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Abstract

In robust Bayesian analysis, it is of interest to find the optimal
robust credible set, viz: the smallest set with posterior probability
at least, say 7, with respect to each prior in the class. Here, we
derive the optimal robust credible set for the e—contamination class
of priors with arbitrary contaminations.
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1 Introduction

When eliciting prior information about an unknown parameter § € © in terms of a
single prior distribution, one is usually left with some uncertainty about the elicited
prior. In most of the recent developments in robust Bayesian analysis, this uncertainty
is (formally) accommodated by the use of a class I' consisting of all prior distributions
that are a priori deemed plausible. When a 1009% credible set for 6 is desired, it
is of interest in robust Bayesian analysis to seek a set C C © which has a posterior
probability at least « with respect to every prior # € I'. In fact, the set with the
smallest size, in terms of the Lebesgue measure, among all such sets might seem
particularly desirable. This set is known as the 1009% optimal robust credible set.

Formally, let p.(C) denote the posterior probability of C w.r.t the prior 7, and define

p(C) = infrerpr(C).

Then, when 8 is continuous and certain regularity conditions such as the likelihood
being continuous hold, Cy is a 1007% optimal robust credible set if the following two

conditions hold:
1. p(Co) =1
2. p(Co) < p(C) whenever p(C) > 7,

where p(C) is the Lebesgue measure of C. In this paper, we consider the situation
where 6 is a continuous real parameter, and consider the e-contamination class of

priors with arbitrary contaminations, given by

I'={r=(1-¢)mo+eq:qany prob. dist. }.
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Here, mp is  usually a (computationally) convenient choice for the prior, and ¢ is the
amount of uncertainty about .

The goal of this paper is to find the optimal robust credible set Cy for the class
I’ above. In Section 2, we give the general form of this set. In Section 3, we assume
that the likelihood, and the posterior with respect to 7y are both unimodal and give
further results that are useful in actually determining the optimal robust credible set.
These a,ssumptions, which are made only to reduce the complexity of the proofs, can
actually be relaxed while keeping the results intact. We discuss this at the end of
Section 3, and conclude the paper with some examples.

The notion of an optimal robust credible set was first introduced in an unpublished
work by Berger and Berliner(1983). Articles where this or a similar notion is used to
derive credible sets are DasGupta(1991), where the Lebesgue measure and diameter
minimizing sets are considered for density ratio classes, and Sivaganesan(1992) where
the optimal robust credible set is derived for the density bounded class with constant
bandwidth. In a closely related paper, Wasserman(1989) considered what he termed
the maximally robust credible set, namely the set which minimizes the range (or the
sensitivity) of p.(C) over T', among those sets C' for which p,(C') = 7. It was shown
there that such sets are in fact given by regions where the likelihood is highest.

There is a rapidly growing literature in the more general area of robust Bayesian

analysis. For reviews and discussion of the various issues and approaches, see Berger(1984,

1985, 1990, 1992) and Wasserman(1992).



2 Form of the Optimal Robust Credible Set

In this section, we show that the optimal robust credible set, Cp, can be expressed
in a simple form. But, before we state the result, we introduce some notation and
review some results that will be useful later. Although our focus in this paper is on
a real parameter 4, the result and the proof in this section are also valid when 8 is a
vector.

Throughout the paper, we let I(6) denote the likelihood and g(f) denote the
posterior density (w.r.t Lebesgue measure) corresponding to the prior 7. We will
also assume that both I(f) and ¢(f) are continuous everywhere in the interior of
the parameter space, and non-constant in any open interval. Thus, we have (see
Huber(1973) and Berger and Berliner(1986))

fc g(0)dd

e(C) = 1+ rsupyge 1(9)’

where r = ¢/(1 — €)mg and mg = [ I(0)mo(6)d0.
Now, we define, for given s > 0 and ¢ > 0, two sets A, and B, based, respectively,

on the likelihood /() and the posterior g(6) by
A, ={0:106) > s}

and
B, = {0:g(0) > t}.
These two sets, as will be seen later, play a fundamental role in the determination of

Cy. For use here and in the next section, define, for each set C C O,
p(C) = [ 9(6)d0 - rysup(6). (1)
c 0gC
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Thus, note that

p(C)> or=7 <= p(C)> or=1. (2)
Theorem 2.1 Cy is of the form
Co=A,UBy
for somen > 0 and ¥ > 0.

