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ABSTRACT. OQutlier detection is a statistical problem that has received considerable
attention and has originated a large body of research. Under suitable formulation,
testing whether an observation is an outlier can be reduced to a testing problem
concerning a parameter of a contaminating distribution. As in Bayesian testing of
a point null, Bayes factors and posterior probabilities of the hypotheses cannot be
computed here using non-informative priors. Thus we consider wide classes of priors
for the relevant parameter and explore bounds on the Bayes factor as the prior varies
in these classes.

1. INTRODUCTION

A universal, precise definition of the term “outlier” seems rather difficult. A
generally accepted definition is the one used, for example, by Box and Tiao (1968)
(also used in earlier papers, as mentioned there):

“an outlier being an observation which is suspected to be partially or wholly
irrelevant because it is not generated by the stochastic model assumed.”

Freeman (1980) adopts a similar definition without the requirement for the outlier
to be irrelevant:

“The word ‘outlier’ here will mean any observation that has not been gen-
erated by the mechanism that generated the majority of observations in the
data set.”

The most common approach to outlier detection is to assess a model to ex-
plain the behavior of the (possible) outliers. This contaminating model is usually
taken to be a generalization of the original model, involving an extra parameter
(or parameter vector). The original model is then typically a particular case of the
contaminating model, corresponding to some specific value of the extra parameter.
Testing for outliers can then be reduced to testing for this specific value of the extra
parameters.

Previous Bayesian work along these lines can be found in Box and Tiao (1968),
Guttman (1973), Abraham and Box (1978), Guttman, Dutter and Freeman (1978),
Freeman (1980), Pettit and Smith (1983, 1985), Pettit (1988, 1990, 1992), Verdinelli
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and Wasserman (1991), and Pefia and Tiao (1992). Alternative approaches have
also been explored, usually requiring either the outlier to actually “outlie” or to
be poorly predicted by the rest of the data. These approaches do not require a
model for the outlying observations and they have been taken, for instance, by
Zellner (1975), Geisser (1980, 1985, 1987, 1989, 1990), Chaloner and Brant (1988),
Guttman and Peiia (1988), and Giron, Martinez and Morcillo (1992). A third ap-
proach is to develop an overall model, usually with heavy tails, that automatically
handles outliers in suitable ways without requiring their identification. This ap-
proach is taken by O’Hagan (1979, 1988) and West (1984, 1985); related work can
be found in DeFinetti (1961), Dawid (1973), and Gémez-Villegas and Main (1992).
Reviews of previous work and discussions of the meaning of the term “outlier” can
be found in Freeman (1980) and Pettit and Smith (1985).

We shall follow the usual formulation and assume that the data consists of n+1
independent random variables Xy, X1,...,X,. In the outlier scenario, although
we feel quite confident that X; ~ f(z;]6), ¢ = 0,1,...,n, we recognize (or fear)
that we might get some (hopefully few) outlying observations. In other words, we
recognize that, for any Xj, there is a (usually small) prior probability € that it
is generated by some contaminating distribution with density g. (A more general
formulation would specify a possibly different g; for each X;.) Usually g is taken
to be a density f*(z|6,7) such that the original model f(X|) is the special case
corresponding to a specific value 7o, so that f(z|0) = f*(z|0, m0).

If the goal of the statistical analysis is inference about 8, then it can be carried
out using the implied mixture model, X; ~ (1 —¢) f(z;[0) + ef*(z;|0, 7). Our goal,
however, will be to detect the outliers, perhaps because this is actually one of the
main goals of the analysis (as in Raccine-Poon, 1992), or more usually, because we
feel that our information about f* is too vague to be of much help in inference
about 4.

