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Abstract

A major problem facing American universities is the end of mandatory retirement in 1994.
Currently, tenured professors must retire by age 70. There is concern that large numbers of
professors will choose not to retire, leading to an expensive older faculty and preventing infusion
of ‘new blood’. We have undertaken a study of the problem at Purdue University, with the
primary goal being to predict the number of faculty retirements in each of the next ten years.

Methodologically, the problem is one of inference for multinomial cell probabilities, based
on independent data arising from various subgroups of cells. The cells correspond to age and
reason for departure from the university (retirement or ‘other’). The posterior distribution of
these cell probabilities, together with current faculty demographics, can then be used to predict
the future retirement numbers.

Prior information of several types exists, including orderings among the cell probabilities,
retirement rates at other universities, and mortality rates. No data was available concerning
retirement rates for professors older than 70, so inference within this important domain is highly
dependent on the prior; a sensitivity study was thus carried out within this region.

Computations were done using a hybrid Markov Chain sampling scheme. This includes a
“random direction” component that is particularly well suited for handling constrained param-

eter spaces.

Keywords: Bayesian posteriors, Gibbs sampler, Hit-and-Run sampler, Markov chain

sampling.
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1 Introduction

In 1986, the Age Discrimination in Employment Act was amended by the United States Congress
to prohibit mandatory retirement on the basis of age for all workers, except for a few exempt
professions including faculty in higher education. This exemption will end on January 1, 1994, at
which time no university can require a professor to retire; only seriously inadequate performance -
not age - can be cause for dismissal.

Among the concerns that have been expressed at having professors over 70 (the current manda-
tory retirement age) are (i) concern that productivity or innovation may decline at such ages;
(ii) the fact that older professors have higher salaries, so that the total cost of the faculty would
increase; (iii) worry that universities would be unable to hire ‘new blood’ for a period of time.
Solutions that have been proposed include ‘buyouts’ of older professors or increases in retirement
benefits to encourage retirement. As a rough indication, estimated costs of such ‘solutions’ range
from $5 million to $20 million per year at Purdue University.

The purpose of this study was to estimate the magnitude of the problem by predicting, for the
next twelve years, the number of professors that would choose to work past 70 and predicting the
number of upcoming retirements at Purdue . A variety of sources of information were available.
Most important was data concerning the actual retirement and departure rates of professors at
Purdue over the last ten years. Also available (and utilized) were mortality rates for professors (see
Appendix A), and information from other universities. A survey of the Purdue faculty was also
undertaken, but resulted in unusable data on the issue of likely retirement age. The reason the
survey was a failure is of interest for those designing Bayesian elicitation schemes - see Appendix
B for discussion.

The data can be modelled as a series of independent multinomial observations, though on
possibly different cells. The key piece of prior information is information concerning monotonicity of
cell probabilities. Thus the underlying statistical scenario is that of order-constrained multinomial
inference. Bayesian analysis is particularly well-suited to this scenario, because it can easily handle
monotonicity constraints. The prior information from mortality rates and other universities is
incorporated through a hierarchical structure.

Posterior computations are done through a hybrid algorithm that combines features of Gibbs

sampling, Hit and Run sampling, and a generalized Metropolis algorithm. This is described in



Section 4.

Section 5 develops the predictive model for this scenario, and gives the actual predictions of
retirement rates and numbers. Because the predictions are, in part, based on projections past the
range of the data (to ages over 70), a partial sensitivity study to assumptions in this domain was
undertaken.

The conclusions of the study are discussed in Section 5.3. In brief, the conclusion is that the

end of mandatory retirement poses no serious difficulties over the next ten years.

2 The Data and Modeling

2.1 The Data

Table 1 gives the data on retirements (R) and other net departures (D) of tenured faculty from
Purdue University over the past ten years. Data prior to this time could not be easily utilized
because of differences in the retirement system. Indeed, the numbers in parentheses in the table
are unusable for this reason. (Until 1981-1982, retirement at age 65 was mandatory, except for a
variety of special cases; the numbers in parentheses involve professors whose decisions were made
under this earlier system.)

“Net departures” are those who left the faculty for reasons other than retirement, such as death
or obtaining a different job, net of those who joined the tenured faculty in the given age group.
(Rather than separately modeling this hiring process, we view it as a process of replacement; this
causes a problem only when there are more “hires” than “other departures”, something which only
occurred twice.) Note that only tenured faculty are considered here. The reason is that non-tenured
faculty have never been subject to mandatory retirement.

