of Keiding and Gill (1990)). This
is a rather restrictive condition and for that reason Keiding and Gill (1990) consider,
for fixed € > 0, the process nz(F*< — F¢) where 1 — F(t) = (1 — F(t))/(1 = F(e)) and
1 - Ft) = (1 — F(@t))/(1 — F(e)) for t > € (i.e. F*(t) = Po(X < ¢|X > ¢€) in an
obvious notation, and similarly for F(¢)). They prove weak convergence of this process
in Dle, o0].

Theorem 3.1 (Keiding and Gill, 1990) Let ¢ > 0, and assume that for all t > ¢
PY<t<X|Y<X)>0. Then

< 00 (3.3)

n%(ﬁ’e—Fe)LF_'C-V in  Dle, o0], (3.4)

where V(-) is a continuous Gaussian martingale with zero mean and variance function

/ dF(u)
G(u)[1 — F(u)]*

A consistent estimator of v(t) for t > € is

(1) = [ mJ(s)dN(s),

€

where N(t) = Y7, I(X) <1t).

The Chi-Square Test Statistics As in Section 2, we first form a data dependent
partition. Then we choose a symmetric matrix D(6, ) satisfying R1-R3 and construct
¢,.(0) and gn(e) from Fj and F*. We estimate the true parameter 8 by the value 6 of
0 which minimizes £, (0)6 (9) and estimate v by the © defined in Theorem 3.1. Then
the test statistic @ = €,,(60 )Z*f (9) obtained from F*, 6, F%, and 9(t) has limiting null
distribution x%_,_;.

Remark 3.1 In Section 2.3 we mentioned that it may be natural to use for the ma-
triz D(-,) the square root of a generalized inverse of M(-,+) = JEW(.,.)J', for exam-
ple the D(-,-) given by (2.17). This brings up a computational problem: To minimize
¢, (0)'D?(0,a™)¢,. () we need to find a formula for D*(0,a™). This forces us to do a
symbolic inversion of a matriz, which requires a symbolic manipulations program. An
alternative is to replace the matriz D(0, a™) given by (2.17) with a consistent estimate
D of D(6y,a). We then need only to do the matriz inversion numerically, i.e. do it just
once. Remark A.1 in the Appendiz establishes the validity of this procedure.

Remark 3.2 To carry out the test one must decide on a value for €. Intuitively, the
smaller the value of €, the smaller the information loss in the left tail (0,¢]. On the other
hand, if condition (3.3) is not satisfied, a smaller ¢ requires a larger n for the asymptotics
to set in. In practice, one selects € such that only a small proportion of the X}'’s fall in
the tail (0, €], and this choice is made subjectively.
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3.3 Chi-Square Tests for Right-Censored Data

We first review the random censorship model of survival analysis. The pairs of positive
random variables (X;,Y;), [ =1,...,n, are independent and identically distributed, with
distribution functions F'(t) = P(X; < ¢t) and G(¢t) = P(Y; < t) and the Y’s are inde-
pendent of the X’s. We observe only (Z;,6), | = 1,...,n, where Z; = min(X;,Y;) and
6 = I(X; <Y)). The X’s represent survival times, the Y’s represent censoring times, and
the problem is to estimate F'. The most commonly used estimate of F' is the Kaplan-Meier
estimator defined by

Piy=1- ]I (Jﬁi)&(” (3.5)

Zaye \ —{+1

where Z(1) < Z(3) < ... < Z(n) denote the ordered values of Zy, Z3,...,Z, and &) is the

6 corresponding to Z(;). Weak convergence of n?(F — F) is well known. The following
proposition is a special case of Theorem 4.2.2 of Gill (1980).

Theorem 3.2 Assume that F is continuous and let T be such that F(1)<1 and G(1)<1.
Then,

ni(F — F)-%F -V in D[0, 7],
where V is a zero-mean Gaussian martingale with variance function

Tt dF(s)
o)= Fe—)F(s)C(o=)’

for which a consistent estimator is

504 = ¢ dﬁ'(s)
“ /oﬁ(s—)ﬁ(sﬁ(s—)'

Here, (i is the Kaplan-Meier estimate of G, i.c. the right side of (3.5), except that ;) is
replaced by 1 — 8y, also, for a function g, g(s—) = limyq, g(u).