In this paper, we limit ourselves to study of the simplest case, that is, to detect
whether a specific observation, zg, is an outlier provided that all the rest are not.
Hence, in the rest of the paper we assume the following model:

X]_, Xz, ‘o ,Xn lld, X,' ~ f(:v,-|0),
Xo ~ (1 - €)f(20l0) + ef*(2ol6, 7). (1.1)

Also, we shall let £ = (z1,...,2,) denote the non-outlying observations and £(f)
denote the likelihood function for 4 based solely on z, that is

¢6) = [ [ 7(=il0). (12)

i=1

Prior densities for (6, 7) are denoted by m(8[r)g(r). Usually # and 7 are taken to
be a priori independent, so that their joint prior would then be #(8)g(7).

The posterior probability that ¢ is an outlier, given the data and given that z
is non-outlier, can be expressed as

Pr(zg outlier|zo, £, £ non-outlier) = (1 + (l—ze—)B(g))_l, (1.3)
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where
Y J U0)f(z0|0)w(0)70)dO
Blo) = J J0)1*(z0l8, T)m(6]7)g(r)dbdT

is the Bayes factor in favor of zo being non-outlier when the prior g for 7 is used.
An alternative expression for B(yg) is

(1.4)

m/ (zol2)

B(g) = m,

(1.5)

where m®(zo|z) is the (posterior) predictive density at zo assuming that the model
generating zo is h. That is, m/(zo|z) = [ f(z0|0)7(6]z, 70)df and m! (zo|z) =
J J F* (=08, 7)7(8)z, 7)g(7)dbdr. (For simplicity, the dependence of m/" (zo|z) on
¢ is left implicit in the notation.) Note that Bayesian measures of “surprise” that
do not require specification of f* are typically based solely on the numerator of
(1.5).

Bayes factors have become an increasingly popular way to report the experi-
mental evidence in favor of (or against) the null hypothesis, especially in contexts
of testing a sharp null hypothesis (see Berger and Delampady, 1987, and Berger
and Sellke, 1987). Note that all experimental evidence for or against z being an
outlier enters (1.3) only through B(g) and that the prior probability, ¢, that z,
is an outlier does not enter B(g). This makes use of B(g), rather than posterior
probability, attractive in ordinary hypothesis testing.

In the outlier problem, however, the effect of ¢ cannot reasonably be ignored,
since € is usually quite small. As an indication of how small B needs to be in
order to have reasonable belief that z¢ is an outlier, suppose £ = 0.05 (a typically
considered value) and that we would decide that zg is an outlier if the posterior
probability of such were larger than 0.85; this would require B < .0093. Thus,
as a rough rule of thumb, B < .01 would be reasonable evidence that zq is an
outlier. (This is compatible with the reasoning in Pettit, 1992, which suggests that
reasonable evidence for an outlier is B < .015.)

A well known limitation to the use of Bayes factors for testing a point null
hypothesis is that improper non-informative priors over the parameters identifying
the two hypotheses cannot be used; indeed, by multiplying these improper priors
by an arbitrary constant, the Bayes factors can be made arbitrary large or small. In
our problem, this means that g(7) in (1.4) cannot be a standard, non-informative
prior. (Notice that w(f) does not share this difficulty, in that multiplication of
an improper n(6) by a constant does not alter the Bayes factor.) This limitation
is particularly disturbing in the outlier scenario since, as is almost implicit in the
formulation of the problem, very little is typically known about the contaminating
distribution, so that quantification of a proper, informative g(7) is very difficult.

Pettit and Smith (1983, 1985), and Pettit (1988, 1990, 1992) deal with the
problem by using the Spiegelhalter and Smith (1982) device of an imaginary training
sample, in order to choose a suitable non-informative prior. In this paper, a different
approach is taken. We select wide classes, T, of priors, g, and investigate the lower
bound, B, of B(g) as g varies in I'. Thus, the evidence in favor of z not being
an outlier would be at least B, no matter what our prior g might be (provided, of
course, that it belongs to the class I'). If B is moderately large, zo would not be
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considered an outlier and further refinements of our prior knowledge about g would
not be necessary.