In understanding the data, it is crucial to realize that it is a collection of age cohorts. By an
age cohort we mean a group of professors of the same age, imagining the group moving through
time. Thus the 73 professors of age 51 in 81-82 are in the age cohort that becomes 68 professors of
age 52 in 82-83, 67 professors of age 53 in 83-84, etc. . In Table 1, there are a total of 23 such age

cohorts (not counting those corresponding to numbers in parentheses).
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2.2 Modeling

The age cohorts will be considered independent. In a given cohort, the departures due to retirement
and the net other departures will be modeled by a joint multinomial distribution, depending on

unknown parameters p; and ;. Let
E; = {departure from university at age > 50 + 3}. (2.1)
Then the relevant retirement probabilities are defined by
p; = P (retirement at age 50+ i | Ey);
the net non-retirement departure probabilities are given by
r; = P (net non-retirement departure at age 50 + ¢ | E;).

For convenience, also define

v; = P(E;|Ey) = i(l’j +75),

j=i
and note that, for ¢ = 1,2,---,
pi+r; = P(net departure at age 50 +1 | E,),
p,_:—_ri = net departure rate at age 50 + ¢ given E;.
2

We actually will consider retirement and departure probabilities only up to age (50 + k), where
k = 30 or k = 35 years. Thus the “tail” will be summarized by

o0 o0
* *
Piy1 = Z p; and T = Z Tj.
j=k+1 j=k+1

For age cohort ¢ (any labelling is okay), let (50 + z) and (50 + ¢) be the lower and upper age

limits for the cohort in the data set. (Thus the age cohort discussed in Section 2.1 has ¢ = 1 and



i = 10.) Define, for j = ¢ to 1,

N; = number originally in age cohort ¢; (2.2)
R;; = number of retirements at age 50 + 5 from age cohort i; (2.3)
D;; = net number of nonretirement departures at age 50 + j from age cohort i.  (2.4)

Then it is reasonable to assume that

(Rii, ceny, R{;, Dii-) U D{;) ~ Multinomja.l(N,-,Z_)i, ’_I_‘,') s (2.5)
where
= [PLPinn P
P’l - (’Ui-, ’vi b Y 'Ui) 2

'3
I

Ti Ti4l .
Ti Tty T
v, v v

in the notation we supress the last cell, which corresponds to retirement or departure after 7 and has
cell probability (v;,;/v;). Note that the number of cells in each multinomial model is 2(z — z) + 3,
and that this varies from 3 to 21 cells for the various cohorts.

Assuming independence of the cohorts, the multinomial likelihoods for each cohort can simply
be multiplied together which, ignoring multiplicative constants, results in the observed likelihood

function

- _ 21,42 4.5.1 .2 2 .1
L*(p,r,data) = 1913 T3 T4 T7 Tg T11 Ti3 Ti4 Ti6

-p D} D3 P D3 P* Pé P Plo P1s Pia Pis Dia Pis Pis Pi7 Pis Pis

~15 27 27 5 15 .13 .9 . —14 -3 24 26 .21 .18 .18 .10 .52
w518 03 027 027 vg v7® V% vg vigt v viy vis viE ofE vIF vig vig vg, (2.6)

where p = (p1,p2,-+-) and 7 = (71,79, -+).



3 Prior Information

3.1 Mortality Rates

To incorporate known mortality rates into the analysis, it is necessary to reparameterize. In
Section 2.2, we introduced r;, which is the probability of a net non-retirement departure at age

(50 + 7) given En, i.e., given departure from the university at age greater than 50. Define
m; = P (death at age 50+ i | E4),

t; = P (departure at age 50 + ¢ for reasons other than death or retirement | E;).

Then we have

ri=m;+1t, fori=1,2,--. (3.1)

Denote the mortality rates for professors by
m; = P (death at age 50 + 7 | lived to age 50 + 7). (3.2)

These were obtained from the Teachers Insurance and Annuity Association (see Appendix A), and

can be used with the p; and ¢; to obtain a recursive formula for computing the r;.

Proposition 3.1 Fori=1, 2, ---,
T =m) v + 1. (3.3)
Also, in recursive computation, a convenient formula for v; is
i1
v =1-) (pj+1j)
i=1
Proof: Clearly

m; = P(death at age 50+ | Ey)
= P(death at age 50 + i | lived to age 50 + 1) - P(E; | Ey)



The conclusion follows from Equation (3.1). [
Note that the unknown parameters have now become p = (p1, ps, - -+, pr) and t = (1, ta, - -+, tx),
and that the likelihood function for p and ¢ can be found from (2.6), using (3.3).

3.2 Constraints on Parameters

For many years, 65 was the standard retirement age in the United States. Because of this and
the fact that full government retirement benefits begin at 65, it is still by far the most common
age of retirement. No other ages possess unique features, so it is natural to assume that the p; are

increasing to age 65, and decreasing thereafter, i.e.,

PSP SP152P162 " 2 Pk (3.4)

It is less clear if the ¢; can reasonably be constrained. Note that ¢; is essentially just the net
probability of leaving for a new job. We decided that #;, t5, ---, t10 have no clear ordering, but
that t11, 212, - -+, 20 are reasonably judged to be decreasing, with 21, t2, - - -, being zero. Thus

we assume that
t1,82,- -, 110 are free; #13 > 19 > -+« > tag; toy =top =---=0. (3.5)

3.3 Constraints in the Tail

For ages greater than 70, no data is available. Thus answers will be very sensitive to p; in the tail,

i.e., to p2g, P21, -+, Pr. We will therefore also consider additional constraints
Pi+1 > ¢ p;, for i = 19,20,---, k, (3.6)

and for ¢ = 0,0.5,0.75. Motivation for this is given in Section 3.6.



