ON M-DEPENDENCE AND EDGEWORTH
EXPANSIONS
by
Wei-Liem Loh

Purdue University

Technical Report #92-42

Department of Statistics
Purdue University

September 1992



ON M-DEPENDENCE AND EDGEWORTH
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This paper contains two results. The first establishes, under
mild assumptions, the validity of an Edgeworth expansion with
remainder o( N~1/2) for a U-statistic with a kernel A of degree
two using observations from an m-dependent shift.

The second result gives a necessary and sufficient condition for
the distribution of a sum of m-dependent random variables to
possess an Edgeworth expansion. This generalizes a result of
Bickel and Robinson from the i.i.d. case to the m-dependent
case.

1 Introduction

Let &1,&,,... be a sequence of independent and identically distributed ran-
dom variables and f : R™t1 — R be a measurable function. For j > 1, let
X; = f(&,...,&+m). The sequence Xy, X, ...issaid to be an m-dependent
shift and an immediate consequence is that (X3y,...,X;) and (Xs, Xs41,...)
are stochastically independent whenever s — 7 > m. Next let o : R? — R
be a measurable function symmetric in its two arguments. We shall assume
throughout this paper that for some p > 5/3,

(1) Elh(X1,X;)IP < o0, Vi<j<m+2.
Then Eh(X;, Xi) exists for all j < k. We write

h; (X5, X)) = h(X;, Xg) = ER(X;, X&), Vi <k,
and for N > 2, a U-statistic of degree two is defined as

N-1 N
Un=>Y, Y. hjx(X;,Xe)
J=1 k=j+1
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Also we define for N > 6m + 1,

9(z) = Ehjx(Xj, Xe)|X; = 2], Yk —j > m,
P(z,y) = hix(z,y) - g(z) - 9(), Vk —j > m,
(A]N = (N 6m—1)Zg(X )a
J_
N-3m-1 N-1(j+3m)AN
Ay = ) Z (X5 X))+ D D, hik(X;,Xk)
=1 k=3m+j+1 j=1 k=j+1
3m N
(2) + Bm-j+e(X)+ Y, (Bm+j-N)g(X;).
i=1 j=N-3m+1

Straightforward calculations show that Uy = Uy + An. We suppose that

3) o? = El(X0) + 23 g(X2)g(X;41)] > 0
and
(4) E|g(X1)? < 0.

Let 6% denote the variance of Un. Then by the stationarity of the X ;’s, we
have

6% = (V- 6m— DPEING(X:) + 23 (N — )g(X0)e(Xj1)]
j=1

= N%?2+0(N?),

as N — oo. Next let

ks = 0, E{g°(X1)+3 i[gz(Xﬂg(Xjﬂ) + g(X)9X(Xj41)]
i=1
m+1 j+m
+6 Y Y g(X1)g(X;)g(Xy)
i=2 k=j+1
2m+1 5m+2

(5) +3 Y Y Y(Xmt1, Xams2)9(X5)9(Xe)}-

j=1 k=3m+2
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We observe that if E|h(X;, X;)|> < oo whenever j < k, then k3N~1/2 is an
asymptotic approximation [with error O(N ~3/2)] for the third cumulant of
c"r;,1 Upn. Define

(6) Fy(z) = 8(z) - $(a) 2N /(= - 1),

where ¢ and ® denote the standard normal density and distribution function
respectively.

One objective of this paper is to establish the validity of a single term
Edgeworth expansion for 6;,1 Un under mild conditions. In particular, we
prove

Theorem 1 Suppose (1), (3), (4) are satisfied and

. m+1 .
(7) hlI? Sup EIE[eZt 2j=1 g(XJ)|€17 seey £m7§m+2a ey £2m+1]| <1l
t|—o0
Then
sup [P(65'Un < @) ~ Fiv(z)| = o( N7/,

as N — oo.

Theorem 1 though simple to state, has a somewhat tedious proof and hence
we shall defer the proof to the next section.

REMARK. Goétze and Hipp (1983) showed that (7) holds if & has a
probability density fe, with respect to Lebesgue measure and gf : Rt —
R is continuously differentiable such that there exist y1,...,Y2m+1 € R and
an open subset @ D {y1,...,Y2m+1} satisfying fe, > 0 on Q and

m+1 8
Z %;gf(wlv ey $1+'m)I(:l:l,...,:z;1+m)=(yj,...,y_,'+m) 7é 0.
=1

REMARK. If the observations are independent and identically distributed
[that is m = 0], (7) reduces to the well known Cramér’s condition.