In this paper, we confine ourselves to the most widely studied scenario for out-
liers, namely that in which the original distribution is a normal N(z|0,0?) distri-
bution and the contaminating distribution is normal N(z|6, o2, 1), with an extra
parameter 7. This contaminating distribution will be taken to be either N(z|9, 7a?)
with 7 > 1, or N(z|6+7,0?). The former is usually referred to as a scale contamina-
tion model, while the later is usually called a location or location-shift contamination
model. In Section 2, we study the scale contamination model, both for known and
unknown o2; the same is done in Section 3 for the location contamination model.
Section 4 is devoted to comparisons and generalizations.

2. ScALE CONTAMINATION

In this section we assume that z,,...,2, are non outlying observations from a
N(8, %) distribution, and that the possible outlier, z, is generated by the mixture
density

(1 —€)N(z0|8,02) + ¢ N(zo|8, 702) (2.1)

with 7 > 1. We shall continue to let £ denote the non outlying observations
z = (%1,%2,...,2n)" and let 7(6]z) denote the posterior density of 6 given z
(excluding z¢). Also, the posterior predictive densities (given z) at zo under
model N(f,0%) and under model N(8,702) for X, are denoted by m(zo|z) and
m*(zo|z, ), respectively. We explore both the situations o? known and o? un-
known.

2.1 ¢2 Known.

Here, and in the rest of the paper, we assume that § and 7 are independent
a priori, so that their joint density is given by x(8)g(7). We take w(f) to be the
natural conjugate demsity w(f) = N(f|mo,o2), so that the posterior density is
7f(9|_2_7) = N(alml) 0-%)) where

my = AT+ (1 = A)my, o2 = do?/n
A =nol/(0® +nod). (2.2)

The non-informative prior 7(f) o 1 results in the same posterior, but with A = 1.

Testing Hy: zo is not an outlier, versus Hy:zy is an outlier, is, with the above
formulation, equivalent to testing Ho:7 = 1, versus Hy: 7 # 1. The Bayes factor
(1.5) in favor of Hj is, for any given prior g(7) for 7:

m(zo|z)
Jm*(zolz, T)g(r)dr
_ J N(zol|8, 02)N(6|my, 02)d0
= [ [ N(zo|8, 702)N (8]m1, 03)g(r)d0dr
_ N(zo|ma, 0% + 0?)
~ [ N(zo|mi,0? + r02)g(r)dr

B(g) =

(2.3)
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Following the robust Bayesian approach, we shall derive
N(:co|m1, 0’% + 0’2)

sug J N(zo|my, 0% + To2)g(7)dT
g€

B = inf B(g) = (2.4)

for two classes, T, of priors g(7), namely the class of all possible prior densities and
the class of all densities that are non-increasing functions of 7.
Case 1: I'; = {all priors g(7)}.

For this case, the supremum in the denominator of (2.4) is attained at a point-
mass density, so that B is

N(zo|my, 01 + 0*)

B, = 2.
=t sup N(zg|my,0? + 702)’ (2.5)
T
which is easily seen to be
B, =+eze 2 forz>1,
=1, for 2 < 1, (2.6)

where 2z = |29 — my1|/s1, and m; and s; = \/¢% + 02 are the mean and standard
deviation, respectively, of the predictive distribution, m(zg|z), of zo under the non-
outlier model. For the non-informative 7(f) o 1, m; = Z and s? = (n + 1)o?/n.
Thus, z in (2.6) is the distance, measured in units of predictive standard deviation,
of zo from its predicted value m; under the non-outlier assumption.

Case 2: I'; = {all non-increasing densities g on [1,00)}.
If the class T'; is deemed to be too large, a natural reduction is to consider all
densities on [1,00) that are non-increasing in 7. (Some authors maintain that 7
should be much larger than 1; the analysis presented here can be trivially gener-
alized to densities g on [c, o0), non increasing in 7, with ¢ any positive constant.)
All such densities can be represented as mixtures of uniform densities, so that now

(2.4) becomes
N(zo|mi1,0? + o?)

