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Abstract

Various approaches to development of a noninformative prior for the AR(1) model are con-
sidered and compared. Particular attention is given to the referemce prior approach, which
seems to work well for the stationary case but encounters difficulties in the explosive case. A
symmetrized (proper) version of the stationary reference prior is ultimately recommended for
the problem.

Bayesian testing of the unit root, stationary, and explosive hypotheses is also considered.
Bounds on the Bayes factors are developed, and shown to yield answers that appear to conflict

with classical tests.
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1 Introduction

The AR(1) model, in which the data X = (X1, ..., X) follow the model
Xe=pXiate, (1)

where the ¢ are i.i.d. N(0,0?), is surprisingly challenging to “objective” Bayesians, even in the
comparatively simple case of known o? (which is the case studied here). Phillips {21] and the
discussants therein highlight the issues and controversies in developing a noninformative prior for
this model. A brief review of some of these issues is given in Section 2.1.

A recent approach to development of noninformative priors, the reference prior approach, has
had considerable success in developing noninformative priors for “difficult” problems (cf., Berger
and Bernardo [7]). In Section 2.2, we apply this approach to the AR(1) model. Somewhat surpris-
ingly, the AR(1) model proves resistant to a definitive reference prior analysis in the explosive case.
In Section 2.3, therefore, a noninformative prior is proposed that is based on a symmetrization of
the reference prior for the stationary case.

Section 3 compares the various noninformative priors developed in Section 2, in terms of both
mean squared error of the resulting Bayes estimators and frequentist coverage of Bayesian credible
sets. The “constant” prior and the new prior perform quite well.

In Section 4, Bayesian testing in the AR(1) model is considered, with special emphasis placed
on testing for unit roots. The new noninformative prior developed in Section 2.3 proves to be
particularly suitable for this testing. Lower bounds on the Bayes factors for the unit root hypothesis
are also presented, bounds which are substantially larger than corresponding classical P-values. The

necessity for approaching the unit root problem from a Bayesian perspective is thus reinforced.



2 Possible Noninformative Priors

2.1 Background

Use of noninformative priors has an extensive tradition in statistics, starting with Bayes [2] and

Laplace {16] [17] who used the “uniform” prior
my(0)=1. (2)

In developing Bayesian methodology, use of 7y is generally very successful, although there are
concerns about its lack of invariance to transformation (since one cannot, for instance, be simulta-
neously “uniform” in 6 and 7 = log(#)). Also, a number of counterexamples to its use have been
encountered (see, e.g., Monette, Fraser, and Ng [20] and Ye and Berger[28]).

Jeffreys [15] sought to overcome the lack of invariance of 7y through development of the now

7(0) = y/det(1(9)), 3)

where I(0) is the Fisher information matrix with (i, j) entry

famous Jeffreys prior

2

I5(0) = ~ Bl log S(X | 0], @

where Fy stands for expectation over X, given 6. Not only is this method of deriving a nonin-
formative prior invariant to reparameterization of the problem, but it seems to correct a number
of the counterexamples to use of my(8) = 1, especially those arising from nonintegrability of the

posterior distribution, 7/(8 [data). For the AR(1) model, with 8 = (p, o),

2T 1/2

73(0) = \/aet(1(6)) = [f,—f(l s+ T B2 - =) (%)

(cf., Jeffreys [15], Zellner [29], and Box and Jenkins [13], for the [p| < 1 case, and Phillips [21] for
the general case). At p = 1, n5(8) is defined by continuity (see Phillips [21]).

There are a number of interesting features of 77(6). One is that it depends on E[XZ/0?%],
where Xy is the initialization of the AR(1) process. Often it is simply assumed that X, = 0, but

more reasonable would be placing a prior distribution on Xp, in which case E[XZ/a?] would refer



to expectation with respect to this prior distribution. Thus even Jeffreys prior depends on the
possibly subjective prior distribution on Xo.
Another striking feature of 7 ;(#) is that, for large | p | and Xo = 0,

V2 (1-3)
Tp 9

my(0) = (6)

which grows exponentially fast if T > 2. For | p |< 1, m7(8) is an integrable function of p, so 7
gives enormously greater prior mass to the explosive case (| p |[> 1) than to the stationary case
(| p |< 1). Many econometricians feel that this is unreasonable. Phillips [21] and the ensuing

discussants vigorously discuss this issue.

2.2 The Reference Prior Approach
2.2.1 Motivation

Bernardo [12] initiated an information based approach to development of noninformative priors,
called the reference prior approach. A review and discussion of the current status of the approach
can be found in Berger and Bernardo [7].

