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Abstract

For a unimodal distribution on the Real line, the celebrated mean-median-mode inequal-
ity states that they often occur in an alphabetical (or its reverse) order. Various sufficient
conditions for the validity of the inequality are known. This article explicitly characterizes
the three dimensional set of means, medians, and modes of unimodal distributions. It is
found that the set is pathwise connected but not convex. Some fundamental inequalities
among the mean, the median and mode of unimodal distributions are also derived. These
inequalities are used : (¢) to prove nonunimodality of certain distributions, and () for
obtaining bounds on the median of a unimodal distribution. In a multivariate setting, the
generalized notion of a-unimodality is used, and characterizations are given for the set of
fnean vectors, when the mode is fixed, or when it varies in a sphere. In particular, it is
found that the set of mean vectors for generalized unimodal distributions with a specified

mode and covariance matrix is an exact ellipsoid and this ellipsoid is explicitly described.

Key words : a-unimodality, connected, convex, ellipsoid, mean, mean-median-mode in-
equality, median, mode, moment problem, sphere, star unimodality, uniform distribution,

unimodality.

AMS 1991 subject classifications. 60E05, 62E10, 60E15, 62H05



1 Introduction

Let X be a real valued random variable with cumulative distribution function (cdf) F, and
mean p = p[F] = Ep(X) < oo. A number m = m[F] is said to be a median of X if
P(X <m) > % and P(X > m) > % A median m, thus defined, always exists, although
in general, a random variable X may have several medians. Suppose, furthermore, that X
is unimodal about some point M = M[F] (called a mode of X), i.e., F(z) is convex for

z € (—oo,M), and concave for 2 € (M, 00). It is easy to see that a median m is uniquely

defined for a unimodal random variable X.

The well known mean-median-mode inequality states that for a unimodal distribution F,

often, the mean, median, and mode occur in an alphabetical or reverse alphabetical order, i.e.,

M<m<p o M>2m>upu (1)

It is well known that this inequality, however, is not always true as can be seen from the

following very simple example.

Example 1. Let X ~ F, where F is a mixture of three distributions : F(z) = (14;5)F1(a:) +
(38)Fy(2) + £F5(z), where 0 < 6 < 1, and Fy, F», and Fj are, respectively, cdfs of the
Uniform[—3 + §,0], Uniform[0,1 — 6], and the degenerate distribution at 0. Clearly, F is
unimodal about M = 0, and p = Ep(X) = 0. However, the median m equals = %—__—%ﬁ >0,
violating both inequalities in (1). Other examples can be found in Dharmadhikari and Joag-

dev (1988) =

Various sufficient conditions for the validity of (1) are given in Groeneveld and Meeden
(1977), Runnenburg (1978), van Zwet (1979), and MacGillivray (1981). Dharmadhikari and
Joag-Dev (1983, 1988) give a sufficient condition using stochastic ordering of distributions; this
encompasses the works of the previous authors. In section 2, we briefly review the literature

on the validity of the mean-median-mode inequality.

Our approach in this article is different. We consider the class of all unimodal distributions

with a fixed variance o2,

Fe = {F : F is unimodal and Varp(X) = o* }; (2)



and look at the three dimensional set
M, = {(p[F],m[F],M[F]) : FeF,} C %, (3)

the collection of all possible triplets of mean, median, and mode for unimodal distributions
on the Real line with a given variance. Knowledge about the set M, is valuable on its own
right; furthermore, it points out the extent to which inequality (1) may get violated, and also
may help to single out distributions that cause such violations. The set M, turns out to be a
connected but nonconvex set; in section 3, we analytically describe the envelope of the set. The
derivation of the set M, is a nontrivial mathematical exercise. By moment theory techniques
we first reduce an appropriate infinite dimensional problem to finite dimensions; some further

calculations of a rather difficult nature then yield the exact boundaries of M,.