In the case where Eh?(X;,X;) < oo whenever 1 < j < m + 2, the
variance 0% of Uy exists and we have

Theorem 2 Suppose that (3), ({) are satisfied,

ER* (X1, X;) < o0, Vi<j<m+2,
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and
Yy " ox,
hﬁl sup EIE[C t21=1 g(X’)|§1, .o -,Em,£m+27 .- '7£2m+1]| <L
t|— oo
Then :
sup |[P(ox'Un < z) — Fn(z)| = o(N~V/2),
as N — oo.

Proo¥r. The proof of Theorem 2 is similar to that of Theorem 1 and hence
is omitted. O

There has been a great deal of research done on U-statistics based on
independent and identically distributed observations. In this paragraph,
we shall assume that the observations are independent and identically dis-
tributed. U-statistics were first discussed by Hoeffding (1948) who also
showed the asymptotic normality of &X,l Un under very weak conditions.
The rate of convergence to normality was investigated in increasing gener-
ality and precision by Grams and Serfling (1973), Bickel (1974), Chan and
Wierman (1977), Callaert and Janssen (1978) and Helmers and van Zwet
(1982). In particular, Helmers and van Zwet showed that if p > 5/3 and (1)
and (4) hold, then

(8) sup |[P(o3' Uy < @) - 8(a)| = O(N /%),

as N — oo. If furthermore we have Eh?(X1,X3) < oo, then 6y can be
replaced by on in (8).

Berry-Esseen type bounds have been obtained by Yoshihara (1984) for
U-statistics generated by absolutely regular processes, Rhee (1988) for U-
statistics based on m-dependent observations and Zhao and Chen (1987) for
finite population U-statistics.

Regarding the corresponding more involved problem of Edgeworth ex-
pansions, Callaert, Janssen and Veraverbeke (1980) and Bickel, Gétze and
van Zwet (1986) established for a U-statistic with independent and identi-
cally distributed observations, the validity of a one [and two] term Edgeworth
expansion with remainder o( N~'/2) [and o( N ~1)] respectively.

With dependent observations, the only result that we are aware of is by
Kokic and Weber (1990) who established the validity of a one term Edge-
worth expansion for U-statistics based on samples from finite populations.
Recently Loh (1991) has obtained conditions for the vaildity of a one term
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Edgeworth expansion for U-statistics using weakly dependent observations.
However the conditions given in that paper are stronger than those given
here.

To state the second result of this paper, we begin by recalling the defi-
nition of m-dependence.

DEFINITION. A sequence Y7,Y3,... of random variables is m dependent,
where m is a nonnegative integer, if for any two subsets A, B C {1,2,...} for
which infie 4 jep |t — j| > m holds, the sets of random variables {X; : ¢ € A}
and {X; : j € B} are independent.

From the above definition, we note that an independent sequence of ran-
dom variables is 0-dependent. Let Y1,Y3,... be a sequence of m-dependent
random variables with FY; =0,¢=1,2,... We write

Sn=Yi+---+Y,, B2 = ES?,
Mk,n = maxi<;j<n E|Y}|k, Ok = max3_<_j$k+3(NMj,n/B%)l/(]—z).
Let Fs,/p, denote the distribution function of S,/B, and I',(S,) denote
the vth order cumulant of 5,.
Next, for any G : R — R and o > 0, we define the first difference

operator A, by
A,G(z) = G(z + o) — G(z),

and the kth difference operator AX as the kth iterate of this. Thus
AEG(a) = 3 (- 1) ( j ) 6o +jo).
3=0

The interpolating polynomial to G(y) of degree k¥ at the points z,z +
o,...,x+ ko is

k J
Pro(y;2,G) = G(2) + Y o7 (i)' AL G(2) [[(y — = - (i - 1)o).
=1 i=1

It is well known [see for example Bickel and Robinson (1982)] that if G has
a bounded (& + 1)th derivative, then for all z and vy,