The motivation for developing the approach was the acknowledged problems of the Jeffreys
prior in higher dimensions. Even Jeffreys would often alter m;(f) in multiparameter problems to
remove perceived inadequacies. The reference prior approach sought to overcome these difficulties
by breaking up multiparameter problems into a series of conditional one-parameter problems, for
which reasonable noninformative priors could be determined. The approach has proven to be
remarkably successful in overcoming the inadequacies of Jeffreys prior in multiparameter problems.

Unfortunately, the motivation for the reference prior method was primarily based on i.i.d.
asymptotics. An attempt to generalize this to the dependent-data AR(1) model met with only
partial success: the reference prior exists for the stationary case (| p |< 1), but not for the ex-
plosive case (| p |> 1). Thus a symmetrized version of the stationary case reference is ultimately

recommended.



2.2.2 The Reference Prior Algorithm

The reference prior algorithm consists of four components: (i)information maximization; (ii) max-
imizing asymptotic missing information; (iii)finding limits of reference priors on compact sets and
(iv) dealing with multiparameter problems by conditional decompositions. Although step (iv) is
the original motivation for the algorithm, we focus here on the difficulties of steps(i) through(iii).
Indeed in our applications to the AR(1) model we will avoid the multiparameter issue entirely by
considering only the case 02 = 1. Undoubtedly, the only change in the reference prior analysis that
would result from having ¢? unknown, would be to introduce a multiplicative factor of 1/c in the
prior. For the rest of this section, therefore, # will be assumed to be a real valued parameter.

(i) Information Mazimization

Denote the Kullback-Liebler divergence between two density functions f(8) and g(8) by:

0
D(/(0).9(0)) = [ 1(6)10g T @
Following Lindley [19], the expected information about # in the data X, when the prior is (), is
defined to be the expected Kullback-Liebler divergence between the prior w(6) and the posterior
m(8 | X), where the expectation is taken w.r.t. the marginal distribution of X, to be denoted by
m(x):

1%,(0) = EXD(x(9 | 2),7(8)) = [ m(@)D(x(6 | 2),7(6))da , ®)

where

m(z) = [ f(a|O)m(8)ds . )

The idea behind the reference prior algorithm is to choose a prior 7 to maximize I%(r) (i.e., to
maximize the information provided by the data, relative to 7). By variational arguments, this

maximizing 7 satisfies the (implicit) equation:
7(8) o exp{ / f(z | 0)log n(0| ©)dz} . (10)

Solution of this implicit equation is, in general, difficult; indeed, the solution is typically a discrete
_ prior 7 (see Berger, Bernardo, and Mendoza [8]). But interesting approximate solutions can be

obtained in the “large sample” case, as in the following example.



Fzample. AR(1) Model, assuming o known.
Define A = Y&, X?,, x} to be the chi-square distfibution with 1 degree of freedom, and

denote the MLE estimate of p by e,

T

T
pmie = 3 Xin Xi/ D K, . (11)
t=1 =1
Since, for large T, (35 X2 1)(Pmic — p)? ~ x? (see Andlrson [1] and White [27)), pmie = p (see

Rubin [22]), and A %3 00, the variational equation for largQ T heuristically becomes:

w(o) xexp{ [ f(z|p)logn(p| z)dz)
—;[-(p)e"‘é(ﬂ’—ﬁmle)2 ]
[ w(p)e=% (p=bmic)* dp
(p)e=% (P=Pmie)’
~ exp{/ f(f | p)lOg [ W(ﬁmle)m :| dﬁ}

~ expl [ (2 | p)31o8(Z5 =) = 3(50 XE)(fmie — p)ldz)

dz}

~

= exp{ [ f(z | p)log [

T
1
o exp{5 Eyllog Y X241} = 7r(s) (12)
i=1
where “E,” denotes expectation over (X4, ..., XT), given p. This will be called the “Nonasymptotic
reference” prior (though it’s justification is a “large T” justification). Computation and hence use

of mr(p) requires simulation (see Section 3).

(ii) Mazimizing Asymptotic Missing Information

Because of the difficulties with exact solution to (10), it is natural to attempt to formalize
the asymptotic idea implicit in the above example. There are, however, two possible types of
asymptotics. In the usual reference prior approach, one considers n (imaginary) replications (i.i.d.)

of X : Z, = (XM, ..., x"), where X} = (Xfi),...,Xf_Sf)). Define:
1%, (r) = E?D(x(8 | Zy),(8)). (13)

As n — oo, m(0 | Z,) converges to a point mass at the true value of 8, so the 7 that maximizes

I%n(w) can be said to asymbtotica]ly maximize the missing information about 8. If 7(8 | Z,) is



asymptotically normal, then it can be argued, as in the above example, that

7a(0) o exp [ £(Zn | 8)logma(8 | Za)dZn} ") faet 1(6) (14)

(after renormalization - see Berger and Bernardo [7]). In the AR(1) model, if p is restricted to a
compact set, the above argument can be carried out yielding the Jeffreys prior (restricted to the
compact set) as the reference prior.