It is well known that |M[F] — u[F]| < +/30[F] for any unimodal distribution F (cf.
Johnson and Rogers (1951)). Using the exact formulae for the boundary of the set M., we
generalize this inequality to all paired combinations of u[F], m[F], and M[F] (see corollary
4). The use of these inequalities in : (a) establishing nonunimodality, and (b) for obtaining
bounds on m[F)] or o[F] (when F is known to be unimodal), is described in section 3.5. We
also give an explicit quantification of the extent to which the mythical inequality in (1) can

get violated (Theorem 5).

Section 4 focuses on multidimensional random variables. Here, we use the generalized
notion of a-unimodality due to Olshen and Savage (1970), and prove that for an a-unimodal
distribution, an inequality similar to the one dimensional case holds between the mode M
and the mean g . For a fixed mode M, Theorem 7 shows that the set of mean vectors I
for a-unimodal distributions with a specified covariance matrix is an ellipsoid around M.
This ellipsoid is explicitly described. We consider this exact ellipsoidal representation very
satisfying. If the covariance matrix is identity and we let M vary in a sphere, the mean

vectors then form a sphere (see Theorem 8).

The principal achievements of this article are the following :

(¢) to explicitly characterize the three dimensional set M,, of all possible means, medians, and

modes of univariate unimodal distributions;

(i%) to use the set M, in quantifying the extent and nature of violations of the celebrated .



mean-median-mode inequality;
(4t3) to use the set M, in establishing non-unimodality of certain distributions;
(iv) to derive new sharp inequalities relating the mean, median, and mode; and

(v) to obtain some neat characterizations in the multivariate case for generalized unimodal

distributions.

2 Conditions for validity of the inequality : a review

The search for sufficient conditions under which the mean-median-mode inequality (cf. (1))
holds for a continuous unimodal distribution F dates back to Groeneveld and Meeden (1977).
They assume F' to be absolutely continuous (w.r.t. Lebesgue measure) with density f, and
their sufficient condition requires that f(m + 2) — f(m — ) changes sign once for > 0 and
that f(M + z) — f(M — z) does not change sign (van Zwet (1979) and MacGillivray (1981)

point out that their restriction to nonnegative random variables is superfluous).

van Zwet (1979) shows that a more general sufficient condition is given by (assuming F’
has a density f)
Fim—-z)+ F(m+2)>1 forall z. (4)

The following result is available.

Theorem 1 (van Zwet) If condition ({) holds, then p < m < M. If, moreover m # M,
then p < m < M.

An even more general sufficient condition, based on stochastic ordering, is given in Dhar-

madhikari and Joag-Dev (1983).

Theorem 2 (Dharmadhikari and Joag-Dev (1988)) Let X be a unimodal random vari-
able. If (X — m)* is stochastically larger than (X — m)~, then X has a mode M satisfying
M<m<pu.

Notice that Dharmadhikari and Joag-Dev do not assume existence of densities; neither do

they assume that X has a unique mode. They further show that Theorem 1, and the sufficient



condition of Groeneveld and Meeden follow as corollaries from Theorem 2; so also does the

following result :

Corollary 1 (van Zwet) Let X be a unimodal random variable with density f and cdf F. If
FFI@) < F(FH(1=1) forall0<t< %, then p < m < M. If, moreover, m # M, then
p<m< M.

For various other ramifications of these results, we refer the reader to Groeneveld and

Meeden (1977), van Zwet (1979), and Dharmadhikari and Joag-dev (1983, 1988).

3 Mean, median, and mode for univariate unimodal distribu-

tions

3.1 Preliminaries

Let X be a unimodal random variable with cdf F € F,. The goal is to explicitly characterize
the set M, of the mean pu, the median m, and the mode M for unimodal distributions with
variance 2. Let F* = {F : Fisunimodal and Ep(X) = p, Varg(X) = o2}, and let
ME = {(u,m[F),M[F]) : Fe F*} C {u} x R% Clearly, M* = (p, p, p) + o M?; further,
the set M, is the union of the M¥# sets, i.e., M, = |JM¥. Hence, from now on, we assume

that £ = 0 and o = 1.