(9)  1G(¥) = Peo(y;2,6)| < Colly — 2+ + 0**1) sup |GHHI(2)),
where Cy is a positive constant depending only on k and G*+1(z) =

d**1G(2)/dz*t. Also in the remainder of this section, the symbol C is
used generically as a positive constant independent of n.
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Theorem 3 Let Y1,Ys,... be a sequence of m-dependent random variables
with EY; =0, j = 1,2, ... Suppose o, — 0 as n — co. Then the following
statements are equivalent:

(a) Fs, /B, possesses an Edgeworth expansion to k terms. More precisely,

sup | Fs, /B, (@) = exn(a)] < Cogtl,

where
() = 8e)-Y A _eny L
€kn = —
k, = 27rBU s — q'
1/ 2,n
X > Hypog- 1($)H e
vittrg=py; 21 (Vz + 2)
with
/2] ( 1)i$l/—2i T (S )
=yl -~ — —v\Wn)
H,(2)=v! Z:z'(l/ 2D and b, B2

(b) For all z, y and n, there exists a constant Cy, independent of x, y and
n, such that

|Fs,,/B.(4) = Proy (93 %5 Fs,/B,)| < Cily — ! + of 1)

REMARK. H,,v =1,2,... are the Chebyshev-Hermite polynomials.
We now specialize Theorem 3 to the case of a stationary sequence of
m-dependent random variables.

DEFINITION. A sequence Y7,Ys,... of random variables is said to be
stationary if, for every pair ¢, of natural numbers, the sequence Y;;y,...,
Y;1; has the same distribution as Y3,...,Y;.

Corollary 1 LetY;, Y, ... be a stationary sequence of m-dependent random
variables with EY; = 0, EY? = 1 and lim B2 /n > 0. If E|Y4|*+3 < oo, then
the following statements are equivalent:

(a) sup, |Fs,/B,(z) — exn(z)| < Cn-(+1/2,

(b) For all z, y and n, there exists a constant Cy, independent of z, y and
n, such that

|Fs,,/B,(¥) = Pr1/ya(¥3 %, Fs,yB,)| < Ci(ly — 2! + n=(D/2),
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We shall defer the proof of Theorem 3 to Section 3.
REMARK. We note that Theorem 3 generalizes a result of Bickel and
Robinson (1982) from the i.i.d. case to the m-dependent case.

2 Proof of Theorem 1

ProoF oF THEOREM 1. Without loss of generality, we assume that 5/3 <
p < 2. To prove Theorem 1, we shall study the characteristic function (c.f.)
of &;,1 Upn. Let ¢n denote the c.f. of &K,IUN, that is

on(t) = Eexp(ito§'Un),
and for k3, as in (5), let

Bi(t) = (1 — TN

be the Fourier transform [exp(itz)dFn(z) of Fy in (6). By the smoothing
lemma of Esseen [see for example, Feller (1971), p. 538], it suffices to show
that

(10) /Nl/zlogN |M]dt (N—1/2),

N1/2logN t

as N — oo. However (10) is an immediate consequence of Propositions 1
and 2 whose statements and proofs are provided below. O

Proposition 1 Let5/3<p<2 and 0< e < (3p—5)/(2p). Then

—Ne

as N — o0.

Proor. It is well known that

(11) e E (l(E) | m{ |z|'r+0 |-’17|T+1 } = [0 1).
_ ' 9 (7' + 1)! ? ?

Hence

on(t) = EeNUN(14ito5 Ay) + O(E|toy  An|P)
(12) = ENUN(14its7  An) + O(JtPN2-20/2),
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The last equality uses the fact that E|Ay|P = O(N?) [see for example
Lemma 5-1 of Rhee (1988)]. Define for 1 <a<b< N,

s = (N-6m-1) 3 (X)), W21,
1SN j—alAlj=b|>vm

5O = On.

As Uy = S((l?g, for all a < b, it follows from (12) and Lemma 2 [see
Appendix] that

on(1) - 21~ FEN )
= Eit&;,lANeiw;r Uy
(13) +O([tPN?=3#12) 4 of([t]? + [¢°)e= PN 117,

as N — oo uniformly over |[t| < N°. It remains to approximate the term
Eit&,}lANe”&;rlUN . Following a method of Tikhomirov (1980), we write