We construct our test statistic as prescribed in Section 2.

Chi-square goodness-of-fit tests for the random censorship model were investigated
by Habib and Thomas (1986), who estimated 6, by the maximum likelihood estimate.
In a paper that provided the impetus for the present work, Hollander and Pefia (1990)
developed a chi-square goodness-of-fit test for the case of a simple null hypothesis. If we
use fixed cells and take D to be the diagonal matrix (2.13), then our procedure is identical
to theirs. Actually, it is not very difficult to see that the test statistic is invariant under
the choice of the matrix D, so that nothing can be gained by using the matrix (2.17).
This is true only in the case of a simple null hypothesis, for which the parameter 8, does
not need to be estimated. X

Actually Theorem 4.2.2 of Gill (1980) gives a weak convergence result for n%(F - F)
for a wide class of censoring mechanisms which includes the random censoring mechanism
discussed above but also fixed censoring and Type II censoring. Therefore, our procedure
is applicable to data subject to these censoring mechanisms as well. For Type II censoring,
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we refer to the paper by Mihalko and Moore (1980). We mention briefly that they studied
a number of chi-square tests and that our procedure reproduces one of their tests.

The special structure W £ F.V (cf. Proposition 3.1) is by no means necessary for (2.4)
to be satisfied. For example, in fitting a Cox model to survival data, one is sometimes
interested in investigating a parametric model for the baseline survival function. If S
is the “Nelson-Aalen estimator” of the baseline survival function Sy, then n%(é’ — S)

converges to a limiting Gaussian process W which does not have the form W £ S; - V for
some martingale V' (see Theorem 3.4 of Andersen and Gill (1982)). It is easy to show,
however, that (2.4) is satisfied. Goodness-of-fit tests for the parametric Cox model have
also been studied by Hjort (1990, Section 6).

4 Analysis of Transfusion-Related AIDS Infection Data

An important problem in studies of acquired immune deficiency syndrome (AIDS) is to
determine the distribution of the length of the “incubation period” (i.e. the time from the
human immunodeficiency virus (HIV) infection to the diagnosis of AIDS). This problem
is difficult because one generally does not have accurate information on the date of HIV
infection. Nevertheless the date of infection can be ascertained for patients who are
thought to be infected with HIV by blood or blood product transfusion. Tables 2-4
on pages 745-746 of Wang (1989) give transfusion-related AIDS data reported by the
Centers for Disease Control (CDC) in Atlanta, Georgia. These data consist of 295 cases
diagnosed with AIDS prior to July 1, 1986, and for which infection could be attributed
to a single transfusion or short series of transfusions. The tables report the incubation
time X (in months), the time Y (in months) from the HIV infection to the end of the
study (July 1, 1986), and the individual’s age at the time of transfusion. Because disease
resistance depends on age, the data are divided into three groups: 34 “children” aged 1-4,
120 “adults” aged 5-59, and 141 “elderly patients” aged 60 and older. Obviously the data
for the incubation time X are right truncated by Y since patients who had HIV infection
prior to July 1, 1986 but developed AIDS after July 1, 1986 were not included in the data.
That is, we observe (Y, X) only if X < Y.

Let F' and G be the distributions of X and Y respectively. Then, F' may be esti-
mated by (3.2). Recall that in the random censorship model of survival analysis one can
show that the Kaplan-Meier estimator (3.5) is the nonparametric maximum likelihood
estimator of F' whether or not we have any knowledge of G. The situation is different
for the random truncation model: The product-limit estimator (3.2) is the nonparametric
maximum likelihood estimator of F' only in the model where G is completely unspeci-
fied. If G is completely or partially specified, (3.2) is no longer the maximum likelihood
estimate, and Wang (1989) has shown that knowledge that G' belongs to a parametric
family can be exploited to obtain a more efficient estimate of F. Thus it is important
to be able to determine if a given parametric model holds. The CDC’s AIDS data have
been studied through various parametric models by several authors; see Kalbfleisch and
Lawless (1989) and the references therein. However, there has not yet been a formal test
of fit to determine whether the parametric assumptions are appropriate. The chi-square
test developed in this paper provides a straightforward way of checking the parametric
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assumptions on both F' and G.