22 = s11£p ﬁ flr N(zo|m1,0? + 702)dr’ (2.7)
which, after some algebra, can be expressed as
By, = v~ U2e=(-M12 for 251,
=1, forz <1, (2.8)
where z = |29 — m;|/s1 and 7 is the unique solution to
XY vel2 12 o /3 (8(2) - B(2v/7)} = 0, (2.9)

27

where ® denotes, as usual, the standard normal distribution function.

Although, obviously, B, is greater than B; (and in fact 4 can be shown to be
smaller than 1/2%), both lower bounds are surprisingly close to each other, even
for moderate values of z. Table 1 gives the values of B; and B, for selected values
of z. Figure 1 displays B; and B, as functions of z. Both Table 1 and Figure 1
assume the non-informative prior, () = 1, for 4.
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TABLE 1. LOWER BOUNDS ON THE BAYES FACTORS FOR THE SCALE
CONTAMINATION MODEL (0?2 KNOWN).

z 1.5 2 2.5 3 3.5 4 4.5
B .8029 4463 1811 .0549 .0126 .0022 .0003

B .8305 4832 .2026 .0628 .0146 .0026 .0003

FIGURE 1. B; AND B, FOR THE SCALE-CONTAMINATION MODEL (o
KNOWN) AS FUNCTIONS OF 2.

2.2 ¢2 Unknown.

If we define § = 1/0?, then the usual conjugate prior for (9,8) has 6|5 ~
N(mg, (ho6)~'), and 6§ ~ Ga(ao,bo), that is, 7(6) o< §%~! exp{—bos}. The
ensuing joint distribution for (6,6) is the normal-gamma distribution, denoted
(8,6) ~ NGa(mo, ho,ao,b0) . The posterior distribution of (4, §), given the non-
outlying z, is then the revised normal-gamma (8, §|z) ~ NGa(my, k1, a1,b;), where

my = AZ+ (1 = A)mg, A =n/(ho +n)
hy = ho +n, a1=ao+b/2,

by = bo + L i(z- -z)% 4+ ﬂ(ai —mg)? (2.10)
’ 2 i=1 ’ 2 . .

I the non-informative 7(, §) oc 1/6 is used, then m; = &, hy = n, a1 = (n - 1)/2,
by = X(z; — £)%/2.

The predictive densities that enter the computation of the Bayes factor are the
posterior predictive densities of Xg (at o) assuming that either X is not an outlier:

m(zo|z) =//N(zo|0,02)NGa(t9,02|m1,h1,a1,b1)d0dcr2
b1

= St(zoms, (1 + %)al -, 2(a ~ 1)) (2.11)
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or that zo comes from the contaminating density whose extra-parameter has the
value 7:

m*(zolz, T) =//N(:co|0, 16%)NGa(0, o%|my, by, ay, by )dodo?
1, b
= St(zolm, (T + —)———,2(ay — 1)), (2.12)
h1 a — 1
where St(z|m, s?, a) denotes a Student ¢ density as given by
St(z|m, s?,a) = C[1 + ;1%97(2 — m)?]~ (D)2 (2.13)

where C = T(2H)/[T(£)T($)(as?)V/?]
Again we shall study the infimum of the Bayes factor (in favor of Hy: non-outlier)

. m(zo|z)
= inf = .
g ger J m*(zolz, T)g(7)dr’ (2.14)
for the same classes I';, 'y considered in Subsection 2.1.
Case 1: T; = {all priors g(7)}.
In this case, from (2.14), (2.11) and (2.12):
St(:ﬂolml, (1 -+ hl)bl/[hl(al - 1)], 2((11 - 1)) (2 15)

A= sup St(zolmy, (T+ Th)br/Tha(er — 1], 2(a; — 1))’

To parallel the developments in the previous subsection, let s; denote the scale
parameter of the posterior predictive of X under the non-outlier model, that is:

2 _ (1+h1) h
1 h]_ ((11—1)’

&

(2.16)

and define
Zo—m

. (2.17)

z=| -

For the non-informative prior, m; = z and s} = (n + 1)62/(n — 3), where 2 =
1

n
>_(zi — Z)?/n is the usual MLE of ¢2 based on the non-outlying observations.
i=