N-3m-1 N 1
Y. ). Eite' (X, Xp)eton Uy
J=1  k=3m+j+1
N-3m-1 N 1 )
= Y3 B{itente(X;, Xe)en S,
7=1 k=3m+j+1
4=l 1 -1 o) )
+Zta']:]1¢(X],Xk)Z H[eztaN (S S k) ] zto‘N S
r=2[=1
4 -1 !
a8, X0 TR 55 _ oy

l=1
N-3m-1 r—1
a1 o(l=1) _ (1)
S Sy (B, xe [R5
=1

j=1  k=3m+4j+17r=2

a—1o(T)
(14)  x[Be"W %k] 4+ O(1HPN ),
as N — oo uniformly in ¢. The last equality uses Lemma 4 and the inde-

(1-1)_ g())
pendence of S( and $(X;, Xi)] [Tioi e N (S =Sik) _ 1]. Furthermore
using Lemmas 2 3 and 4, we have

N-3m-1

> Z Zzt‘_l{Ez/)(XJ,Xk)

j=1 k=3m+j+1r=2
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- o — T
X H ztcr S( =1) S z) _ 1]}[E€Ztale§’k)]

N 3m—1 2
= — Z Z it3et /2a;3N‘5/2
j=1  k=3m+j+1
itm  (k+m)AN
x[E Y 3 »(Xj, Xi)g(Xa)g(Xs)]
a=(j—m)Vvl b=k-m

(15) +ol[t|P([t])et /AN -1/

as N — oo uniformly over |t| < N¢, where P(|¢|) is a generic linear combina-
tion [not depending on N|] of non-negative powers of |t|. Also for convenience
of notation, P may represent different linear combinations at different oc-
currences. Thus it follows from (14) and (15) that
N-3m-1 1
Y E Eito i (X, Xg)eton Un
=1  k=3m+j+1
2m<+1 5m+42

t
= —e—t2/2gN V23 E[3 _32 Y U Xmi1, Xam2)9(X;)9(Xe)]
j=1 k=3m+2

(16)  +O(ItPN %) + ol|t|P(|t))e™" /*N /7],
as N — oo uniformly over |¢| < N¢. In a similar though less tedious way,
we have

N-1(j+3m)AN I

Eité’ﬁl Z Z hj,k(Xj,Xk)eztaN Un
=1 k=j+1
N-1(G+3m)AN
= oy Y., Y E{hi (X, Xp)eton'S 0

=1 k=j+1
it ( ) ( ) (1)
+hj,k(Xj,Xk)[e’taNl(sj?k“s 1 ]e“"le 2y

(an = o(PNTY,

and

1610 3m :
Eetten Nz't&ﬁl[z@m -7+ Dg(X;)
N
(18) + Z (3m +] - N)g(XJ)] — 0(|t|N_3/2),

j=N-3m+1
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as N — oo uniformly in |¢|. Thus it follows from (2), (16), (17) and (18)
that

Eito gt Ayeton' On
g2 o12s |, Al sma2
= —e T NTPEBo 3 Y (X, Xama2)9(X;)9(X)]
j=1 k=3m+2

+O(ItIN_3/2 + ItlzN—l + It|6N—2) + O[Itlp(ltl)e_t2/4N_1/2],

as N — oo uniformly over [t| < N¢. Hence we conclude from (13) that

¢n(t) — n(?)

on(t) - /(1 - ZENT)
O(tUN2 + [tP N + [t°N 72 + [t N2~%/2)
+ol[t[P(|t)e= /A N1/,

as N — oo uniformly over |t| < N® and hence
N¢ — *
/ |¢N(t) - ¢N(t)|dt — O(N—I/Z),
—~Ne¢

as N — oco. This completes the proof of Proposition 1. |
Next we observe from (7) that there exists a constant 0 < 7 < 1 such
that

. m+1 .
(19) E|E[€th"=1 g(X’)|§1,---,Em,§m+2a---,§2m+1]| <1l-7,

for all |t| > 1/(20,). Also it follows from Lemma 3.2 of Gétze and Hipp
(1983) that there exists a constant u > 0 such that

. m+1 .
(20) E|E[eztzj=1 g(XJ)lé.la ce ’éma £m+2a s £2m+1]l < e—ﬂtza
for all |t] < 3/(2a,).
Proposition 2 Let ¢ be as in Proposition 1. Then

/ ¢N(t) — ¢N(t) Idt — O(N_1/2),
Ne<|t|<N1/21og N t

as N — o0.
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Proor. Let n be a positive integer such that for sufficiently large N

log N

. ety T T

if N1/2 < |t| < NY/2log N, and n = Kt~2Nlog N if N° < |t| < N'/2 where
K 1s some constant to be chosen later. Define

S(n) = (N —6m —1) Zn:g(Xj),
i=1

and

nA(N—-3m—1) N

An(n) = > > (X5, X)
Jj=1 k=3m+j+1
nA(N—-1) (j4+3m)AN

+ ¥ 3 h,,k(XJ,Xk)+Z(3m -3+ 1)g9(X;).