Here we shall be concerned only with the parametric assumptions on G. Note that
one can regard Y as being left truncated by X. Therefore the chi-square test developed
in Section 3.2 can be applied directly. Table 2 below shows the analysis we have done
on the AIDS data. For each age group we tested the null hypothesis that G is a Weibull
distribution with fixed shape parameter v and unknown scale parameter 8, i.e. G(t) =
1 — exp(—0t") for some §. The values of v were taken to be the 10 values indicated
in Table 2, and three cells were used for each of the tests. We used the test statistic
described in Section 3.2, and we took the value of ¢ to be the .07, .06, and .03 quantile
of the product-limit estimator for the children, adults, and elderly patients, respectively
(larger values of € are required by the asymptotic theory if the sample size is smaller).
The cell boundaries for the children and adults groups were taken to be ¢, 30, 60, and oo,
and for the elderly patients these were taken to be ¢, 30, 40, and co. The values of the
chi-square test statistic Q and corresponding p-values are reported for each combination
of the null hypothesis and the age group.

Table 2 Test Statistics Q and p-values for the AIDS data. Null hypothesis is that G is a
Weibull distribution with an arbitrary scale parameter and fixed shape parameter v.

0.50 {0.75{1.00| 1.25 {1.50|1.75| 2.00 }2.50| 2.75 | 2.85
10.16 | 6.85]4.34 | 2.50 [1.22]10.42)0.041|0.42| 1.13 | 1.52
p-value | <0.01(0.01]0.04| 0.11 {0.27{0.52| 0.84 |0.52| 0.28 | 0.22
Adults Q 2.07 10.97[0.27(0.003 [0.18|0.81| 1.92 | 5.69 | 8.42 | 9.69
p-value| 0.15 [0.3310.60| 0.95 {0.68 [0.37| 0.17 |0.02 | <0.01 | <0.01
Elderly Q 4,33 13.23(2.30| 1.52 {0.910.45] 0.16 {0.03] 0.19 | 0.29
Patients | p-value| 0.04 [0.07|0.13| 0.22 {0.34|0.50| 0.69 | 0.87| 0.67 | 0.59

O ®

Children

In her analysis of this data set, Wang (1989) made the assumption that G is exponential
(this is Weibull with with » = 1), citing an informal analysis to support this. For the
children group, Table 2 shows that our test provides evidence against this assumption
(p-value = .04) and instead suggests the Weibull family with shape parameter v =2 as a
reasonable model. For the adults group the table shows that the exponential distribution is
adequate, while for the elderly patients the table indicates that the exponential assumption
is suspect and that the Weibull family with shape parameter v = 2.5 provides a better
fit.

5 Proofs of Main Results

Proof of Theorem 1
We first show that under Hy

€.(60) =5 N30, D(60)J5™MJ D(6o)) as n — oo, (5.1)
where J and £(!) are given by (2.12) and (2.3) and (2.4), respectively. Define
Wa(t) = n# (F() = Fa (1) (5:2)
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Then

¢n(B0) = n¥(p — p(00)) = Jn,, (53)
where n,, = (Wn(agn)),. , W, (a(n) ))". Write 0, = ) 4+ 9, where n{®) = (Wal(ar),-. .,
Wo(ag-1))" and (@ = (Wn( (n)) W (a1),.. (a§c”)1) Wa(az—1))'. We shall show

that g -4 AG_1(0, %) and @ L 0.