The above asymptotic information argument was designed for thei.i.d. case, where independent
replication of the error structure seems reasonable. In the AR(1) model, however, this corresponds
to considering a large number of independent realizations of the series.

A move natural asymptotic information argument for the AR(1) model would be to let T' — oo.
Earlier heuristics/suggested that the appropriate limit of (13) would define this asymptotic reference
prior. Because of impropriety, it is typical to actually operate on a compact set C, so we define the

(asymptotic) reference prior on C as

T
exp{} Ellog 3 X2}

mo(p) = lim (15)

T T

e fe exp{%Ep[log i-§1 Xi2—1]}dp

Lemma 1 (i) In the stationary AR(1) case, i.e., C = [-1,1], Tc(p) (1 — p?)71/2.

(ii) If C=[a, b], where a < —1 or b > 1, wc(p) is a discrete prior giving mass only to the end

points of C.

Proof. See Appendix.

(iii) Limits of Reference Priors on Compact Sets
The asymptotic reference prior can typically only be defined on compact sets ©;, at which point
it is necessary to pass to a limit as ©; — O to obtain a global reference prior. Typically, a sequence

01 C O3 C ... —» O is chosen and the reference priors on 09;, 7;(6), are found. If 7%(8) is such that:
EXD(mi(8] X), 7*(0| X)) = /m;(w)D(w;(() | 2), #*(8 | z))dz =0, (16)

so that m; — 7* in an information sense, then, 7* is defined to be a reference prior on ©. One



may also require 7*() = lim;_,c ;(#)/m:(f0) (this is the usual way to compute 7*). Typically, the

above definition will yield the Jeffreys prior(in one dimension and with i.i.d. asymptotics) with

7:(0) x 1o, (8)y/det I(8) =% /det I(6) = n*(6) ; (17)

here 1g,(0) denotes the indicator function on 0;.

Initially, we had thought that (16) would be violated for 7* equal to the Jeffreys prior. We now
feel, however, that Jeffreys prior will satisfy the condition, although we have not carried out the
technical verification.

For the T — oo (asymptotic) reference prior, however, it is clear that no 7* can exist for which
(16) is satisfied, since Lemma 1 shows that the mass of m; will be concentrated at the endpoints of
0;; this mass will escape to infinity as ¢ — oco. Hence no sensible asymptotic reference prior can be
defined for the explosive case (| p |> 1).

Conclusion: The reference prior algorithm works in the AR(1) model only for | p |< 1, and

yields as the (T' — co asymptotic) reference prior on this set

w(p) = (1 - p?)7M/2. (18)

(If the i.i.d. asymptotic reference algorithm is used, the Jeffreys prior results.)

The nonasymptotic version of the reference prior algorithm suggested consideration of 7r(p) in
(12), but there are two concerns here. First, the nonasymptotic version has typically been viewed
as inferior ( admittedly without much justification). More importantly, the derivation of wg(p)
suggests that it might be very similar to 7 7(p); further evidence of this will be seen in Section 3.

For |p| < 1, the prior (18) had previously been given in Zellner [29] as an approximate Jeffreys
prior. Interestingly, Zellner also suggests the inverse of this prior, namely (1 — pz)l/ 2, based on his

MDIP approach (see also Zellner [30]).



2.3 The Symmetrized Asymptotic Reference Prior

In our attempts to apply the reference prior algorithm, we encountered a very interesting prior that
has considerable motivation as a noninformative prior, namely
/T if [pl<1
msr(p) = (19)
12z |pl VP =1} if |p|>1.
This prior has several appealing properties. First, it is actpally a proper prior, integrating to one.
Indeed it gives equal probability (of 1/2) to | p |< 1 and | p |> 1. Since few econometricians would
actually view the explosive case as being more plausible a priori than the stationary case, this is
an attractive property in comparison with 77(p) = 1 or 7j(p), which assign infinite mass to the
explosive case and only finite mass to | p |< 1. The propriety of msr(p) and its assignment of equal
probability to | p |< 1 and | p |> 1 also make it eminently suitable for use in testing. (Recall that
improper priors cannot typically be used for testing.)
A second motivation for mggr(p) is that it is the reference prior for | p |< 1. And it deals with
| p |> 1 by imposing invariance via the mapping p — 1. (Transforming to n =  results in the

same prior for 7.). This is particularly appealing in light of the fact that 5 = lp can be considered

the parameter of the “backwards” process
Xi1=nXe+ 6 (20)

and | 7 |< 1 corresponds to | p |> 1. Unfortunately, we were unable to make this argument more

than a heuristic argument.