(Recall that, when o2 was known, s? = (n+1)0?/n.) With this notation, the lower
bound B; on the Bayes factor can be computed from (2.15) to be

By = 2(&5) D2 forz > 1,
=1, for 2 < 1, (2.18)

where a = z(a; — 1) is the degrees of freedom of both predictive distributions. For
the non-informative prior, @ = n — 3. It can be checked that this lower bound, B,,
converges, as a goes to 0o, to the known o2 lower bound, given in (2.6).
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Case 2: I'; = {all non-increasing dens1t1es, g, on [1,00)}.
In this case, the same argument as in Subsection 2.1 gives

m(:co|:c)
T m*(zo|z, T)dT’

(2.19)

Sllpr 1

where m(zo|z) and m*(zo|z,7) are the ¢ densities given in (2.11) and (2.12), re-
spectively.

Again defining z = |zg — my|/s;, with m; and s; as in case 1, B, can be
computed to be

B, = v A&y~ 2 for > 1,
=1, for 2 <1, (2.20)

where a = 2(a; — 1) and ¥ is the unique solution of

2.1 v2? —(a+1)/2 2 —(at1)/2
{=0+=) 1+3) }

27
_\/OE—W;(I)){ m(a+2,;) mf(oz+2 1)}
1\/1[1_1_ - (a+1)/2’ (2.21)
where x
L(a,B) = I(a+ ) u® N1 ~w)Pldu (2:22)

L(e)T(8) Jo
is the incomplete beta function.

As in Subsection 2.1, where ¢ was assumed known, B, is again surprisingly
close to B;. (Obviously B, > B;.) In Table 2, we display the values of B; and
B, for certain values of z and for @ = 20. (Smaller values of & produced larger
values of both lower bounds, B; and B,.) In Figure 2, the lower bound B, is
graphed, as a function of z, for & = 10, 20, 40, 100. (The corresponding graphs
of B, were extremely similar.) Both Table 2 and Figure 2 were derived with the
non-informative prior.

2

TABLE 2. LOWER BOUNDS ON THE BAYES FACTORS FOR THE SCALE
CONTAMINATION MODEL (02 UNKNOWN).

z 1.5 2 2.5 3 3.5 4 4.5 5
B, | .8174 | .4922 | .2401 | .1012 | .0387 | .0139 | .0049 | .0017
B, | 8437 | .5300 | .2665 | .1146 | .0444 [ .0161 | .0056 | .0020
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FIGURE 2. B, FOR THE SCALE-CONTAMINATION MODEL (o2
UNKNOWN) AS A FUNCTION OF z FOR a = 10, 20,40, 100.

2 3 4 5

Comparison of Tables 1 and 2 or Figures 1 and 2 show that, for moderate or
large a, there is little difference between the known o2 and unknown o2 cases, as
long as z < 2.5. However, for 2 > 2.5 the difference can be significant, with the
lower bounds being substantially larger in the case of unknown o2. (It is, of course,
not surprising that unknown o makes it less certain that large z implies that zg is
an outlier). The stability of B, to varying e, that is exhibited in Figure 2, actually

held to remarkably small values (e.g., a = 3).

3. LocaTioN CONTAMINATION

In this section, we assume that the non-outliers, ¢ = (z,, ... yZn ), come from a
N (8, 0?) distribution and that the possible outlier, zg, is generated by the location
contamination mixture

Xo~ (1~€e)N(0,0%) +eN(6+ 7,02). (3.1)

It should be noted that this outlier model has the scale contamination model
as a particular case, corresponding to certain prior distributions for 7. Indeed, if
Xo ~ N(8 + 7,0%) and 7 has the N(0, (v — 1)o?) prior distribution (with v > 1),
then, conditional on 6, v and ¢2, the distribution of X, is given by the scale
contamination model Xo ~ N(#,v0?) with v > 1; putting prior distributions on
v would thus yield the Section 2 analyses. It follows that the lower bounds to be
computed in this section will all be smaller than those obtained in Section 2.