From (2.1), W, -2, W, where W is a continuous Gaussian process with zero mean.
The weak convergence result for n{!) follows immediately since the finite dimensional
distributions of W,,() converge to a multinormal distribution. To prove that n{® - 0,
we use a standard Skorohod construction (see Item 3.1.1 in Skorohod, 1956) to obtam

random elements W, and W on a new probability space, such that W, = Wn, W< W,
and W,, =% W in D[e, M]. Since W has continuous sample paths, this implies

sup |Wi(t) — W(t)] 22 0. (5.4)
e<t<M
Fori=1,...,k—1, define &™ = a;(F + n~2W,). Because &™ £ a{™ and o/ £ a;,

(n)

~(n) P
we have d; ' — a;. So for large n,

(Wa (™) = Wa(ar)] < [Wa(@™) = W(@™)| + W) = W(ai)| + W (as) — Wa(as)|
< 2 sup [Wa(t) = W(t)| + [W (&™) - W(ai)| 0

by (5.4) and the fact that W has continuous paths Since W, (4 (”)) Wi (a;) £ We(a (n)) -
Wi (as), we conclude that 5 -5 0. Thus 5, ~%5 My_ 1(0, M), and (5.3) and (2.7) give

¢a(60) =5 Ni(0,75DJ)  and ¢,.(00) % Ni(0, D(8)JSM J' D(65)). (5.5)

Now we are ready to obtain the weak convergence result for &, (f). Note that

£.00) = Du(d)n?(p - p™(d))
= Du(B)n2(p — p™(0)) — Du(B)nt (p™(6)) — p™ (60))
= (Dal80) + 05(1)C,(00) — (D) + op ()t (P 1 0,(1)) 4 - 00)
= Dn(00)¢(60) — Cn3 (0 —

D

(D

60) + 0,(1)
= £,(60) = C ((C'C)C'&, (60) + 0p(1)) + 0p(1)
= PE,(0) + 0,(1),

Where in the fourth equality we have used the fact that {,(6o) = D~'(6)€,(6o) and
n2 (0 6o) are bounded in probability, by (2.8). Therefore

¢.(0) 5 N(0, )
where £ = PD(6p)JEM.J D(6,)P.
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Proof of Theorem 2

We first prove Part 1 of the theorem. Because () is assumed to be positive definite,
there exists a nonsingular matrix T' such that V) = T'T", so that

¥ = (PDJT)(PDJT) .
Thus
rank(X) = rank(PDJT) = rank(PDJ),

and we wish to show that
rank(PDJ) =k — ¢ — 1.

If Ais a matrix, we will let M(A) denote the space spanned by the column vectors of
A and let M*(A) be the space of all vectors orthogonal to M(A). Let d = D~'1. Then

ca= () oo (r15) - (28 -

So d is orthogonal to M(C), and the space M([C,d]) spanned by the columns of C
together with d has dimension ¢ + 1. We will show that M(PDJ) = M*([C,d]). From
this we conclude that

rank(PDJ) = k — dimension of M([C,d]) =k —¢— 1.

This is done in two steps: first we show that M(PDJ) is a subspace of M*([C,d]), then
we prove that M(PDJ) is identical to M*([C, d]).
Using the fact that P = I — C(C'C)~'C" is a projection onto M*(C), we have

(PDJ)'C =J DPC =J'D0=0

and

(PDJ)d=JDPd=JDd=JDD'1=J1=0.

So M(PDJ) is orthogonal to M([C, d]). Therefore M(PDJ) is a subspace of M*+([C,d]).
On the other hand, for every € M*([C, d])

(PDJ) @ = J DPx = J Dx 0.

Here the nonequality in the last step comes from the fact that J'D has exactly one zero
eigenvalue and d is the corresponding eigenvector, which is orthogonal to . There-
fore M(PDJ) = M*([C,d]). (Otherwise, if M(PDJ) is a strictly smaller subspace
of M*([C,d]), then there is an orthogonal basis ey,...,ez—4—1 of M*([C,d]) such that
M(PDJ) = M([ey,...,e,]) for somer < k — g — 1. But this implies (PDJ) €f_y-1 = 0

which is a contradiction.)