We first use the known fact that for any F' € F?, the set of modes form the interval

—+/3,+/3]. Determination of the set M? now goes along the following two principal steps :
1 g

(1) Fix M € [-/3,v/3], and determine

m= inf m[F], m= sup m[F],
Fery ™ FeF)M

where F2M = {F € 79 : F is unimodal at M}.
(i1) For every m < m < i, show that 3 F € ]:IO’M such that m is the median of F.
Step (4) determines the boundaries of M$, whereas step (é¢) proves that it is path connected (as

m < 0 < m for every fixed M, see Theorem 4 and Figure 1), and hence connected. Practically

all the work goes into accomplishing step (i); the proof of step (i¢) is easy on comparison..



Proof of step (4¢) : Fix m € (m,mM). Since the infimum m and the supremum T are, in

fact, attained (as we will show while accomplishing step (7)), 3 F; and F; € .7-'10’M such
that m[F;] = m and m[F;) = Wm. For 0 < a < 1, define the real valued function g(a) =
aFi(m) + (1 — a)Fy(m). g(e) is continuous in a € [0,1}; further g(0) = F(m) < 1 (since
m < ) and g(1) = Fy(m) > § (as m > m). Hence Jo* € [0,1] such that g(a*) = L. Thus
m is the median of F* = a*F; + (1 — a*)F;. Clearly, Ep«(X) = 0, Varg«(X) = 1, and F* is
unimodal about M (since both F; and F; are so); hence F* € ]-"f’M, and step (4¢) is obtained

3.2 Reduction to mixtures of two uniforms

To find the infimum median m over the family Fy M (step (¢) above), we use the following
easily proved Lemma (Lemma 2 in Basu and DasGupta (1992)) to show that m, in fact, can

be described in terms of suprema of probabilities of intervals.

1
Lemmal m= inf m{F]=inf{7 : sup F(r)2> =
FG}-?'M TER FE}_;)'M 2

Proof : See Basu and DasGupta (1992) m

Determination of m, thus, can be done along the following steps : (¢) for 7 € R, find

sup F(r); () find T=<{7: sup F(r)>%3;and (4ii) find m=inf{r: 7€ 7}. A
FeFiM FeFoM

similar statement holds for m = sup m[F].
FeFdM

The next Theorem shows that, for any 7 € ®, sup F(7)and inf F(7) are, in fact,
FeFdM FeFy™

attained at distributions F* € F M which are mixtures of at most two uniforms.

Theorem 3 Foranyrte R,

inf F(r) = inf H(T) and sup F(7r) = sup H(7),

where Hyr = {HGfIO’M : H:(l—p)Ué‘{—i—pU%, 0<p<1, 77137726?)?}, and Uj,w is

- the cdf of the Uniform[min(M,M + ), max(M, M + n)] distribution.

Remark : From existing moment theory techniques (see, for example, Mulholland and Rogers

(1958), and Kemperman (1968)), it follows that the problem of finding extrema of F(7) over
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the class .7-'10 M can be reduced to finding the extrema over mixtures of at most three uniforms.
The above Theorem reduces the dimensions further only to mixtures of two uniforms, without

which the exact analytic calculations we do in Theorem 4 perhaps would have been impossible.

Proof : We will only describe the reduction for the infimum problem. Let X ~ F € .7-'{) M
By familiar arguments, we can write X EM + UZ, where U ~ Uniform[0,1], Z ~ G is a real
random variable, and U and Z are independent. Further, Ep(X) =0 < Eg(Z) = —2M and
Varp(X) = 1 & Eg(Z?) = 3(1 + M?). Without loss of generality, we assume M > 0 (the
conclusion for the case M < 0 follows by symmetry). We have to treat the following two cases

separately.