2.4 Perspective

The “holy grail” of objective Bayesians has been the search for noninformative priors that will be
perceived as truly objective representations of ignorance. Many no longer believe in the existence
of this grail; indeed, the AR(1) model has been argued to be an example of the failure of objective
Bayesian methods, the argument being that the information-based Jeffreys prior is unreasonable.
See Phillips [21] for a defense of the Jeffreys prior, and the discussants therein for a variety of

views. We have avoided involvement in this type of debate, perhaps because we are subjective



Bayesians at heart and do not believe any noninformative prior can be more than a convenient
approximation, or perhaps because we have seen too many counterexamples to specific “objective”
criteria to believe true objectivity is possible. We do, however, feel that information-based criteria
have by far the best track record in suggesting noninformative priors that turn out to have nice
operational properties.

This leads to the second school of thought concerning noninformative priors, the “operational-
ist” school: a noninformative prior is good if it yields answers that are deemed to be reasonably
objective by most statisticians. Often there is even a frequentist component to this validation of the
noninformative prior, showing that the resulting Bayes procedures have good frequentist properties.

Unfortunately, not all problems are amenable to an operationalist objective analysis. A common
example is testing of a precise hypothesis (or, more generally, testing between two models of differing
dimension), where it is impossible to produce answers that will generally be perceived as objective
(cf., Berger and Berry [11] and Berger and Delampady [10]). It appears that the AR(1) model will
be added to this list of problems.

If an operationally objective answer is not available, Bayesians have three choices. First of
course, is performing a subjective Bayesian analysis. If one is working in a situation where this
is feasible, great. A second option is to perform a robust Bayesian analysis over a wide range of
subjective priors; this is the option discussed in Section 4. The third possibility is to professionally
“agree” that a certain prior will be used as the “conventional” or “default” prior. The Jeffreys
[15] priors for precise hypothesis testing and the Zellner and Siow [31] priors for model comparison
can be considered to be of this type. Because of its attractive properties (see Section 2.3) and
performance (see Section 3), the prior msr(p) in (19) deserves to be seriously considered as the

default prior for the AR(1) model. (If o is unknown, the suggested default prior is 0~ 7sr(p).)

3 Comparison of Noninformative Priors

3.1 The Four Candidate Priors

As candidate noninformative priors, we have encountered the following:
Uniform Prior: my(p) = 1;

. _ 2T 2 1/2
Jeffreys Prior: m;(p) = [1’11:,;7 + ll._&pT{E[ég] _ 1___17;5}] ;

10



Nonasymptotic Reference Prior: mg(p) = exp{1 Eflog(Y L, X2 )I};
1/[27v/1 - p?] if |pl<1
Yer|p|vp*-1] if |p|>1.

In the remainder of Section 3, we compare these four priors.

Symmetrized Reference Prior: Tmsr(p) =

3.2 Frequentist Comparison of Noninformative Priors

There is no unique way to compare noninformative priors, but various frequentist criteria have
proved helpful in such evaluations. The basic idea is to use the prior to generate a statistical
procedure, and investigate the frequentist properties of the procedure. If the procedure resulting
from one prior has substantially better properties than that resulting from another prior, then the
latter prior is suspect. Note, however, that one cannot typically expect one prior to completely
dominate another according to a given criterion.

The most common frequentist comparison of noninformative priors is via admissibility or risk
dominance of resulting estimators (see Berger, [3]). Another common method is to compare confi-
dence properties of sets arising from the posteriors. Here we follow these traditions of comparing
noninformative priors, utilizing the following simulation for the AR(1) model with zo = 0 and
o’ =1:

Simulation: Set T = 5, 10, 20, 50, 100 and p = .25, .5, .75, 1.0, 1.25, 1.5. For fixed T and p,
we do the following;:

(i) Generate 1600 groups of observations X = (X1,X32, ..., X7) from the AR(1) process.

(ii) For each specific observation set X, compute the MLE estimate p,e (see (11))and calculate
the posterior means: py, pJ, PR, Psr W.I.t the above four candidate priors, via importance sampling. .
It is easy to see that py = Pmle, S0 that case need not be separately analyzed. The importance
sampling used sample sizes of 1000 with a Cauchy(pmie, 1/1/3 =1 2_,) importance function, and
was accurate to within 4%.