To prove Part 2, note that if A is a square matrix whose determinant is not 0, and
if A, is a sequence of matrices such that A, — A, then det(4,) — det(4), so that

rank(A,) — rank(A). We observe that ¢ = C' (see 2.10), and that C has full rank
g for all 8, so that rank(é’) £, q. The same argument gives ra,nk(Dn(é)) £, k and
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rank(3() Ai> k — 1. Note that if rank(C') = g, rank(D,(0)) = k and rank(S®) = k—1,
then rank(¥) = k — ¢ — 1. The proof is identical to the proof of Part 1. Therefore,
P(rank(¥) =k — ¢ —1) — 1, as desired.

Proof of Theorem 3

It is a fact that if A,, n =1,2,... and A are matrices such that

A,— A (5.6)
and
rank(A,) = rank(A) for all large n, (5.7)
then the Moore-Penrose inverses satisfy
Al = AT (5.8)

(see e.g. Theorem 10.4.1 of Campbell and Meyer (1979)). Thus, by Parts 1 and 2 of
Theorem 2 we see that

st £, »t. (5.9)
Theorem 1 and Part 1 of Theorem 2 imply that

and now Theorem 3 follows from (5.9) and (5.10).

Remark 5.1 Condition (5.6) by itself is not enough to guarantee (5.8), and it is necessary
to also have (5.7) (unless, of course, A is nonsingular). There are errors on this point
in some papers, e.g. Hjort (1990, pp. 1233-1234) and McKeague and Utikal (1991, last
paragraph of Section 3, and Section 5); also, Akritas (1988, last paragraph of Section 4.1)
makes a statement that ignores this point and so is misleading. These authors base chi-
square tests on asymptotic normality results of the form

w, -5 N(0, R) (5.11)

where R is a possibly singular matriz. They provide a consistent estimator R, of R, i.e.
one that satisfies

R. 5 R, (5.12)

take a generalized inverse R, of R, and claim that the test statistic w, R, w.,, satisfies

w, Ry w, XZank(R)- (5.13)

However, (5.11) and (5.12) by themselves do not imply (5.13) and so additional work is
needed.

Consider the following simple counterezample. Take the two-dimensional vectors w,
to be normally distributed with mean 0 and covariance matriz

10
Rn_<0 n_l).
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Let L o
k= (0 0)
for which Rt = R. Then (5.11) and (5.12) hold (but note that for all n, rank(R,) #

rank(R)). Since w, R, w, ~ x2 for each n and rank(R) = 1, we see that (5.13) does not
hold.

In our setup, it is only because we chose 3 to have the same structure as % that we
were able to establish that rank(3) - rank(X).

Before proving Proposition 2.1, we recall the following well-known fact.

Lemma 5.1 Let A be a symmetric matriz and let M(A) denote the space spanned by the
column vectors of A. Then for any pair of &,y € M(A), the quadratic form &' A~y is
invariant under the choice of generalized inverse A~.

Proof If x,y € M(A), then # = Ac and y = Ad for some vectors ¢ and d. Thus
£ A"y =cAA"Ad = ¢ Ad,
which does not depend on A~.

Proof of Proposition 2.1

We follow the notation used in Example 3 of Section 2.3. We first note that for the ma-
trix D(0,t) given by (2.17), R1-R3 follow immediately from the assumptions on (), -).
Moreover, minimizing ¢,,(6)’M~(0,a™)(,,(0) is the same as minimizing &, (8)'€,,(§) where
£.(0) = D(9, a™)¢,.(0). So, by Lemma A.l of the Appendix, the resulting estima-
tor 0 satisfies A3. Recall that Q = &, (0) st §,.(0 ) and Q = ¢ (0) ~(9 a(”))c (0)
Theorem 3 applies and we have @ 4, Xi—gq-1- Let @ = {w € Q: rank(C’) =

rank(D, () = k; rank(3M) = k — 1}. We saw in the proof of Part 2 of Theorem 2 that
P(Q,) — 1. We shall show that on Q,