Here m(f|z) and m(zo|z) are as in Section 2, while m*(z¢|z) will denote the
(posterior) predictive density of X, assuming now that Xo ~ N(8 + 7,02). Note
that the symbol 7 is still used to denote the contaminating parameter, though, of
course, the restriction 7 > 1 no longer applies.

3.1 0 Known.
Under a conjugate analysis, 7(f) and w(f|z) are the same as in Subsection 2.1,
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and the Bayes factor in favor of Hg: non-outlier (r = 0) is

J N(z0l6, 0*)N (6]m1, 0)dd

B =
(9) J [ N(zol + 7,02)N(0)my, 0?)g(T)dbdT
= N(:L‘olm]_, s%) (3-2)
J N(zo|my + 7,53)g(r)dr’
where s? = 02 + 02, and m; and o} are given in (2.2). We shall again study
s _ N(”Olml,s%)
B= ;2{:‘ Blg) = sup [ N(zolmy + 7,53)g(7)dr’
ger
for two classes, T', of priors for .
Case 1: T = {all priors g(7)}.
In this case, \
_ N(:vo|m1, 81)
5= sup N(zo|my + 7,53)’ (3.3)
T
which is trivially seen to be .
B, = e—z’/2’ (34)

where, again, z = |£o — my|/s1, the standardized distance of z¢ to its predicted
value under the non-outlier model.

Case 2: T'; = {all densities g(7) = h(|r|), h non-increasing}.

Since T represents a shift of the mean 4, a natural way to restrict the class is to
consider all densities that are symmetric about 7 = 0, and that are non-increasing
in |r|. These densities can, again, be expressed as mixtures of uniform densities, so
that the lower bound on the Bayes factor is

N(zolmlx S%)

5= sup & [T N(zo|lmi + 7, s2)dr’ (3:5)
which can be calculated to be
—,2
B : f{p{—(z + 7)227};%{— zx{f{}—(z —9)772} : : Z i 6
where z = |29 — m1|/s1, and v is the unique solution of
1[6(z +7) + 6(z = 7] = B(z +7) — &(2 - 7), 3.7)

where ¢, ® represent the standard normal p.d.f. and c.d.f., respectively.

In Table 3 we give B; and B, for certain values of z. In Figure 3, they are
graphed as functions of z. Both Table 3 and Figure 3 are, as before, derived for the
non-informative prior 7(¢) = 1. In contrast to the situation in Section 2 with the



ROBUST BAYESIAN BOUNDS FOR OUTLIER DETECTION 11

TABLE 3. LOWER BOUNDS ON THE BAYES FACTOR FOR THE LOCATION
CONTAMINATION MODEL (02 KNOWN).

z 1.5 2 2.5 3 3.5 4 4.5
B .3247 .13563 .0439 .0111 .0022 .0003 .0000

B .7493 .3835 .1458 .0420 .0093 .0016 .0002

FIGURE 3. B; AND B, FOR THE LOCATION-CONTAMINATION MODEL
(02 KNOWN) AS FUNCTIONS OF z.

T 2
scale contamination model, the differences between B, and B, can here be quite
substantial.

3.2 ¢? Unknown.

Letting 6§ = 1/¢2, the joint prior and the joint posterior (given only z) of (8, 6)
are the same as those in Subsection 2.2. Furthermore, the posterior predictive
under the non-outlier m(zo|z) is as in (2.11), while the predictive under the outlier
model for zo, m*(zolz, 7), is

3 4 5

(h1 =+ 1) b1
h1 (a1 - 1)’

m*(zolz, 7) = St(my + 1, 2(ay — 1)). (3.7

Again define z = |zg — m;|/s1, where m; and s, are the location and scale param-
eter of the non-outlier predictive, m(zo|z), and are given in (2.10), together with
hi,a1,b; that appear in (3.7) above. Our goal is to study

2
B = inf B(g) = St(zglmy, 51, a)

g€er sup fSt(:colml + T s%) a)g(‘r)dr’ (3.8)
ger

where o = 2(ay — 1).
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Case 1: T'; = {all priors g(7)}.
In this case, (3.8) becomes

St(zo|m;, 52, )
" sup St(zo|my + 7, 52, @)’
T

B, (3.9)

which is trivially seen to be

@ a
B, = (a = )( +1)/2 (3.10)

Note that, as & — oo (recall that, with the non-informative prior, @ = n—3), (3.10)
goes to the B, given in (3.4) for known o2.