(ili) Use of mr(p) requires an additional simulation to compute wr(p) itself (see (12)) at each of
the thousand p; generated from the above importance function; the Tr(p;) are needed to compute
the importance sampling weights. The simulation to compute Tgr(p;) was carried out by the simple
device of generating samples from the AR(1) process with the given p;, and then computing the

expectation in (12) by simple averaging. This second simulation greatly increased computational

11



cost, however. Since the resulting answers appeared to closely mimic those for the Jeffreys prior
(interestingly, they were slightly better for the cases we computed), we dropped consideration of
TR(p)-

(iv) Record (pmie — p)? and (p; — p)* (¢ = J, R, SR) for each observation, and then average
over the 1600 observations. This average is regarded as an estimate of the mean-squared error
for the corresponding estimator. The prior which produces posterior means having the smallest
mean-squared error is preferred. l

(v) The posterior 0.05 and 0.95 quantiles w.r.t. the ‘four candidate priors for each specific
observation set {( are also recorded. Then the proportion of quantiles that exceed p, in the 1600
observation sets, is an estimate of the frequentist coverage of posterior 0.05 and 0.95 quantiles.
Typically one prefers the prior that gives proportions close to 0.05 and 0.95, respectively. Also
relevant in this comparison is the expected difference between the 0.95 and 0.05 quantiles, with
small values of this difference being more desirable (implying more concentrated knowledge).

The simulation results for mean-squared error are given in Table 1, with the standard errors in
parentheses. For T=50 and 100, the various estimators were numerically virtually indistinguishable
for larger p, so only p = 1.1 is reported. Table 2 presents the estimated coverage of the posterior

quantiles. The standard errors of these estimated coverage probabilities is about 0.005.
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Table 1. Mean-squared error of posterior means and the MLE.

Parameter Prior
Symmetrized Constant

T p Reference (and MLE) Jeffreys
25 .21(.0060) .24(.011) .68(.060)
.50 .20(.0073) .25(.012) .67(.072)

5 75 .21(.0091) .27(.014) .65(.080)

1.0 .22(.011) .29(.015) .63(.092)
1.25 27(.013) .30(.017) 58(.11)
1.5 .30(.015) .29(.019) 51(.12)
.25 .129(.0041) .093(.0032) .266(.013)
.50 .104(.0043) .090(.0037) .205(.011)

10 | .75 .073(.0043) .085(.0041) .136(.0088)
1.0 .054(.0043) .077(.0044) .089(.0080)
1.25 .048(.0034) .054(.0040) .039(.0038)
1.5 .038(.0044) .039(.0049) .026(.0080)
.25 .058(.0020) .046(.0016) .096(.0059)
.50 .048(.0018) .041(.0017) .086(.0047)

20 | .75 .031(.0015) .034(.0017) .057(.0035)
1.0 | .016(.0014) .025(.0017) .019(.0013)
1.25 | .0057(.00069)  .0063(.00090)  .0023(.00036)
1.5 | .00045(.00030) .00047(.00037) .00022(.00017)
25 .019(.00067) .018(.00064) .021(.00092)
.50 .017(.00058) .016(.00057) .024(.0013)

50 | .75 .012(.00045) .011(.00048) .022(.00097)
1.0 .0028(.00026)  .0046(.00032)  .0026(.00023)
1.1 .0014(.00028)  .0017(.00033)  .00080(.00020)
.25 .0091(.00032)  .0089(.00032)  .0091(.00032)
.50 .0075(.00027)  .0074(.00027)  .0080(.00040)

100 | .75 .0049(.00019)  .0048(.00020)  .0091(.00053)
1.0 | .00077(.000086) .0012(.00010) .00061(.000047)
1.1 | 1.1E-6(7.7E-7) 9.6E-7(6.9E-7) 3.2E-7(1.8E-7)

13




Table 2. Frequentist probabilities that the 0.05, 0.95 posterior quantiles exceed p, and (in
parentheses) the frequentist expected difference between the 0.95 and 0.05 quantiles.