Casel: 7> M. Since 7 — M > 0, a straightforward argument shows that Pr(X < 1) =
[e.o]

Pr(UZ <1t—M)= [ f(2)dG(z), where f(z) equals 1 for z € (=00, ™ — M], and equals Z=M
— 00

z

for z € (t — M, 00). The problem at hand now reduces to finding inf ofo f(2)dG(z) subject to
Eg(Z) = —2M and Eg(Z?) = 3(1+M?). The assertion of Theorem 50\;ill follow from general
moment theory (see, for instance, Theorem 2.1 and Remark 2.3 in chapter XII in Karlin and
Studden (1966)) if we can show that a quadratic a + bz + c2? such that f(z) > a + bz + c2?
for all 2z can cut f at at most two points. However, this is easy to see. For such a quadratic, it
easily follows that (¢) ¢ must be < 0, and (22) ¢ # 0. Let A(z) = f(2)—(a+bz+c2?). h(z) > 0,
and strictly convex on each of the subintervals (—co,7 — M] and (7 — M, 00); thus proving

that at each subinterval 2(z) can have at most one zero.

Case Il : 7 <M. The argument for case II is quite similar and we skip the details m

Corollary 2 inf m{F]=m= inf m[H] and sup m[F|]=m= sup m[H]
Fe]_-f,M HeHyy Feff'M HeH

Proof : Follows trivially from Lemma 1 and Theorem 3 m

3.3 Formulae for extremal medians

Our next objective is to determine exact expressions for m and m (in terms of the mode M).



Theorem 4 For M > 0,

M3 —27M+(M249)3/2

m = F?}}fI}M m[F] = T
M3 —27M—(M?249)3/2 . 0<M< VoG
and ™™ = max m[F] = 27(M22_3) if s < V0.
rert M i VIB<MZV3

Proof : Since the proof is entirely technical, we defer it to the appendix =

The following consequences of Theorem 4 are worth noting separately.
Corollary 3

(1) {m[F] : F is unimodal at 0, Ep(X) =0, Varp(X) =1} = [-3 %]
(@) {m[F] : F is unimodal at /3, Ep(X) =0, Vars(X)=1} = {o}.

Proof : Both (7) and (i¢) follow trivially from Theorem 4. An alternative proof of (¢%) is that
the only unimodal F with Ep(X) =0, Varp(X) =1 and M[F] = /3 is F = U[-v/3,V3] n

3.4 Subsequent results

In Figure 1, we plot the boundaries of the set M9, i.e., m and T against M (M € [-v/3,/3]).
By step (ii) of section 3.1, MY is a connected set. The following corollary to Theorem 4 can

be readily seen from Figure 1.

Corollary 4  For a unimodal distribution F with Ep(X) = p, median[F] = m, mode[F] =

M, and Varp(X) = o?,
O

IN

@) R < Vo8
(i) Mmoo 3

Moreover, each inequality is attained.

Proof : Result (¢) is well known. It was first obtained in Johnson and Rogers (1951). Also
see Dharmadhikari and Joag-Dev (1988, pp 9).

For (i1), w.l.g., we assume ¢ = 1,u = 0, and M > 0. For fixed M > 0, let m{M} =

min m[F], and M{M} = max m[F], the lower and upper boundary points of M{ corre-
FeroM FeF)M

sponding to M. From Theorem 4, it can be proved that giiqm{M} > 0 for M € [0,v/3), i.e.,
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m{M} is T in M. Also, mi{M} is nondecreasing for M € [0,/6], and nonincreasing for M €
(v/6,/3]. Since m{M} < 0 and m{M} > 0, it follows that |m| < max ir\n/{z;)(c)ﬁ{M}, - ﬁl)I’am{M}
= max [ﬁ{\/O.G}, —-r_n_{O}] = max[v/0.6, 1] = v/0.6. This completes the proof of (4%). )

Towards proving (i44), let ¢;(M) = [m{M} - M| = m{M} — M for 0 < M < /0.6, and
= M — m{M} for v/0.6 < M < /3. Notice ¢}(M) < 0 for M € [0,/0.6] and > 0 otherwise;
thus max ¢1 (M) = max [$1(0), 61(v/3)| = ¢1(v/3) = V3. Similarly, ¢2(M) = |m{M} - M| =
M — m{M} is nondecreasing in M, thus max ¢,(M) = ¢9(+/3) = v/3. This proves (éii) and

completes the proof of the corollary m

Figure 2 is a three-dimensional plot of the set M,=1 = {(u[F], m[F], M[F]) :
F is unimodal and Varg(X) = 0% = 1}. As we mentioned before, M, is simply the three

dimensional set obtained by translating the origin of the set MY along the vector (u, p, p).
Corollary 5 The set M, is connected but not convez.