0= (con2rl®) (e 220N (e ). a0

where M denotes M(4,a™). Note that since on @, we have M 1 = 0 and rank(M) =

k — 1, the equations 1'9p(™ (4 )/39 = 0(1 )/80 =0 and 1'¢,(6) = 0 imply that ¢, (¢ )

and the column vectors of dp(™(§)/86’ are in the range space M(M ) of M. Therefore,

by Lemma 5.1 the three quadratic forms in parentheses in (5.14) are invariant under the

choice of generalized inverse of M. Now in the proof of Lemma A.1 we show that
08 (0) - iy - P (O)

_ ; o 0P () j -3
_ 205 g _ () _ L
26,0 = 2O (G 0y, (6) = 0 b, a)g, (6) = 0,7
under Hy (see (A.7)). Therefore, (5.14) implies
Q= Q+O( )——+qu1 under H,.
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The rest of the proof is devoted to the verification of (5.14). By (2.16 and (2.17),

D(-, YM(-,)D(-,") = H( 1’671 g )H' = HH - H( O(k“lz)%(k—l) (1) )H' =1, —11'/k
and
_1
D(,)L = H( A Bg-,-) (1) >H'1 = (GA™3(-, )G + 11'/k)1=0+1=1, (5.15)

where we recall that G = J(J'J)~. Thus,

o apl(eg)
C1l= 30

_0p(6), _
Do) = 2251 =0,

Therefore,
Y = PD(8,)JEMJ D(6) P
= (L-c(c'o)*c’) (L -11'/k) (I - C(C'C)™*C")
= I,-11'/k—c(C'C) (),

(5.16)

which is idempotent (i.e. %2 = £). Similarly, 33 = I, —11'/k — C(C'C)~1(" is idempotent
on {,. Recall that an idempotent matrix is its own Moore-Penrose inverse. Thus, on {1,
we have &t = ¥ and

Q = ()

(8) Dn(8) (I — 11' [k — C(C'C)*C") Da(B)¢,. (D)

= €,(0) Da(0)¢(0) — (€o(0) Dn(6)1)*/k — ¢, (9) l}n(9)6'(6"0)jlé’0n(é)cn(é)
= 0-¢0) 02O (220 (9)61”(”)(0)) 0 (i, )

i
()
~~
=

™

"+
()

A

¢’ 06 a¢’ a6

where in the last equality we have used (5.15) and the fact that C;(é)l = 0. This proves
(5.14).

Appendix

A.1 The Asymptotic Distribution of the Minimum Chi-
Square Estimator

Here we prove that the minimum chi-square estimator defined by (2.9) satisfies (2.8). We
assume that the parametric model holds and that 6 = 6,.

Lemma A.1 Let {6,}22, be an infinite sequence of statistics such that 0 = 6, satisfies
(2.9) for every n. Assume that (2.1) and Assumptions A1 and A2 hold, and that D(-,")
satisfies R1-R3. Then

1650,
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2 Assumption A3 is satisfied.

Note that in the statemnent of Lemma A.1 we assume that for each n, there exists a number
f,, that minimizes £ (0)€,(0), ie. that satisfies (2.9) (actually, we need only assume that
with probability tending to one as n — oo such a ,, exists). No assumption of uniqueness
is made.

Proof The proof of Part 1 is based on an application of the Implicit Function Theorem.
In the first part of the proof of Theorem 1 we showed (without using Assumption A3) that

€alf) = 7 (p — P (00)) < Ni(0, JEMT') and &,(80) > Ni(0, D(80)J 5T D(60))

as n — oo (see (5.5)). This implies

p—p(bo) = (b — p™(60)) + (P™(60) — p(60)) 2> 0.

We also have ) . . p
p—p"(0) =n"2¢{,(0) — 0,

since
SN <D O 11€.(B)1] < 11D ()] [1€,(80)| = Op(1) (A.1)
where the last step follows since D! (é) is bounded in probability (by regularity condition
R2 and the fact that a™ -2 a) and &, (6p) converges in distribution. Here || - || denotes
Euclidean distance in R*. Therefore
p™(8) = p(bo). (A.2)