Parameter Prior
Symmetrized
T P Reference Constant Jeffreys
25 | .05,.96(1.77)  .03,.97(2.08) .06, .96(2.61)
.50 | .05,.97(1.66) .03,.97(2.01) .07, .96(2.50)
5 75 | .04,.98(1.49)  .03,.96(1.89) .07, .97(2.31)
1.0 | .002,.97(1.31) .04, .95(1.72) .07, .98(2.06)
1.25 | .01, .81(1.16) .04, .94(1.53) .07, .97(1.78)
1.5 | .01,.75(1.04) .04,.93(1.31) .07, .97(1.52)
25 | .06,.96(1.23) .03,.96(1.17) .07, .95(1.49)
.50 [ .06,.97(1.09) .03,.96(1.09) .08, .96(1.38)
10 | .75 .06, .98(.87) .03, .95(.95) .07, .97(1.18)
1.0 .006,.97(.60) .03, .94(.72) .08, .98(.85)
1.25 | .03, .78(.38) .03, .89(.43) .07, .98(.48)
1.5 .03, .86(.21) .04, .90(.22) .06, .95(.24)
25 | .06,.96(.82)  .04,.96(.76) .07, .96(.90)
.50 .06, .96(.74) .04, .94(.70) .07, .96(.87)
20 | .75 | .07,.97(.56)  .03,.94(.57) .08, .97(.74)
1.0 | .005,.97(.29) .02, .93(.35) .07, .99(.42)
1.25 | .03,.90(.067) .03,.91(.072) .05, .95(.077)
1.5 | .05,.94(.0067) .05, .94(.0067) .05, .95(.0068)
.25 .06, .96(.47) .05, .96(.46) .06, .96(.47)
.50 .05, .96(.43) .04, .95(.41) .06, .96(.47)
50 | .75 .06, .96(.35) .03, .94(.33) .09, .96(.45)
1.0 .007,.97(.12) .03, .91(.14) .08, .99(.18)
1.1 | .04,.90(.023) .04, .90(.023) .05, .95(.027)
25 .05, .95(.32) .05, .95(.32) .05, .95(.32)
.50 .05, .95(.29) .05, .95(.29) .05, .95(.30)
100 | .75 .06, .96(.23) .04, .95(.22) .07, .96(.28)
1.0 | .008,.97(.059) .03, .90(.068) .07, 1.0(.090)
1.1 | .05,.95(.00035) .05,.95(.00035) .05,.95(.00035)
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3.3 Conclusions

1. The mean-squared errors for 7sr(p) seem generally superior, except for larger T and p > 1. The
constant prior posterior mean (and MLE) have quite satisfactory mean-squared error. The good
performance of the Jeffreys prior for larger T" and p > 1 is noteworthy, because the criticisms of
the Jeffreys prior often focus on its supposedly extreme form for p > 1; apparently this form is not
really “extreme” operationally (see, also, Phillips [21]).

2. The coverage results are not clear cut. The Jeffreys (and nonasymptotic reference) posterior
seem to be systematically shifted too far right, but their coverage performance is not egregiously
bad. The coverages for the symmetrized reference and constant priors are generally more attractive,
with the exception of the “small T - large p” behavior for 7gg. The generally fine coverages for the
symmetrized reference prior are achieved even though it typically yields a substantially narrower
posterior, as is evidenced by the smaller expected posterior quantile differences (in parentheses in
Table 2).

3. In conjunction with the intuitive arguments from Section 2.3, a fairly strong case can be

made for adopting msr(p) as the recommended “default” prior for the AR(1) model.

4 Bayesian Testing for the AR(1) Model

4.1 Introduction

In this section, we consider testing from the robust Bayesian perspective, developing the lower
bounds on Bayes factors over a large range of priors. The Bayes factor based on the symmetrized
reference prior developed in Section 2.3 is also investigated. Since there are substantial differences
between | p|< 1 and | p |> 1 in the AR(1) model, and since p = 1 has possibly special significance,

we consider testing

Ho:p=1wvs. HH:p<1lwvs. Hy:p>1. (21)

For simplicity, we will assume that p > 0, though similar results could be developed for the more
general case. Note that Hq : p = 1 is typically a surrogate for Hy :| p—1 |< €. In Bayesian analysis,
it can be used as such a surrogate if € < o, ~ 1/[21/3 z?] (cf., Berger and Delampady, [10]).
Define
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g1 = prior density on p < 1, conditional on H; being true;
g2 = prior density on p > 1, conditional on H; being true.

Then B;;, the Bayes factor of H; to Hj, is given as follows:

Bo= 1z 10/ [ £(z1P)ax(e)dp, (22)
Bu=f(z10)/ [ fz] Paalo)de, (23)

RS ne
2T TP f(z | p)ga(p)dp

(24)

The choices of g; and g, that will be considered are:

(I) Default: Choose g, and g, corresponding to wsgr(p), i-e.,

=1/ [/1=7] s a=1/[ro-1] . (25)

(I) “Objective” Classes: For many econometric problems, reasonable subjective prior opinions will

reside in the following classes:

g1 € G, = {nondecreasing densities on (0,1)},

g2 € Gy = {nonincreasing densities on (1,00)} . (26)

4.2 Bayes Factors for the Default Prior

To reiterate, one of the attractive properties of msr(p) (in (19)) is that it is proper and gives equal .
probability to p < 1 and p > 1. Computation of the Bayes factors Bo;, Boz and By using (19) (or
(25)) is straightforward numerically.