Proof : Nonconvexity is trivial (M9 is not convex). We will show that M, is pathwise
connected. Note that, for every p € R, the point (u, p, u) € M, (Because there is a symmetric
unimodal distribution with mean = y, median = y, mode = y, and variance = 0?). The proof

now follows from the fact that each p-section of M, is path connected (see section 3.1) w

In Example 1 and Figure 1, we have observed that there are unimodal distribution-
s for which the alphabetical ordering of mean, median and mode does not hold. It is of
natural interest to quantify the amount of maximum possible deviation from this ordering.
Towards this end, let I = {(p,m,M) € R3 : inequality (1) or its reverse holds }, and let
S; = M, N1, the subset of M, where inequality (1) holds. For any § = (¢, m,M) € M,,
let d(0,S8,) = Qiggo {|§ — 71| be the L?-distance between the point § and the set S,. The

quantity d(M,,S;) = sup d(6,S,)is a reasonable quantification of the maximum possible
0 em,

deviation from the mythical ordering.

Wlg., let ¢ = 1. Instead of looking at the 3-dimensional sets M,—; and S,-1, we first
look at a p-section of them, in particular, the u = 0 section. Recall, M{ was our notation for
the g = 0 section of M,=1. Let I° = {(g,m,M) €I : p =0}, and S = MINI°. The set

I° is the dashed area in Figure 1.



Theorem 5 d (MP,8?0) = 0.294931.

Proof : For brevity, we will consider the case M > 0 (the proof for M < 0 is similar). From
Figure 1, it follows that d (M$,89) = sup inf |Ja — 3| is given by the maximum of
aemd Besy T T
[A] the distance of the farthest point on the the upper boundary m{M} of M9 from the 45°
line m = M (for 0 £ M < v0.6), and

[B] sup { min of (¢) and (i¢)}, where for each fixed M > 0
M>0 |
(¢) distance of m{M} from the horizontal axis, and

(7¢) distance of m{M} from the 45° line m = M.

Towards [A], for each fixed M, the distance between the point (fi{M}, M) and the 45° line is
the same as the distance between the two points (m{M}, M), and ([m{M} + M]/2, [{M} +
M]/2), which equals +/0.5|M — m{M}|. Since |[M — m{M}| is nonincreasing in M € [0,+/0.6],

the maximum attains at M = 0, and the maximum distance = 0.235702.

In [B], (3¢) is similar to [A]; the distance is given by (for each fixed M) the distance
between the points (m{M}, M) and ((m{M} + M]/2, m{M} + M]/2). Hence, for each fixed
M, minimum of (i) and (i) = min [-m{M},v0.5|M - m{M}|] = VO3M - m{M}] if
0 <M < 0.122164, and = —m{M} if 0.122164 < M < /3 (after some simplifications). But
IM —m{M}| and m{M} are both nondecreasing in M; thus the supremum over M is attained

at M = 0.122164 and the maximum distance = 0.294931. This proves the Theorem =

From Theorem 5, it follows trivially that the L2-distance between the two 3-dimensional
sets M, and S, satisfies d (M,,S,) < 0.294931 0. We strongly suspect that, in fact, equality
holds, i.e.,

Conjecture 1 d(M,,S,) = 0.2949310,

though we were not able to prove this conjecture analytically.

3.5 Examples

Our objective in this section is to point out the possible directions of use of our obtained results.

For clarity, we look at two simple examples, rather than considering complex (probably more
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realistic) examples. The first example shows how inequality (i7) in corollary 4 can be used
to prove nonunimodality of certain distributions. The second example outlines a method for
obtaining useful bounds on the median of a fixed distribution when the actual median may be

hard to obtain.