3.4 Information from Other Universities

Define, conditional on F;,

p1 = net probability of departure in the 51-55 age group

= 2+, (3.7)

p2 = net probability of departure in the 56-60 age group

10
= Y (pi+ i), (3.8)
=6
p3 = net probability of departure in the 614 age group

o0
= Z (pi + 73). (3.9)
=11
Note that p3 =1 — (p1 + p2).
Rees and Smith (1991) present information on net departures at other public universities. We
are interested in using this information to augment the paucity of the Purdue data in the 51-60 age
period. This information from Rees and Smith (1991) is summarized in Table 2; note that only

information for five-year intervals was given.

Table 2: Net Departure Probabilities At Other Public Universities

”, P2 P3
Estimate .023 078 .899
Standard Error .0064 0142 .015

Corrected
.011 .019 .021

Standard Error

The estimates and standard errors in Table 2 refer to the net departure probabilities given in
Rees and Smith (1991) for the five-year intervals averaged over the surveyed public universities. The
estimates can be used as the prior means for the p;, but the standard errors are not directly relevant,
since they refer to the estimate of the public university average. The variance between universities
is thought to be between (0.01)? and (0.015)?. Adding this variance to that of the estimate provides
a more accurate reflection of the accuracy for Purdue of the estimate; the corresponding standard

deviations are given in the last row of Table 2.



To convert this to a prior distribution for (p1, p2, p3), we will match the estimates and corrected

standard errors in Table 2 with those for a Dirichlet (o, a1, a2, @3) distribution. Thus we want

43 [47
(E[p1]7 E[p2]’ E[p3]) = (_1 ’ s ’ = > = (023, 078, 899) )
(274} Qo (7)) )

(var(p1), var(ps), var(ps)) = ((.011)2, (.019)?, (.021)2) ,

where

Q; Q4 1
var(p) = o (1 - a—o) ot )

Approximate solution of these equations yields, as the prior for (p1, p2, p3), a
Dirichlet (200,4.6,15.6,179.8) (3.10)

distribution. We also add the constraints

p1 < p2 < p3, (3.11)
to ensure consistency with (3.4).

3.5 The Prior Distribution

The prior distribution for p and ¢ will be chosen to be

W(E?Z) = W(Z_”E I Pl,P2,P3) : 7T(P1,P27P3), (3.12)

where 7(p1, p2, p3) is the constrained Dirichlet distribution given in (3.10) with the constraint (3.11);

and

m(p,t | p1,p2,p3) x 1QP(Z_’,§)7 (3.13)

which is the constant density on ), where p = (p1, p3, p3) and
Qp = {p, t: expressions (3.4) through (3.9) are satisfied} . (3.14)

The choice of a uniform density in (3.13) is an effort to be noninformative. Because £ is so

10



sharply constrained, different choices in (3.13) would not matter greatly, except in the “tail” (i.e.,
for poo > p21 2 -+ > pk) where there is no direct data. A uniform prior over this tail is actually
somewhat dramatic; for instance, the prior means of the p; decrease roughly quadratically. Since
equal p; would be the opposite extreme, we study sensitivity to the prior tail by considering, also,
the constraint (3.6), for ¢ = 0, 0.5, and 0.75. Recall also that we limit £ to k¥ = 30 or k = 35. We
do not assume that the p; are zero past theses points; rather, the presence of & is an effort to limit

any undue influence of the uniform prior in the tail.

4 Posterior Computation

4.1 The Posterior and Posterior Expectation

Denote

Qe = {p,t: (p,1) € Qp, 0 < p1 < p2 < p3}, (4.1)

where Q is defined in (3.14). The posterior distribution is
7(p,t | data) o« Likelihood x Prior = L(p,t)7(p,t), (4.2)

for (p,t) € Q, where L(p,t) = L*(p, 7, data) is given in (2.6); and the prior 7 (p, t) is given in (3.12).

Most Bayesian quantities of interest involve posterior expectation, such as

Jo. ¥(p,8)L(p, 1)7(p, )dpdt

[posterior —
WOl = T T (e e

(4.3)

This requires high dimensional integration (up to 54 dimensions), and will be computed using a

Monte-Carlo method as

. M
[pposterior [¥(p,1)] = % Z ¢(B(i),§(i)), (4.4)

=1
where {(g(i),g(")), i=1,2,---, M } is a stream of “simulated” values from the posterior distribution

7(p,t | data) and M is suitably large. Section 4.2 describes the hybrid algorithm used to generate
{(13("),;(")), i=1,2,---, M} from 7(p,t | data).