Case 2: T'; = {all densities g(r) = h(|]), h non increasing}.
In this case, (3.8) becomes

_ St(zo|my, 52, a)
sup 217 f:r St(zolmy + 1,52, a)dr’
r

B, (3.11)

which can be calculated to be

B, = 21+ 57/o] (=412
I R O P e e ey e LV

(3.12)

where 7 is the solution of

Ya(z +7) +ta(z = 1) = Tulz +7) = Ta(z - 7), (3.13)

with {4 and Ty being the p.d.f. and c.d.f., respectively, of a St(0, 1, ) distribution.

TABLE 4. LOWER BOUNDS ON THE BAYES FACTORS FOR THE LOCA-
TION CONTAMINATION MODEL WITH 02 UNKNOWN AND a = 1, 10,
50.

a=1 a=10 a =50

2 B B, B, B, B; B,
1.5 ] .3077 | .7008 || .3275 | .7461 || .3255 | .7490
2 1.2000 | .5476 || .1571 | .4398 || 1405 | .3972
2.5 .1379  .4387 || .0692 | .2273 || .0496 | .1643
3 |.1000 | .3611 |{ .0293 | .1098 || .0147 | .0555
3.5 | .0755 | .3043 |] .0123 | .0516 || .0037 | .0158
4 |.0588 | .2615 || .0052 | .0242 (| .0008 | .0039
4.5 | .0471 | .2284 || .0023 | .0115 [f .0002 { .0009

5 |.0385 | .2021 |{ .0010 | .0056 || .0000 | .0002
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Table 4 gives the values of B; and B, for a = 1, 10 and 50 (corresponding to
n = 4, 13 and 53 non-outliers in the sample). Figure 4 graphs B,, as a function
of 2, for @ = 1 and @ = oo (which corresponds to the known o2 case). Figure 5
graphs B, for o = 1, 3, 5, 10. All figures and tables use the non-informative prior
n(0,6) o 1/6.

As in the scale contamination scenario, there is remarkably little difference be-
tween the lower bounds for the known o2 and unknown o2 cases when z < 2.5
(unless o is very small, e.g. @ = 1 or &« = 2). For z > 2.5, however, the differ-
ence can be appreciable, with the lower bounds for the unknown o? case being
substantially larger.

FIGURE 4. B; FOR THE LOCATION-CONTAMINATION MODEL AS A
FUNCTION OF z FOR 02 UNKNOWN (a = 1) AND ¢? KNOWN.

FIGURE 5. B, FOR THE LOCATION-CONTAMINATION MODEL (¢? UN-
KNOWN) AS A FUNCTION OF z FOR « = 1,3, 5, 10.
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4. COMPARISONS, RECOMMENDATIONS, AND GENERALIZATIONS

4.1 Comparisons and Recommendations.

Comparison of Tables 1 and 3 or Tables 2 and 4 reveals a rather remarkable
similarity between B; (scale contamination), B, (scale contamination) and B,
(location contamination). These lower bounds do, however, differ substantially
from B, (location contamination). Since this last lower bound was based on the
most unreasonably large class of priors (all priors for the contaminating location
parameter), it will typically be an unreasonably small lower bound, and hence is
not recommended for use.

Since the other three lower bounds are very similar, it is reasonable to choose
among them according to computational simplicity. In this regard, B, (scale con-
tamination) is the clear winner, being given by the simple closed-form formulas
(2.6) and (2.18) (for the known o? and unknown o? cases, respectively). It is, in-
deed, fortuitous (and unusual in Bayesian robustness) that a simple lower bound
resulting from an “all prior” model is reasonable.