Example 1 :  Let F be a mixture of two point masses and a uniform : F = p1é(_) +
p2U [-n, 1] + p3bny, pi 2 0, pr + p2 + p3 = 1, and the p;’s are so chosen that Ep(X) = 0
(646 denotes the degenerate distribution at @). F' is clearly bimodal with modes at —n and 1,
the two endpoints of its support. Let Xj denote the sample median of a sample of (2k - 1)
observations from F and let F; denote the distribution of X;. It is known that median of
Fy, = median of F, i.e., m[F}] = m[F] (see Reiss (1989)). For small values of k, say k = 2
or 10, though the form of Fy, can easily be written down, proving unimodality or nonuni-
modality of F, seems nontrivial. However, violation of the inequality in part (22) of corollary 4
(V* = 0.6Var(X}) — [m[F] - E(X'k)] ’ < 0) is a sufficient condition for nonunimodality of the
distribution Fy. Evaluation of E(X}) and Var(X}) needs some numerical work, but is much
more straightforward compared to a direct check of unimodality. For example, for n = 1.1 and

p3 close to 0.5 (but < 0.5), V* turns out to be < 0 for all k& < 39, thus proving that X} has a

nonunimodal distribution for k < 39.

Example 2 : The inequality of corollary 4, namely (median — mean)? < 0.6 Variance, can
also be used to obtain useful bounds on mean or median or variance, depending on which two

of the three are easier to obtain.

As a simple verification of how it works, let X ~ exp(A) with p = E(X) = $. Fur-

ther, F(z) = 1 —e™**, z > 0, and solving F(z) = 1 gives median m = 125521. From the -

2 _ 0.5114213
= 32

above inequality, we obtain Var(X) > 01?(;1, — m) , which is approximately half of

Var(X) = 15.

For another simple example, let X ~ F = Beta(e,(). Thus, p = CYaTﬁ and 02 =

Wm. Moreover, if @ > 1, and 8 > 1, then F is unimodal at M = ﬁ%; if

a<1,8>1(a>1,6<1), Fisunimodal at M =0 (M = 1). But evaluation of the median
m of F requires solving an equation involving incomplete Beta integrals. Corollary 4, however,

gives the following useful bounds on m (for a £ 1 or 8 £ 1).

ma,x{p —V0.60,M — \/50} <m< min{y—}— V0.60,M + \/50} (5)

10



Table 1: Bounds on the median m of Beta(a, §) distribution

| g
a " 0.5 1.0 1.5 2.0
1.0 | Bounds || (0.484,0.898) | (0.500,0.724) | (0.197,0.454) | (0.151,0.408)
m 0.750 0.500 0.370 0.293
1.5 | Bounds || (0.567,0.944) | (0.546,0.803) | (0.306,0.694) | (0.248,0.609)
m 0.837 0.630 0.500 0.414
2.0 | Bounds || (0.634,0.966) | (0.592,0.849) | (0.391,0.752) | (0.327,0.673)
m 0.879 0.707 0.586 0.5
3.0 | Bounds || (0.729,0.985) | (0.665,0.900) | (0.511,0.822) | (0.445,0.755)
m 0.921 0.794 0.693 0.614
4.0 | Bounds || (0.785,0.993) | (0.717,0.926) | (0.592,0.863) | (0.529,0.805)
m 0.941 0.841 0.756 0.686

These bounds can easily be evaluated without any numerical work. Table 1 shows the bounds
obtained from (5) along with the actual values of the median m for different combinations of

a and .

4 Multivariate Unimodality

Our objective in this section is to generalize some of the results of section 3 in the setting of
multivariate unimodal distributions. Unlike in one dimension, there are several definitions of
unimodality in higher dimensions such as star unimodality, block unimodality, central convex
unimodality, and log concavity (and more; see Dharmadhikari and Joag-Dev (1988)). We will
restrict ourselves to the generalized notion of a-unimodality, introduced by Olshen and Savage

(1970), of which star-unimodality is a special case.

Definition 1 (Olshen and Savage) A p-dimensional random vector X is said to have an
a-unimodal (a > 0) distribution about M if, for every bounded, nonnegative, Borel-measurable

function g on RP, t*E [g(t()g -M ))] is nondecreasing in t € (0, 00).
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The definition given by Olshen and Savage is, in fact, more general; it applies for X taking
values in any p-dimensional vector space. It can be seen that ordinary unimodality on % is
equivalent to definition 1 with p = 1 and a = 1. In general, definition 1 corresponds to the

property of starshaped level sets for the distribution of X .