11



4.2 The Hybrid Algorithm
4.2.1 Outline of the Algorithm

The hybrid algorithm has three major components: grouping, an approximate Gibbs step, and
Metropolis-Hit and Run generation. The parameters of interest, (p1,p2,- -+, Pk, 1,12, -+, 1) for

k = 30 or 35, are first grouped as follows:

Group 1. Gy = (p1,p2,--",P10);
Group 2. Gz = (p11,P12," -, P20);
Group 3. Gs = (p21,P22, -+ - Pk);

Group 4.  Gg=(t1,t2,+--,120).

Reasons for this grouping are given in Section 4.2.2. The approximate Gibbs step of the algorithm

is to iteratively sample over these four groups as follows:
Step 0. Choose a starting point (G&O), G&O),Géo), G‘(to)) , and set ¢ = 0.

Step 1. Generate G&H_l) (approximately) from the conditional posterior distribution

6 169,690,687,

Step j, j=2,3,4. Generate ng-”l) (approximately) from the conditional posterior distribution
(Gi1 {cf™,1<3}.{69,n> 5}].

Step 5. Set ¢ =1¢+ 1 and go to Step 1.

For each of Step 1 through Step 4, we approximately sample from the relevant conditional
distribution using one-step of a Metropolis-Hit and Run sampler. For example, details of generating

Ggiﬂ) from one step of a generalized Metropolis algorithm for [Q’l | Q’gi), G':(,j), Cj‘(:) ] are:
(i) Generate a candidate G} by

o Choosing a uniformly distributed direction d;

12



o Finding the line segment L through Ggi) in the direction d which lies in the constrained
parameter space QZ((_}’gi) ,G :(;), G‘(:)), which is the subspace of Q. in (4.1) given the com-
ponents Gg), G:(;), and G,(:);
o Choosing G7 uniformly on L.
(ii) Moveto G7 or stay at Ggi) according to the general Metropolis algorithm for [le | Cj’g), Gg), G‘(:)] ,

i.e., move to G7 with probability

g(g1169,69,69)
m L TG0 G0 G0 [
g(a?169,60,69)

where ¢ ( | Gg), C_}'g), Cj‘(f)) is the density function of [Cj’l [ ng), Ggi),ggi)] .

Note that, for Gibbs step 3, we always move to G since [G;; | Cj’gi“), Q’gﬂ) , Ggi) ] is uniform.

4.2.2 Discussion and References

Random direction methods are typically well-suited to highly constrained parameter spaces.
The constraints will typically result in a rather small line segment L, so that uniform random variate
generation over L is reasonably efficient. Random direction methods are especially attractive when,
as is the case here, the conditional distributions do not have standard form.

There are several reasons for the grouping of parameters. First, the random direction part of the
algorithm requires rough orthogonality; otherwise iterations of the algorithm will move too slowly.
The four groups that were created do have roughly orthogonal posteriors. The second reason for
grouping is that computing the line segment L is fairly expensive, but with a cost that is fairly
constant across dimensions. Grouping results in needing to compute only four line segments per
iteration. A final reason for grouping is to keep the algorithm compatible with the structure of the
prior (and posterior). The two relevant structural features are (p;, pa, p3), which are preserved
under the grouping, and the fact that the conditional posterior of G is uniform (since the prior
was uniform and there was no data in the tail).

General discussion of the Metropolis-Hastings algorithms can be found in Metropolis et al.
(1953) and Hastings (1970). Extensive discussion and illustration of Gibbs sampling can be found
in Geman and Geman (1984) and Gelfand and Smith (1990). Boneh and Golan (1979) and Smith

13



(1980, 1984) independently proposed Hit and Run samplers; and Belisle, Romeijn and Smith (1990),
Schmeiser and Chen (1991), and Chen and Schmeiser (1992) proposed and discussed more-general
versions of Hit and Run samplers. Discussions or instances of use of hybrid methods include Miiller
(1991), Tierney (1991), Tanner (1991), Geweke (1992), and Chen and Deely (1992). Gelfand,
Smith and Lee (1992) discussed Bayesian inference for constrained parameter spaces using Gibbs

sampling. They also had an example of a multinomial model with ordered parameters.

4.2.3 Computational Details

The hybrid algorithm was implemented in single precision Fortran-77 using the IMSL library.
The computation time was about 4 hours for 1,000,000 iterations on a Sun Sparc-Station 1. (Note
that this included accumulation of a (k 4+ 1) X (k + 1) covariance-matrix, for £ = 30 and 35.)
Since the hybrid algorithm is a special version of Metropolis-Hastings, asymptotic convergence is
guaranteed. The formal proof of convergence is very similar to that given in Chen and Deely (1992).
Empirically, convergence seemed to be achieved at about 100,000 iterations.