Ezample 1. Suppose T=10. The Bayes factors depend on both A = ig)l z?_, and on ppe.

Classical testing depends on the test statistic
W = VA(pmie — 1) - (27)

It is of interest to graph the Bayes factors as, say, a function of A, when W is fixed at the standard

classical 0.05 critical value Wg 05 = —1.75 for Bo;, or Wy 05 = 1.38 for Boz and Bjg. The graph for
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Bot, Bog, and By, are presented in Figure 1 over a reasonably large range of A.

That Bg; Boz are substantially larger than 0.05 is not a great surprise; in testing a point null,
classical P-values are well known to seriously overstate the evidence against the null (cf., Berger
and Sellke [9] and Berger and Delampady [10]). It is somewhat interesting that Boz seems to be
almost twice as large as Bo;.

More surprising is the graph for B over this reasonable range of A, since B is still sub-
stantially bigger than the classical P-value 0.05. This is surprising because of the perception (cf.,
Casella and Berger [14]) that in one-sided testing (here Ho : p < 1 versus Hj : p > 1), P-values and

Bayes factors tend to be similar.

4.3 Bayes Factors Over “Objective” Classes of Priors

If indeed it is felt that reasonable prior opinions reside in G; and G, in (26), two robust Bayesian
techniques can be exploited. Both are based on observing that the “extreme” points of G; and G,

are, respectively, the following densities:
g1, = Uniform(1 —r,1), and go, = Uniform(1l,1+r). (28)

Robust Bayesian Technique 1: Graph the Bayes factors as functions of the extreme points, thus
indicating the range of reasonable opinions. Indeed, by specifying the range of r he/she considers
reasonable, a statistician can determine from the graph the relevant personal range of Bayes factors.

Using (28), the expressions for Bo; and By are

f(z|1) ) f(z 1)
s T)= .
L flpdp’ T LY f(zlp)d

B()1(1') = (29)

(These had earlier been considered, with a different motivation, by Schotman and Van Dijk [23].)
Although (28) could also be used to define By(r), there is a concern: g1, and g2, might reflect
quite different levels of information. Thus we, instead, follow the “invariance” idea of Section 2.3

and define g3, to be the transformation of g1-(p) induced by the mapping p — 1/p. The result is

. 11
92.(p) = pgl(;) on p>1. (30)
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This ensures, in a sense, that the priors assigned to Hy and H3 carry similar levels of information,

which is important in the effort to be as “objective” as possible. The resulting Bayes factor is

(1-r)~1
But)= [ fzlodel [ fglp)de. ()

(Note that the class of priors for which Bja(r) represents the “extreme” Bayes factors is the class

specified by Gy, with the invariance map to p > 1.)

Ezample 1 (continued). For the situation of Example 1, Boi(r), Boz(r), and Bi2(r) are graphed
in Figure 2 (as functions of r) for rather different pairs of (A, pmie)- In all cases, a classical test for
the same data would have P-value=0.05.

As an example of the use of such graphs, suppose a user fel_t that values of p less than 0.3 were
very unlikely apriori, while values of p around 0.8 were quite plausible. This would suggest that the
range 0.2 < r < 0.7 should be considered. For the six graphs in Figure 2, the corresponding range
of Bayes factors are (.29, .46), (.30, .57), (.47, .59), (.47, 1.04), (.15, .27) and (.12, .15). There is

clearly a reasonable degree of robustness here.

Robust Bayesian Technique 2: It is interesting to consider the minimum values of Boy(7), Boa(r),
and Bio(r), namely Bg, = inf Boi(r), Boy = inf Boa(r), Byp = inf Bia(r). These have the
interpretation that the evidenrce for the precise unrit root hypothesis HTO :p=11is at least Bg; or
By, (depending on the alternative being considered), while the evidence for stationarity as opposed
to explosive behavior is at least B;,; and these are lower bounded on the Bayes factor over any prior
in the relevant “objective” class. Thus By, gives the lower bound on the Bayes factor for testing
Ho:p =1 versus Hy : p < 1 over all priors whose density on p < 1 is nondecreasing.

It can be shown that By, and By, depend only on W, and are given by

(W)
Bov =l T o I — 7lde (32)
BOZ exP(_W2/2) (33)

20z = T [ exp[— (W — €)%)dE

Since the classical test level, e, also depends only on W, it is possible to graph By; and By, as
functions of . This is done in Figure 3 for the situation of Example 1. Thus, when a = 0.05

‘and T = 10, By; = 0.29 and By, = 0.47. These comparatively large lower bounds, which indicate
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that the evidence for Hg to Hy or Hs is at least 3/10 or 1/2, respectively, demonstrate the truly
misleading nature here of the classical P-value, . Classical P-values are far too ready to reject the
“precise” unit root hypothesis Ho: p = 1.