Proof: Let n = supgge, {(0). Then, clearly A, € Co. Now, since p(Cp) = 7, we have
using (1) and (2),
/ g(0)d6 = v + rn. (3)
Co
Now, letting By = Cp \ A,, we have BN A, = ¢ and Co = A, U Bp. Thus, using

(3), we get B = B, satisfies

[,9@)d8 =7+ = [ g(0)0. @
Note that there exists a unique 1 such that B = By\ A, satisfies (4). Let By = By\A,.
Then, it is easy to see that u(B;) < u(B) for all sets B which satisfy BN A, = ¢
and (4), with strict inequality holding whenever B # B;. (We say two sets are equal
(or unequal) whenever their symmetric difference has zero ( or non-zero) Lebesgue
measure.) Now, we show that By = B, which will complete the proof. To prove
this, suppose otherwise. Then, u(B;) < p(B,). Letting C = A, U By, we have
#(C) < p(Co), and supygc I(0) = ﬁ’ < 7. Hence, using the fact that B = B; satisfies
(4), we get

Jo 9(6)d6

147y
yr 2,
14+ ry

p(C)
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which is a contradiction since p(C) < u(Cp). This concludes the proof. o

3 Further Results

The results in the previous section alone may actually be used, as we now describe,
to find Cy. In fact, for each s, (0 < s < sup,{()), one can find ¢ = {(s) so that C =
A, U B, satisfies p(C) = 4. The size of C, u(C), can be found for each s, and hence be
minimized (w.r.t s) to find Cp. Although this program is conceptually straightforward,
its implementation would usually be difficult because of the complexity of the function
¥ = (s), and the need to consider two separate cases for pu(C), determined by
whether C is connected or not.

In this section, we give certain results, under some additional conditions on I(6)
and g¢(@), which will substantially facilitate the calculation of Cp. Assume that both
1(6) and g(f) are strictly unimodal with respective modes 8 and 6, and that (f) is
differentiable everywhere in the interior of the parameter space. Also, let Co = A, UB,y
be the 1007% optimal robust credible set, and assume that A, and B, are non-empty
proper subsets of Cp. Here, as before, 7 = supygc, I(6). In the following theorem, we
give a necessary condition satisfied by the end points of Cy. More specifically, we give

an expression for 7 in terms of 7.

Theorem 3.1
(1) If A,N By # ¢, then

¥ =g(a) + r|l'(a)l, (5)
where a is that end point of A, zéhich is also an end point of Cy.
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(i) If Ay By, = ¢, then

P = a(az)g(ar) + afar)g(az) + rya(e;)|!'(a1)], (6)

where a; and ay are the end points of A,, and

|7'(a1)]
[I'(ar)| + |I(az)]’

aa)) =1 —alay) =

Proof: Let A, = (a;,a;) and By, = (b1,b;). Without loss of generality, assume that

§ < 6, and therefore b; < a;. Then, using (2),

p(Co) = [ 9(0)d0 — ryi(az) = 7. ™

Proof of (i) Here A, and By overlap, i.e., a; < b, and a = a;. We now want to

prove that < holds in (5). Suppose that
9(b) =¥ > g(as) + ry|I'(az)l. (8)

For a given § > 0 small, define intervals Ny = (az — 6,a3) and Ny = (by — §,b,). We

now claim that there exists § > 0 such that

/. 9(0)ds - /. 9(0)d8 > vy [l(ea = 6) = U(aa)] 9)
Suppose not. Then, the converse of the above holds for all § > 0. This gives,

for all § > 0.

$ Lo [ g(0)a0 < ryR 2= =100

Thus, letting § — 0, we obtain

P — g(az) < r|l'(az)|,



which contradicts (8). Hence, there exists § > 0 satisfying (9). If we let C; =
(Co \ N1) U Ny, then pu(Cy) = p(Co). Using (2), (7) and the unimodality of I(-), we

have

p(C) = [ g(0)d0—ryi(as =)
= p(Co)+{[, 9(0)d0 ~ [ 9(0)d0 —ry[i(az ~ 6) ~ (ax)]}
> 7.