We chose one single long run of the simulated Monte Carlo Markov chain to obtain the posterior
means and standard errors for the parameters of interest. The Monte Carlo standard errors of
these quantities were computed using non-overlapping batch means with batch size of 100,000.
The Monte Carlo standard errors of the posterior means were from 2% to 10% of the posterior
standard errors, which is acceptably small for our purposes. The non-overlapping/overlapping
batch statistics for computing Monte Carlo standard errors can be found in Schmeiser (1982) and

Schmeiser, Avramidis, and Hashem (1990).

4.3 Posterior Means and Standard Errors of the Parameters of Interest

The posterior means and standard errors of the retirement probabilities, p;, net departure
probabilities, p; + r;, and net departure rates (p; + r;)/v; for ¢ = 0 and k& = 30, 35 are given in
Tables 3 and 4. The Bayesian estimates of the net departure probabilities and net departure rates
for the different priors corresponding to ¢ = 0, 0.5, 0.75 and k£ = 30, 35 are plotted in Figures 1
and 2. An examination of the tables and figures reveals considerable robustness with respect to
¢ and k, except possibly for the “tails” (especially, the departure rates for age > 70). Even here,

however, the results are qualitatively similar, and would lead to the same policy conclusions. (The

14



large differences in departure rates for age > 80 make little difference at the policy level, because

only a very few professors would be in this category.)

Table 3 : Posterior Means ( Standard Errors ) for Retirement and Net
Departure Probabilities and Rates for ¢ = 0 and k¥ = 30 years

Retirement Net Departure Net Departure
age Probability Probability Rate
50 + ¢ Pi pit T (pi + 73)/vi
51 .0010 (.00061) .0062 (.00235) .0062 (.00235)
52 .0017 (.00079) .0061 (.00156) .0061 (.00158)
53 .0025 (.00103) .0093 (.00260) .0094 (.00264)
54 .0042 (.00139) .0098 (.00230) .0100 (.00235)
55 .0068 (.00156) .0117 (.00208) .0121 (.00214)
56 .0079 (.00169) .0133 (.00220) .0139 (.00232)
57 .0096 (.00196) .0182 (.00379) .0193 (.00404)
58 .0120 (.00251) .0179 (.00294) .0194 (.00321)
59 .0176 (.00329) .0281 (.00501) .0310 (.00551)
60 .0226 (.00361) .0290 (.00387) 0330 (.00444)
61 .0275 (.00413) .0390 (.00483) .0459 (.00575)
62 .0347 (.00495) .0444 (.00518) .0547 (.00650)
63 .0424 (.00610) .0512 (.00619) .0668 (.00829)
64 .0593 (.00926) .0674 (.00928) .0942 (.01303)
65 .2030 (.01746) .2104 (.01747) .3245 (.02569)
66 .0791 (.01146) .0847 (.01150) .1933 (.02448)
67 .0568 (.00785) .0615 (.00790) 1741 (.02131)
68 .0465 (.00618) .0505 (.00624) 1734 (.02117)
69 .0397 (.00562) .0431 (.00566) 1793 (.02464)
70 .0335 (.00568) .0364 (.00571) .1847 (.03206)
71 .0281 (.00538) .0304 (.00538) .1901 (.03930)
72 .0234 (.00476) .0255 (.00476) 1973 (.04512)
73 .0193 (.00433) .0212 (.00434) .2055 (.05311)
74 .0158 (.00393) .0174 (.00396) .2143 (.06225)
75 .0127 (.00359) .0141 (.00362) .2229 (.07377)
76 .0100 (.00324) .0112 (.00328) .2323 (.08992)
77 .0076 (.00290) .0087 (.00293) .2391 (.10977)
78 .0054 (.00252) .0064 (.00255) .2410 (.13623)
79 .0034 (.00206) .0043 (.00211) 2269 (.16525)
80 .0016 (.00149) .0024 (.00157) .1805 (.18610)
81+ . .0203 (.01755) 1.000 (.00000)
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Table 4:

Posterior Means ( Standard Errors ) for Retirement and Net
Departure Probabilities and Rates for ¢ = 0 and k = 35 years

age

50 + 1

Retirement
Probability

D:

Net Departure
Probability

P+

Net Departure
Rate

(pi + 73)/vi

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86+

.0010 (.00060)
.0017 (.00079)
.0025 (.00103)
.0042 (.00140)
.0067 (.00156)
.0078 (.00169)
.0095 (.00196)
.0119 (.00245)
.0176 (.00323)
.0225 (.00363)
0273 (.00416)
.0345 (.00491)
.0421 (.00608)
0586 (.00924)
2014 (.01733)
.0779 (.01153)
0551 (.00787)
.0445 (.00629)
.0371 (.00559)
.0302 (.00523)
.0248 (.00440)
.0209 (.00376)
0176 (.00315)
0150 (.00281)
0128 (.00253)
.0109 (.00234)
.0093 (.00215)
.0079 (.00201)
.0066 (.00186)
.0054 (.00168)
.0043 (.00155)
0033 (.00138)
0024 (.00118)
.0015 (.00095)
.0007 (.00066)