Unfortunately, B,, is not simply a function of W. Thus, for a specified classical level o, we can
present B,, only as a function of, say, A. This is done in Figure 3 for @ = 0.01 and o = 0.05.
While By, is still substantially larger than a, indicating that a overstates the evidence against

stationarity, the difference for this one- sided testing case is not as dramatic as for By, or By,.
Appendix: Proof of Lemma 1

For the Gaussian AR(1) model with 62 = 1 and zo = 0, Anderson [1] and White [27] established
that

1 & 2 d 1

T;Xéq T 1252 lpl<t, (34)
—2Tszx? 4, v, DI lp|>1 (35)
AP = En I

To compute the reference prior, we first establish that

1 & 1
E,flog( Y X1)] - log = lpl<1, (36)
=1

T 2
B lloglp™ LX) — Elog 0L |

These are immediate from (34) and (35) if uniform integrability of log(3"F, X2 ,) can be demon-

pl>1. (37)

strated. Uniform integrability is guaranteed by uniform boundness of the square integral. This will
be established in the following, using the inequality |log+/z |2< z + 1/2: |
(i) For|p|< 1:

2
log Vv % 21T=1 Xi2—1

E,

1 T T
AR sEN ETAL N
i=1

=1

2C+D. (38)
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Clearly,
1 %=

-
-]
[~
-
p—

= : (39)
TE1-» 1=

In order to bound E, [T/ >F, X?_l] , it is convenient to use the notation: £ > 7 means that ¢ is

stochastically larger than 7, in the sense that Pr(§ > t) > Pr(n > t), Vt. Note that if { > 7 and

they are both nonnegative, then since E£ = [5° Pr(¢ > t)dt, E(1/€) < E(1/7n). Also, one can see

that if & > 91, & > 72, then & + & > m + 2. Since X2 > x% for i = 1,...,T — 1, it follows that
X2 X3 and T/ YL, X2, <T/x%_,. Thus

D= BT/ X2 < B(T/dn) = g < 1. (40)

=1

(ii) For | p |> 1: by the same methods as above

2
E, log \/P—ZT ZzT=1 Xi2-1 < Ep[P_QTZX ~1] + B 2T/ Z

=1 =1
ZC+D. (41)
Clearly
1 T-1 1— ,02'
P2 =1 1- p2
_1-p2T) T-1 1

TP TP =1 S (P-1p (42)

In order to bound E,[p*T/ YL, X2 ], notice that X2 > p?T=49y2 fori =T —4,...,T -1, so that
T X2, > p*T-4y2 Therefore:

ZT/ZX ) < E[PzT/(PZ(T 4)X4)] = . (43)

Therefore, we have established the uniform integrability of %[log(zg;l X2 ,/T)] for p < 1 and
log(YE, X2 ,/p*T)] for p > 1. Thus (36) and (37) have been established.

To complete the proof, we take the limit as ' — oo inside the integral over p in the denominator

of (15), noticing that, if C = [-1,1], then exp{}E,log[+ X2 ,1} is uniformly bounded over
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T by 1/v/1 — p? (Jensen’s inequality applies here) which is integrable in [-1,1]. Thus, by the
Dominated Convergence Theorem and (36), mc(p) (1 — p?)~1/2 for C = [-1,1].
For C = [a,b] with a < —1 or b > 1, w.l.o.g., consider | b |>]a]. For 0<e< (| b]| - |al)/3,

write:

C =l[a,b]=[a,b—3]U[b—3e,b—€e]U[b— €D

2 C1UCUCs. (44)
If p € Ci1\[~1,1], then by (37):

T T
E,log [(b -2¢)7T)" X?_l] = E,log(p™?T> X2 ,)+ 2T(log | p | —log(b — 2¢)] T2% 0. (45)

=1 =1

The limit of —co can similarly be established for p € [—1,1]. For p € C3, also by (37):
T T T
E,log [(b —2¢)" T Z X?_l] = E,log(p™™ Z X2 )) + 2T[logp — log(b — 2¢)] —"+00 . (46)
i=1 =1

Thus, as T grows,
T
exp(3Eyllog § X2,

T
foexp{3E,llog 3 X2,1}dp

m(p) = (47)

will concentrate its mass on C2 U C3. As € can be arbitrarily small, the conclusion of the lemma

follows. [ ]
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Figure 1: Bayes Factors for the Default Prior
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Figure 2: Bayes Factors Over “Objective” Classes of Priors
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