The last inequality follows from (7) and (9). Thus, C; is such that p(Cy) > v and
p(C1) = p(Co). This is a contradiction (since one could then find a set C' with smaller

Lebesgue measure than Cy such that p(C) = v).Thus (8) cannot be true, and hence

¥ < g(az) + ry|l'(az)l. (10)

Now, we show that strict inequality cannot hold in the above. Let N; = v(bl’ b1+6)
and Ny = (az,a2+6), and let C; = (Co\ N2)U Ny. Since A, C Co, there exists 6; > 0
such that supggc, /() = l(az + 6) for all 0 < § < é;. Suppose that strict inequality
holds in (10). Using similar arguments as before, we can show that, given any 6, > 0,

there exists 0 < 6 < é; such that

S, 900 = [ g(@)d0 > ry(i(az + ) ~ U(a2)),

which then implies p(Cy) > 4. This is again a contradiction since u(Cy) = p(Co).
Thus strict inequality cannot hold in (10) proving the desired result.
Proof of (ii) The basic approach of the proof is the same as before, although the

details are somewhat different. Suppose that strict inequality > holds in (6), i.e.,

¥ > afaz)g(a1) + e(ar)g(az) + rya(as)|l'(e1)]. (11)
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Let B¢ = (bl,bz), and define Nl = (b] - 5, bl) U (b2,b2 + 5) and Ng = (al,al + 51) U
(az — 63,a3). Here, § > 0 is small enough, and 6, and §; are both positive and satisfy

the conditions

61 + 52 =26 and l(dl + 61) = l(az — 62) (12)
Now, we claim that given § > 0, there exists 0 < § < § such that
/N 9(6)d0 - /N 9(0)d0 > I(as +6) — I(ay). (13)

Else, there would exist §' > 0 such that < holds in (13) for all 0 < § < §’. Replacing

> in (13) by <, dividing by 6, and letting § — 0 gives

dé; dé, ;1 d6y
- =1 21 < =1
29(6) = (a0} 52+ o) 22 ) < Flan) (19
Now, it can be shown from (12) that
déy dé;
—dz' =2 — % = 26!((11).
This, along with (14), gives
¥ < ofaz)g(a1) + a(ar)g(az) + ryofas)|l(ad)l, (15)

which contradicts (11), thus proving the claim (13). As before, letting C; = (Cp \
N;) U Ny, we have pu(Cy) = p(Co). Moreover, it can be verified, using (13), that
p(Cy) > 7, again leading to a contradiction. Thus, < must hold in (6). Using similar
arguments, one can also show that the converse also must hold true, concluding the
proof. o

The above theorem gives different expressions for ¢ depending on whether A,N B,
is empty or not. The following co.rollary gives a necessary and sufficient condition, in
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terms of 7, for A, N By, to be empty. For use here, let D(n) = |g(a;) — g(a;)|, and a;

be that end point of A, farthest from By.
Corollary 1 A, N By, = ¢ if and only if D(n) < rvy|l'(az)|.

Proof: The necessary part can be easily verified using (6). To prove the sufficiency

part, suppose that A, N By # ¢. Then, by (5), we must have

¥ = g(az) + rv|l'(az)].

Now, let By, = (b;,b;) and assume 6 > §. Then, by the assumption that A, and B,
are proper subsets of Cp, we must have a; € By, and hence ¥ = g(d;) < g(ay). This
implies D > rv|l'(a3)|, a contradiction, proving the result. O