10059 (.00196)
.0065 (.00209)
.0097 (.00312)
.0100 (.00276)
0117 (.00207)
.0135 (.00260)
.0184 (.00382)
.0177 (.00281)
0276 (.00446)
.0291 (.00400)
.0386 (.00480)
.0440 (.00511)
.0507 (.00615)
.0666 (.00925)
2088 (.01734)
0834 (.01158)
.0598 (.00792)
.0485 (.00634)
.0406 (.00563)
0331 (.00527)
0273 (.00443)
0233 (.00379)
.0198 (.00321)
.0170 (.00289)
.0146 (.00264)
0127 (.00245)
.0109 (.00228)
.0094 (.00214)
.0079 (.00199)
.0065 (.00182)
.0053 (.00169)
.0042 (.00151)
.0032 (.00132)
.0022 (.00111)
.0014 (.00087)
.0101 (.00928)

.0059 (.00196)
.0065 (.00210)
.0098 (.00316)
.0103 (.00283)
.0120 (.00214)
.0141 (.00273)
.0196 (.00407)
.0191 (.00308)
.0305 (.00493)
.0331 (.00457)
.0454 (.00571)
.0542 (.00643)
0662 (.00824)
.0930 (.01301)
3212 (.02516)
1889 (.02444)
1672 (.02109)
1631 (.02112)
1632 (.02342)
1594 (.02716)
1565 (.02804)
1585 (.03036)
1603 (.03008)
1642 (.03230)
.1692 (.03486)
1766 (.03924)
.1847 (.04374)
1955 (.05201)
2054 (.06013)
2165 (.07123)
2275 (.08636)
2374 (.10636)
2414 (.13103)
2314 (.15757)
1906 (.17469)
1.000 (.00000)
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Figure 1: The Bayesian Estimates of the Net Departure Probabilities for Three Different

Priors. The solid curves are for ¢ = 0; the dotted curves are for ¢ = 0.50; the dashed
curves are for ¢ = 0.75.
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Figure 2: The Bayesian Estimates of the Departure Rates for Three Different Priors.
The solid curves are for ¢ = 0; the dotted curves are for ¢ = 0.50; the dashed curves are
for ¢ = 0.75
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Another quantity of interest is the mean extended duration (say, ge.q.) of a tenured professor’s

stay at Purdue due to mandatory retirement. This is defined as
o0
ped. = Y i (P204i + T204i) - (4.5)
=1

The posterior means and standard errors for . 4, are given in the following table, for ¢ = 0,0.5,0.75

and k& = 30, 35.

Table 5: Posterior Means (Standard Errors) for the Mean Extended Duration pu. g4 at

Purdue University

k (years) c=0 ¢ =0.50 c=0.75
30 7506 (.18475) | .7803 (.16835) | .8907 (.13948)
35 1.0022 (.19439) | 1.0350 (.18514) [ 1.2391 (.17026)

On average, at most 1 year will be added to the length of a professor’s stay at Purdue, which is a
rather modest effect. Note that u. 4. is a summary of the effect of the “tail”, and so Table 5 also

shows the extent of robustness to the tail.

5 Prediction of Retirement Rates

5.1 The Predictive Model

The ultimate goal is to predict, over the next twelve years, the number of tenured faculty in
various age categories and the net yearly number of departures of faculty age 51 or older. To this

end, define

Y;; = the number of tenured faculty, from age cohort 50 + ¢
in 1991-92, that remain at age 50 + 7, (5.1)

Xi; =Y —Yiin the number of tenured faculty, from age cohort 50 + 1,

that depart at age 50 + 7, (5.2)

Xi = (X, Xiig1, -+, Xik)- (5.3)
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Then, again suppressing the last cell “departure at age > k£ + 1” in the notation,

Xi| p, t ~ Multinomial (Yi, ¢:), (5.4)
where
¢ = (Giis Gig+1r =**» Gik), (5.5)
gi;; = the conditional probability that a tenured faculty member departs at age 50 + j,
given that they are currently of age 50 + ¢
= (pi+75)/v (5.6)
Noting, from (5.1) and (5.2), that
j-1
Yi; =Yi- Y Xu, (5.7)
I=t
we can derive the following result for predicting the Y;;.
Theorem 5.1
Yij = E[Yy] =Y - EP° [v; /)] (5.8)
and
teri ;) 5 5
Var(Y;;) = Yy (Vi — 1) Eposterior (1 _ v_) + (Y,-,- - Y,-j) [1 - (Y - Y,-j)] . (5.9)
Proof: From (5.7) and (5.4),
- H J_l
}/2] = E[}/z]] — Eposterlor E }fii _ ZXH I Ba ,t,
I=1
teri j-1 terior [ i — ¥
_ v.. | 1_ mpposterior , — V. _ pposterior | Vi — U )
Yill1-E gqﬂ Y (1 E [ o D (5.10)