Jj=1 k=j+1

Then

[én (D]
(22) = |E"N Un-An(M[1 4 its An(n)]| + O(|t/PrN -3/2)
as N — oo uniformly in ¢, since E|An(n)[? = O(nN) [see Rhee (1988)].
We shall now approximate the first term of the r.h.s. of (22). For
simplicity we let A; ;. ,, denote the o-field generated by the random variables

&,1€[j,j+m]U[k,k+m]U[n+1,00). We observe from Lemma 5 that
K can be chosen such that

| Eiton (X, Xy)e?n Un=bn(m)
|Eit5’&11/)(X], Xk)eiw_l(UN—S(”)_AN(n))E[eit&;’lS(n)|»Aj,k,n]|
tlon Ehb(X],Xk)IN_

IN

and hence

n N
(23) |Z E Eit&}\}lip(Xj,Xk)eitﬁﬁl(UN—AN(n)” = 0(|t|nN‘3/2),
J=1k=3m+j+1

as N — oo uniformly over N¢ < |t| < N1/21log N.
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In a similar way, we have

(24) |Eeit&;’1(UN—AN(n))| - O(N_l),

n j+3m o
(25)] Z Z Eita‘ﬁlhj,k(Xj,Xk)eltaNl(UN—AN(n))I = O(ItInN—S/Z),

i=1k=j+1
and
3m o

(26) |Z Ezt&;l.l(3m -j+ 1)g(Xj)eztaN (UN—AN(n))| — O(]tIN_5/2),

J=1

as N — oo uniformly over N° < [¢| < N'/*log N'. From (23), (25) and (26),
we get 1
(27) |Eito ! An(n)e®n Un=An(m)| = O([tjnN~3/2),

as N — oo uniformly over N° < |t| < N1/21log N. Now it follows from (22),
(24) and (27) that

|pn(t)] = O(N~ + |t|nN=3/2 4 |t|PnN1—3P/2),
and from the definition of n, we have

(28) |én(t)/tldt = o(N1/2),

A‘S|t|§N1/2 log N

as N — o0. ]

3 Proof of Theorem 3

First we shall state a key result due to Heinrich (1984) page 14. We refer
the reader to his paper for a sketch of the proof.

Lemma 1 Let Y;,Y2,... be a sequence of m-dependent random variables
with EY; = 0 and E|Y;|**3 < 0o whenever j = 1,2,..., for some k > 0.
Then there ezists positive constants By and Bs, depending only on k and m,
such that for all |t| < Blak'ﬂll, we have

|F3. /B, (t) = €ha(O)] < BaoFH1(1t1*2 + [tPE+2)) exp(—?/6),

where Fg_ /B and e , denote the Fourier-Stieltjes transform of Fg, /p, and
ekn respectively.
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PRrooOF oF THEOREM 3.

The proof closely parallels that given by Bickel and Robinson (1982) for
the i.i.d. case. However we need to make the following changes in their
proof to adapt it to the m-dependent case. First replace their equation (7)
by that of Lemma 1. Also we observe from Heinrich (1985) that

|6v0] < CnM,, /B2,

and hence
| H buitam/Brt| < CH nMyyo,n/Brit? — 0

=1 i=1

as n — oo since o, — 0. Thus we conclude that sup, |e,(clf:1)($)| < C and
it follows from (9) that

lekn(y) = Prorn (452, exn)l < Cally — |1 + of 1),

where C; is some positive constant independent of z, y and n. ad
Proor or COROLLARY 1.