Summary of the results and their implications

The optimal robust credible region Cp satisfies the condition p(Co) = v, and
is of the form Co = A, U By, where 7 = supygc, I(8). There are (typically) two
possibilities (except perhaps in the uninteresting case of very small v ). Either,
Co = A, for suitable 5, say 7o, or Co D A,. In the latter case, if D(n) < rvy|I'(az)|
then A, N By = ¢, and # is given by (6). Otherwise, A, N By # ¢, in which case
¥ is given by (5). Without loss of generality, assume § < 6. Then, for a given s,
(0 < s < I(f)), we can find t = #(s) either by using the following version of equation
(5),

t = g(a) + ry|l'(a)l
with @ being the right end point of A,, or by the similar version of equation (6), as

the case may be, determined by whether D(s) > or < r4l'(a). Thus, for given s, we



can construct a set C* = A, U B;. Now, the optimal robust credible set Cy can be

found by solving the equation (in s)

p(C%) = 1. (16)

Typically, we found p(C®) to be increasing with decreasing s, leading either to a
unique solution to (16) and hence to Co, or to the value 5o for which p(A4,,) = v, in
which case Cp = A,,.

Remarks

1. If I(8) is, in addition, symmetric, (5) simplifies to the following:
1 '
¥ = 5{9(ar) + g(az) + ry|l'(a2) ]}

2. When O is a half-open interval such as (0,00), for sufficiently small values of
n’s, one end point of A, may coincide with (the finite) end point of ©. For such

n values, the corresponding 1 is given by

¥ =g(a) +ry|l'(a)l,

where a is the other end point of A,. This can be shown using similar arguments,
while observing that we need only consider the case where the sets A, and By

are disjoint.

3. The results in this section remain valid when mg, rather than g, is assumed
unimodal. With sufficient book-keeping, the proofs in this section can easily be
adapted to show this. A crucial modification would be to consider two separate
cases determined by whethér the intersection of the boundary of A,, and the
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set By is a singleton or a two-point set. The key here is that that all modes of ¢
would lie between the modes of the prior mo(-) and the likelihood I(-), and hence
we would still know, in the case where the intersection is a singleton, which of

the end points of A, intersects with By.
Examples

1. As an illustration, consider the normal mean problem, where X ~ N(6,0?)
and mo = N(g,7?). Now let 72 =1, p = 0, 02 = 1/5 and € = 0.05. In each
example that follows, we will also let ¥ = 0.9, and use Cy to denote the 90%
optimal robust credible set. When X = 0.3, the calculation as described above
gives Co = A, = (—0.44,1.04). When X = 1.0, we get Co = (0.13,1.66).
This corresponds to A, = (0.34,1.66) and B, = (0.13,1.54). When X = 1.5,
Co = (0.56, 2.34), which is again in the form A,UBy, = (0.66,2.34)U(0.56,2.34).
As the value of X gets further away from g = 0, Cy coincides with A,. For
example, when X = 3, Co = A, = (1.71,4.29). The other case in which A, # Co
and A, N By = ¢ does not usually occur. As can be seen from Corollary 1, this
case may (only) occur when ¢ and 4 are large, and 72 is small compared to o2
(yielding a mp-posterior mean adequately far from the value of X). Note that
these conditions would rarely occur in practice. To give an example of this case,
let 72 = 1/40, % = 1 and € = 0.4. For this case, when X = 1.5, calculation
yields Co = A, U By = (—.20,.28) U(.32,2.68). The ‘pattern’ we observe is that
for |z — p| small, Co = A,; for |z — y| larger Cy = A, U By, where A, # Cy; then

as |x — p| gets even larger, returning to the initial form Cy = A,,.
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2. Assume that the lifetime of an electronic component has an exponential distri-
bution with mean @ (in units of hours), and that the prior information about
0 is elicited by the distribution 7y = Inverse Gamma(9,.01). Suppose that
we are interested in a 90% credible set for # when the uncertainty in mp is
expressed by the class I' with € = 0.1. Suppose also that a sample of 5 compo-
nents tested has a total lifetime of 65. Then, using the method of calculations
described above, the optimal robust.credible set for § is Cp = A, U By =

(7.67,24.65) U (6.35,21.57) = (6.35,24.65).

3. Suppose X |0 ~ Cauchy(f,1) , o = Cauchy(0,.3) and £ = 0.01. When X = 6,

the 90% optimal robust credible set for 6 is Co = (—1.22,2.70) U (3.56, 8.43).
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