Var(Y;;) = E (Y“ - Yij)2

i-1
= E\Yi-) Xu-—

=1

. 2
-1 .
Y — Yy Z Eposterlor( q“)] )

I=1
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j=1

2
= E (E [Xiz - YiiEPOSterior(qu)])

=1

=2

I~ 2
= F (125 [ (X - Yiuqa) + Yy (q,-; - EPOSterior(q,-,))])

. 2 . 2
-1 ) J-1 .
= E ( [ X - Yii‘]il]) + Y2 Eposterior (Z [%‘1 - EPOStenor(qz'l)]) - (5.11)

I=i =i

Since
j=1 j-1
Y. Xulpt ~ Bin [Yi, Y qul,
=2 =%
i-1 2 . j-1 i-1
E Y [Xa— Yiqu]| = EPOSterior |y, doaa] 1= aul | (5.12)
=z =z I=:
and
i-1 i — Vs . teri i-1
= = L, Y = Y EPOSTEROT 1N " g . (5.13)
=1 ¢ =1
Equation (5.9) follows by algebra. [ |

5.2 Predictive Estimates

The Y;; are the number of tenured professors at Purdue of age (50 +¢) during 1991-92 (negative

¢ are allowed). These numbers are given in Table 6.

Table 6: Tenured Purdue Faculty During 1991-92

Age 45|46 | 47 48 149 [ 50 | 51 | 52 [ 53 | 54 | 55 | 56 | 57 ”
Number | 60 [ 65 | 50 | 63 | 58 | 66 | 59 [ 38 | 60 | 61 | 65 | 49 | 58 ||

Age 58 | 59 {60 | 61 [ 62|63 |64 |65]66 |67 |68]69 |70
Number | 54 | 49 | 46 | 53 | 46 |47 |25 |26 |21 | 18 |18 | 10 | 13

Using these, and Monte Carlo estimates of EPosterior [vj/vi] and Eposterior [(1 - vj/v;)?], The-
orem 5.1 can be used to predict the f’ij over the next twelve years. These predictions are given
in Tables 7 and 8, by age category. The prediction for a given age category is found by summing

the corresponding Y;;; because of the independence of the age cohorts, a reasonable approxima-
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tion to the variance for a given age category was found by simply summing the variances of the

corresponding Y;;.

Table 7: Predicted Percentages ( Standard Errors ) of Tenured Faculty in
Various Age Categories, Assuming Constant Faculty Size

Age Categories
Year 0-50 51-55 56-60 61-65 66-70 714
1991-92 49.66 17.46 15.79 12.15 4.94 0
1992-93 48.82 17.41 16.65 12.65 4.47 0
(.37) (.08) (.14) (.21) (.25)
1993-94 48.18 17.16 17.12 13.35 4.19 0
(.49) (.11) (.19) (-30) (.32)
1994-95 47.09 17.31 17.25 13.26 4.48 61

(.58) (.11) (.23) (.34) (.37) | (1)
1995-96 46.93 17.99 15.89 13.50 4.68 1.01
(65) | (13) | (29 | (87) | (a1) | (20
1996-97 46.00 18.36 16.31 13.00 5.03 1.30
(.70) (.13) (.26) (.39) (44) | (24
1997-98 45.40 18.00 16.30 13.73 5.13 1.44
(14) | 13 | (20 | (41) | (46) | (27)
1998-99 45.50 17.51 16.07 14.10 5.31 1.51
() | 3) | 20 | (43) | (a8) | (29
1999-2000 44.22 18.20 16.24 14.20 5.32 1.82
(79 | (12) | (28) | (449) | (48) | (33)
2000-01 44.27 18.42 16.83 13.01 5.45 2.02
(8) | (13) | (29 | (44) | (49) | (36)
2001-02 44.03 18.00 17.17 13.32 5.22 2.26
(.83) (.13) (.29) (.45) (48) | (.38)
2002-03 44.53 17.32 16.85 13.40 5.57 2.33
(84) | (13) | (29 | (45) | (50) | (:39)
2003-04 45.02 17.24 16.37 13.26 5.70 241
(85) | (13) | (29) | (45) | (1) | (41)
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Table 8:

Predicted Numbers ( Standard Errors ) of Tenured Faculty in Various Age
Categories and Net Yearly Number of Departures of Faculty 51 or Older

Age Categories Net # of > 51
Year 0-50 51-55 56-60 61-65 66-70 71+ Departures

1991-92 805 283 256 197 80 0 52.42

1992-93 791.42 282.23 269.85 205.04 72.46 0 47.55
(5.95) (1.35) (2.29) (3.42) (4.08)

1993-94 780.97 278.13 277.46 216.47 67.97 0 45.40
(7.90) (1.72) (3.10) (4.81) (5.17)

1994-95 763.37 280.61 279.58 214.92 72.55 9.97 47.38
(9.42) (1.86) (3.65) (5.49) (6.06) (2.25)