In the Introduction, it was suggested that a rough rule-of-thumb for outlier
detection is to judge zo to be an outlier if B < .01. A necessary condition for this
to be true, in the presence of prior uncertainty as reflected by the class T, is

B = inf < .01. .
B = inf B(g) < .01 (4.1)

For the recommended lower bounds (2.6) and (2.18), this necessary condition be-
comes (using a conservative bound for (2.18))

for known o2: z > 3.57

for unknown o?: z> (3.57)(1 - (.982) /@)L, *2)

where 2 = |zo —m;|/s; is the distance between zg and the (non-outlier) predictive
mean my, in units of (non-outlier) predictive standard deviations. For the nonin-
- formative prior case, recall that m; = Z and s} = (n + 1)0?/n (known o2 case) or

ss=(n+1) f:(:c,- — £)?/[n(n — 3)] (unknown o2 case). The second inequality in
i=1

1=
(4.2) is an approximation to (4.1) and (2.18).

The implications of this rule-of-thumb to practice are perhaps surprising. It
would seem that zo needs to be at least 4 standard errors out (somewhat less for
the known o2 case; somewhat more for unknown o2) before one can consider it to be
a likely outlier. And, since B; was a lower bound, even this would not conclusively
prove that z¢ is an outlier. Our recommendation for practice is thus to use (4.2)
as a preliminary screen; only observations for which z exceeds the indicated values
need be investigated as possible outliers.

4.2 Generalizations.
Recall that we based our analyses on

Pr(zo is an outlier | data, z being non-outliers). (4.3)
Of perhaps more interest is

Pr(z is an outlier, £ are non-outliers | data), (4.9)
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which does not assume that the remaining observations are known to be non-
outliers. It is possible to show, however, that (4.3) is a good approximation to
(4.4), if zo seems to be the only likely outlier. Here is a heuristic argument to this
effect.

Iz = (z1,...,,) are not outlying (i.e., are reasonably compatible with f(z;|8)),
then their joint density under the full mixture model for all observations is

H[(1 — &) f(2il0) + ef* (zilf, T)] = (1 — )" H F(2:10),
=1

the approximation based on observing that e is typically small and that f(z;|6) will
be comparable or larger than f*(;|0, 7). But then

Pr (zo is an outlier, £ are non-outliers | data)

e(1— ) [ [ f*(zol6, r)('_l':_’[1 F(z:16))x(8, 7)dodr

- ff‘l:[ [(1—¢€)f(z:|0) + ef*(:]0, 7)]=(8, T)dOdT
1§ 1*(eolo, ([T steslo)yn(0,r)aoar
ff[(l — €)f(zol0) + ef*(zol9, T)](H f(z:]0))n(8, T)dOdT

= Pr (o is an outlier | data, z being non—outhers),

completing the argument.

If there seems to be more than one likely outlier, the situation becomes consid-
erably more complicated. The main complication is that the possible outliers, in
combination, can perhaps provide significant information about the contaminating
distribution. To properly analyze this situation, it is probably necessary to deal
with the formal mixture model.

It is, however, trivial to consider the generalization to the Bayes factor for testing

Ho: 2o = (%01,...,Zo0x) all non-outliers, versus

Hi: zo all outliers.

Indeed, all expressions obtained for k = 1 (i.e., a single outlier, z¢) are valid for the

E
above hypotheses if 2 is instead defined as z = |z — m; |/s1, where T = 3 zo:i/k
i=1
and
v _ { ol +o%/k if o2 is known,

(}+ "1—1)(‘1—1"-‘_T) if o2 is unknown.
A final generalization of interest is to the multiple outlier scenario when the
outliers are thought to arise from different contaminating distributions. Then the

outliers could be checked one-at-a-time, using (4.2), with the modification that g
now consist only of the clearly non-outlying observations.
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