Since lim B2 /n > 0, it follows from the definition of ok, that 0 <
lim o4 ny/n < co. Now the proof proceeds as in Theorem 3 with oy, re-
placed by n~1/2. ]

4 Appendix

Lemma 2 Suppose that (3), (4) are satisfied and r is a fized nonnegative
integer. Then

(r)
B 5 = o131 - BN ) g of 4 + i) AN 1/,

as N — oo uniformly over 1 < a <b< N and |t| < N¢, where

Rs = oy 3E{g3(X1)+3i[gz(X1)9(Xj+1)+9(X1)92(XJ’+1)]
j=1
m+1 j+m

6D Y 9(X1)a(X;)9(Xk)}.

j=2 k=_7+1
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ProoF. Let c”rgz denote the standard deviation of S’gg . We observe that
the third cumulant of (?7&2)‘15‘52 is asymptotically #Z3N~1/2 with error

O(N~3/2) uniformly over 1 < a < b < N. Hence it follows from Heinrich
(1982) p.513 that

Ee zt(a<r))-1s£) —t2/2(1 “;3 _1/2t3) +0[(lt|2+ |t|5)6_t2/4N_1/2],

as N — oo uniformly over 1 < a < b < N and |t] < N5t® where § is a small
positive constant. We remark that Heinrich stated his result only for the
case of a sum of 1-dependent random variables. However the extension to

m-dependence is straightforward. Since 1— (O'(T) /én)% = O(N 1) uniformly
over 1 <a<b< N, we have

ESPN S o ReteRaNE) TS
-f”?(l B N1 - ol + i)~ AN I,
as N — oo uniformly over 1 < a < b< N and [t| < N°. O

Lemma 3 Let 5/3 < p< 2, pl4+qgt=1andl <a < b< N with
b—a > 3m. Then
Eito 7 $(Xo, Xo){expliton} (SS) — 5] - 1}

at+m  (b+m)AN

= —itPo*NTPE Y Y o(Xa, Xb)g(X;)g(Xk)
j=(a—m)Vl k=b-m

-|-O(|t|3N_7/2 + |t|2+3/qN—2——3/(2q)),
as N — oo uniformly in a, b and t.

ProOOF. We observe that

© _ o) _ = oy
Sep = Sap=(N—-6m—-1[ > gX)+ D g(X)
j=(a—m)Vv1 k=b—m
For 1 < ¢ < N, we define
(e+m)AN
(29) R. = it6 5 (N — 6m — 1) Z 9(X;).

j=(c—m)v1l
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Then
Eito (X, XsY{explitor (59 — O] - 1}
= Eito'9(Xa, Xp)[(efs — 1 — Ro)(eft — 1 - Ry)
(30) +R,(eR — 1 - Ry) + Ry(efe — 1 - R,) + R, Rs).

The last equality uses the observation that
E'l:b(Xua’Xb) = E[¢(Xa7Xb)|Ra] = E[¢(Xa» Xb)le] =0.
Next we observe that

Eito5' (X q, Xp)Ro Ry
at+m (b+m)AN
= -6 (N-6m—1E > > g(X)9(Xp)$(Xe, Xs)

j=(a-m)}v1l k=b-m
a+m  (b+m)AN

= —i’o*NTPE Y Y g(X)g(Xk)$(Xe, Xb)
j=(a—m)Vv1l k=b—m

(31)  +O(PNT),
as N — oo uniformly in a,b and ¢t. Furthermore it follows from (11) that

Eltey'9(Xa, Xp)[(ef* — 1 = R,)(e®* — 1 - Ry)
+R,(ef* —1— Ry) + Ry(eff* — 1 - R,)]|
6E[ton"1(Xa, Xs)RaBy/*| + 2E[t65 (X, X3) R R
6lt|& %" [El%(Xa, Xo)P1/P[(E|Ro|) /4 (E| Rs|*)"/*
+(E|Rs|*)/9(B|Ro[*)/]

(32) = O(|tf*3/an2-%/Ga)y,

IN A

as N — oo uniformly in a,b and ¢{. Lemma 3 now follows from (30), (31)
and (32). a

Lemma 4 Let r be a fized positive integer, 5/3<p<2and1<a<b< N
with b—a > 3m. Then
T 151 S(l—l)
| Bty (X, X5) [[ [V Ge
=1

(1)
_Sa,,b) _ 1]| = O(ItISN—5/2ItN—1/2|T—1)’
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and

(- 1)_5(1) ls( )

(Bt p(Xa, Xp) [[1e"N 57
=1

= O(ltlSN_5/2|tN—1/2|T_l),

1] 1.t(TN

as N — oo uniformly in a, b and t.