Without loss of generality, assume that the first ¢ row vectors of —&— are linearly
independent. Let f = (f1,..., f;) be the vector-valued function deﬁned on the open set
S =0 x(eM)? x(0,1)¢ C R™? by

filbsz,y) = y1— Fp(z1)
f(0i2,y) = y2— (Fo(z2) — Fy(z1))

fobiz,y) =y, — (Fo(zy) — Fo(zg-1))
where ¢ = (z1,...,2,) and ¥ = (y1,...,9;). Denote o = (as,...,qa,) and

Yo = (pl(oo), .. 7pq(00))- Then
¥ (003 20, yo) = 0. (A.3)

Moreover, by Assumptions Al and A2, f is continuously differentiable on S and its
Jacobian determinant with respect to 6 at (o, 0,y,) is not equal to zero. Thus, by
the Implicit Function Theorem (see e.g. Theorem 13.7 of Apostol (1974)), there exist
a neighborhood Tj of (@o,y,) in R% and one, and only one, continuously differentiable
function g : Ty — R? such that g(zo,y,) = 6o, and

flg(z,y),2,y) =0 forall (z,y) e Tp. (A.4)
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Note that for =, = (a{¥,... ,a{) and y,, = = (p™(9),... p™(é , we have
q

f(é;:cn,yn) =0 for all n.

This together with (A.4) implies that

P(6 # 9(®n,y,)) < P((®n,y,) & To)- (A.5)

Therefore, for every € > 0,

P(|6—6o| >¢) < P(16—00|>¢, 6=g(2n,u,))+ PO +# g(xn,v,))

<
< P(Ig(mmyn) —g(wo,yo)l > 6) + P((wmyn) ¢ TO)?

and this converges to 0 since (n,¥,,) —— (2o, Yo), To is a neighborhood of (xo,¥y,), and
g(+,-) is continuous on Ty. Here the last inequality follows from (A.5). This proves Part 1
of the lemma.

To prove Part 2 of the lemma we write

A

£.0) = Da(@)n?(p—p™(9))
= Da(@)n?(® - p™(00)) — Da(d)n? (p™(9) — p™(60))

= (Dal06) + (1)) 00) — (D000) + 05(1)) (22 4 0,(1) )t (5 — )

Cal
= £,(00) + 05(1)¢,,(80) — (C + 0,(1))nZ (6 — 6o)
= £,(00) — (C + 0,(1))n7(§ — o) + 0,(1) (A.6)

where to obtain the last step we have used the fact that ¢, (6o) is bounded in probability
since it converges in distribution (by (5.5)).

_ Now since € (0)€,(0) is continuously differentiable in 6 and it has a local minimum at
0, we have for j =1,...,q

a(€,(0)€,(9)) 1 9p™'(0)

_ 3087 (0) <D2(a>>
s = 2P S0 (060) + GO~ =

¢.(0) =

(recall that fis in O, which is open by assumption). This implies that for j =1,...,q,

' (O) o aa s ] IAa(D‘z(o))

5%; D (0)€4(6) = 5n” 26 (0) =22, (0) = 0p(n77), (A7)

where the last step follows from (A.1), the consistency of 0, and regularity condition R3.
Because (A.7) can be rewritten as

(P50 + (1), 0) = O(n),

we have

C'&.(0) = 0p(1)€(0) + Op(n™3) = 0,(1). (A-8)

21



Here again we have used the fact that ||€,(§)|| < 1€,(00)|| is bounded in probability.
Now, multiplying both sides of (A.6) by C" and using (A.8), we obtain

(C'C + 0,(1)) n3 (8 — o) = C'€,(80) + 0 (1),
from which we conclude that
n#(0 = 06) = (C'C +0,(1)) ™ C'&,(00) + 0,(1) = (C'C) ™" €', (60) + 0p(1),
as desired.

Remark A.1 Suppose that D is a consistent estimate ofD(Bo, a). If we replace D, () by
D in (2.7) and let § be the value of § which minimizes ¢, (0)D?¢ . (8), then the conclusions
of Lemma A.1 still hold. The proof of this is identical to the proof of Lemma A.1, except
that (A.1), (A.7) and (A.8) are more straightforward. This fact is used in Remark 3.1.
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