1995-96 760.75 291.64 257.54 218.88 75.85 16.34 49.98
(10.51) (2.11) (3.90) (6.03) (6.64) (3.21)

1996-97 745.74 297.61 264.35 210.73 81.59 20.98 50.14
(11.34) (2.12) (4.27) (6.25) (7.16) (3.94)

1997-98 735.87 291.82 264.18 222.53 83.19 23.41 51.63
(11.95) | (2.07) (4.38) (6.67) (7.42) | (4.45)

1998-99 737.51 283.79 260.52 228.56 86.15 24.47 53.28
(12.44) | (2.07) (4.44) (6.98) (7.71) | (4.74)

1999-2000 | 716.79 295.00 263.28 230.21 86.18 29.54 54.83
(12.83) (2.02) (4.47) (7.19) (7.76) (5.36)

2000-01 717.62 298.61 272.77 210.86 88.27 32.87 54.23
(13.15) | (2.12) (4.72) (7.09) (7.90) | (5.78)

2001-02 713.77 291.81 278.38 215.93 84.57 36.54 56.91
(13.39) (2.07) (4.76) (7.32) (7.78) (6.19)

2002-03 721.76 280.83 273.22 217.24 90.21 37.74 56.96
(13.61) (2.07) (4.67) (7.29) (8.06) (6.40)

2003-04 729.74 279.51 265.41 214.89 92.36 39.09 56.58
(13.76) (2.14) (4.65) (7.24) (8.20) (6.60)

These Tables were computed under the ¢ = 0 and k£ = 30 prior. The “0 - 50” age category was

estimated by simply assuming a constant tenured faculty size (at the 1991-92 size of 1621). The

last column of Table 8 gives the predicted net number of yearly departures from Purdue of tenured

faculty over age 50. These were computed simply by summing the predicted X,-j (see Equation

(5.2)).
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5.8 Conclusions

The subject - matter conclusion is that the end of mandatory retirement will pose few problems
at Purdue. The percentage of tenured faculty over 70 will rise to only 2.41% (£.41%) by 2003-04.
The actual number of such faculty will be only about 40, which cannot justify adopting any of the
actions for encouraging retirement (costing $5 million to $20 million).

There is not even a problem concerning infusion of ‘new blood’, since the net number of de-
partures from Purdue of tenured faculty over age 50 will be roughly constant, in the 45-55 range,
over the next 12 years. This at first seems surprising, but is a consequence of overall faculty de-
mographics. A large ‘bump’ of faculty is approaching retirement age, and this bump will tend to
counteract the end of mandatory retirement in terms of number of departures.

The major methodological conclusion here is simply that Bayesian methods were able to handle
a highly complex problem, involving constrained parameters, multiple sources of information, and

prediction. Any of these complications, by itself, would have made classical analysis difficult.

Appendix A: Mortality Rates

Table 8: Mortality Rates from Teachers Insurance and Annuity Association

age mortality rates age mortality rates
50 + 1 m¥ x 100 50 + ¢ m; x 100
51 0.26 69 1.17
52 0.28 70 1.29
53 0.31 71 1.42
54 0.34 72 1.57
55 0.37 73 1.73
56 0.40 74 1.91
57 0.43 75 2.11
58 0.46 76 2.34
59 0.50 77 2.59
60 0.54 78 2.87
61 0.57 79 3.18
62 0.62 80 3.53
63 0.67 81 3.92
64 0.73 82 4.35
65 0.80 83 4.82
66 0.87 84 5.35
67 0.96 85 5.93
68 1.06 86 6.56
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Appendix B: The Survey Question and Errors in Answers

The third part of the Faculty Survey on Retirement Issues at Purdue University, that was sent

to a stratified sample of 680 faculty, read as follows:

3. Retirement plans: Use the codes given to fill in the grid shown below. Fill in all boxes.

0 = no chance; 1 = slight chance; 2 = probable; 3 = certainty

55-59 60-64 65-69 70+

Age of expected retirement

Age you would consider beginning a phased-in

voluntary partial retirement plan with full benefits

The intent here was to elicit personal probabilistic information about age of expected retirement,
rather than simply a best guess. A four point scale was used, this being judged to be about as
complex as feasible in a questionnaire. Of course, we anticipated answers such as 0; 1; 2; 1 for the
first four boxes, or maybe 0; 0; 3; 0 if someone was certain. These would then be normalized to
obtain a probability vector.

Unfortunately, most respondents did not seem to understand the question. We received re-
sponses such as 0; 2; 3; 3, which clearly indicated confusion. There were a fair number of usable
0; 0; 3; 0 type responses, but most responses were confused. (The usable responses did give results
that were very consistent with our previous analysis.) Together with other bad experiences we have
had in elicitation, this leads us to recommend that probabilistic information be elicited only if the

elicitor can have personal contact with the statistician, preferably in a training session,
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