PRrooOF. Let R, and Ry be defined as in (29). We observe that

o r Mx(zl) (1)
| Eito ! (Xa, Xo) [[[e"0N Con ~%an) — 1]
=1
= |Eito ¥(Xa, Xp)[(eRe — 1 — Ry)(e™ — 1 — Ry)
+R. (e — 1 - Ry)

(1-1) _ (1)
FRy(eRe — 1~ By) + RuRy) [ 55" -550 _ )
=2

(1-1) _ of
(33) < OE|tox p(Xa Xs)RaRs [[eF 55750 _ )|
=2

The last inequality uses (11). By Holder’s inequality, the r.h.s. of (33) is
less than or equal to

aa—10a(i—1) _ o(})
9|t|&;,1{E|¢(Xa,Xb)H'[eztaN%Sa,bl =Sud) 1)y
(34) X{E|RaRbH"[eit&;’1(S‘(‘{;l)_s‘(‘l}’) _ 1]|q}1/q’

where p~! + ¢7! = 1, []' denotes the product over all even integers I, 2 <
I < r and []" denotes the product over all odd integers [, 3 < I < r. By
virtue of m-dependence, the r.h.s. of (34) is bounded by

OtloN E|(Xa, Xo) P /P(E| RaRs |7

« TTLEIF =50 _ popss
=2
< 9t|6N E1%(Xa, X3)[P]V/P(E| Ry Ry |7) 0

(35) xHWHw”ﬁww
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Since - l :
([Elort (585" = SOOI = 0(lgN=12),

as N — oo uniformly over 1 < a < b< N,2 <1< r andt, it follows from
(35) that

T a—1ya(1=1)_ (D)
|Eit6;,1’l,b(X,1,Xb) H[e”"Nl(Sa,b =Sa) _ 1] = O(|t|3N_5/2|tN_1/2|T_1).
=1

This proves the first statement of Lemma 4. The proof of the second state-
ment is similar and is omitted. a

Lemma 5 Let 1 < a < b < N. Then with the notation of Proposition 2,
there exists a constant K such that

| B[N 50| Ay 5] < N7,

Jor sufficiently large N uniformly over 1 < a < b < N and N¢ < |t| <
N1/2]og N.

Proor. We observe that
E[eit&;S(n)|Aa,b,n]
(36) = E[/ Stow (N—6m-1)370 | g(xj)H*dF(&(mH))|-Aa,b,n],
!

where F(£)(m41)) denotes the distribution function of the random variable
&i(m+1) and []; denotes the product over all positive odd integers [ satisfying
Ilm+1) ¢la—m,a+2mjUb—m,b+2m]U[n+ 1~ m,o0). Thus the
absolute value of the r.h.s. of (36) is bounded by

I(m+1)

E(IT| [ & o Eationtor=m (D 4 (€ ) A
l

W(m+1)

H*E[l /eitéﬁl(N—Gm—l)ZJ=z(m+1)—m g(Xj)dF(fl(m+1))|I-Aa,b,n]
l

A= m+1 .
(37) = {EIE[eml"l(N_ﬁm—l)zf=1 g(X’)|€1, ceesEmy Emt2s - - - Eama1] |},

where kg equals the number of terms in the product []J;. The second [last]
equality uses the independence [stationarity] of the £;’s respectively. Now
we consider two cases.
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Cask I. Suppose that N1/2 < || < NY/2log N. Then for sufficiently
large N, n satisfies

log N
amr! = g
Since
ko > Lm] -3

and it follows from (19) and (37) that
|E[e%W S0 Agp]] < (1 - y)lnm2m)/Rlm =,
whenever (N — 6m — 1)65'|t| > 1/(20,). Thus we conclude that
BN S A )| < N7

for sufficiently large N uniformly over 1 < @ < b < N and NV/2 < [t| >
NY2log N.

Cask II. Suppose that N¢ < [t| < N¥/2. Then for sufficiently large N,
n = Kt~2N log N. We observe from (20) and (37) that

|E[eit&§15(n)|Aabn]| < e—y,k:ot""(N——G'm—l)zér;,2

whenever (N — 6m — 1)65'|t| < 3/(20,). Now it can be easily seen that K
can be chosen so that

|E[e0% St A, 5.0] < 1/,

for sufficiently large N uniformly over 1 < a < b < N and N¢ < |t| < N1/2,
O
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