Theorem 6 (Olshen and Savage) A p-dimensional random vector X is a-unimodal
(about M ) if and only if X £ Ul/a% + M where U ~ Uniform[0,1] and Z is a p-

dimensional random vector independent of U.

A p-dimensional and p-unimodal (about M ) random vector X is called star unimodal
(about M ). Generally, star unimodality is defined through a natural extension of the idea of
one-dimensional unimodality, and the above definition follows as an equivalent version. The
concept of star unimodality has recently been successfully used in inference problems : see

DasGupta, Ghosh and Zen (1991).

Since the use of a median in the multivariate case is less pervasive, we focus our efforts

on extending part (z) of corollary 4 given in section 3.4. Let us make it more precise.

Let Oaz,x denote the set of all possible mean vectors y corresponding to p-dimensional

a-unimodal random vectors X with mode[X | = M and covariance matrix D(X ) = £, i.e,,
Opmz = {;ﬁ = E(X) : X is a-unimodal about M and D(X ) =X } (6)

We have the following neat ellipsoidal representation of Oz 5.

Theorem 7  Assume |X| # 0. Then

~

Omz = {u : (b -M)TS (s ~M) < a(a+2) }.

Proof : W.lg, we take M = 0. Further, if X is a-unimodal (we use a-unimodal to imply
a-unimodal about 0 ) with E(X ) = p and D(X ) = £, then for Apx, nonsingular, ¥ = A X
has E(Y )= Ap and D(Y ) = AZAT. Tt follows from Theorem 6 that Y is also a-unimodal.
Taking A = £~1/2 shows that it is enough to prove the result for & = I.

The proof will be divided into the following steps

() w €001 = pnTp <ola+2)=a" (say).

12



(1) p € ©o1 = Pp € Qg for any orthogonal matrix P.
(7i1) For every scalar v satisfying —vo* <7 <ve*, u =(v,0,.. 50T € 0.

We claim that these three steps show ©g 1 = {’i : &T& < a*} and proves the Theorem.
That Og1 C {l.’.' : &TH: < a*} follows from step (i). Next, for any g with %T& =42 <
o*, 3 P orthogonal such that Py = (7,0,...,0)T. By (444), Pp € Bg,r, and hence by step
(i), p € Og,1.

Step (i¢) is an easy consequence of Theorem 6. For proving (i), let X be a-unimodal
with D(X ) = I. By Theorem 6, X £ V Z where V is a scalar random variable, V' £ yi/e
with U ~ Uniform[0,1], and V and Z are independent. Note that p, = E(V) = 357 and 02 =

Var(V) = @—ﬁﬁmv; thus o* = p2/02. Now,
I=D(X)=D(VZ) = 2B(ZZ")+42D(Z) > 2E(Z Z7). ™
On the other hand,

pp’=EXXT)-DX)

i

EVHE(ZZT)-1

] I (from (7))

A
| p—— |
&
=
N
!
—

Thus pTp < p/oZ, which proves (3).

To prove (u22), fix —vo* < v < Vo*. Consider p independent scalar random variables
Z1,Z3,. .., Zy such that B(Z;) = L, E(Z?) = %";—%, and for ¢ = 2,...,p, E(Z;) = 0,
E(Z?) = ﬁ Take Z = (Zy,..., Z,)T and now pick a scalar random variable V independent
of Z such that V £y with U ~ Uniform[0,1]. X =V Z is clearly a-unimodal, moreover,
it can be seen that D(X) = I and E(X) = (7,0,...,0)T. The proof of the Theorem is

therefore complete m

Remark : Notice the ellipsoids of Theorem 7 are nested, i.e., the same ellipsoid is obtained if

D(X) <.

Corollary 6 Let X be a p-dimensional random vector, star unimodal about M, with

E(X)=p, D(X)=2X. Then

(B -M)Z -M) < p(p+2).

~

13



Proof : Immediate from Theorem 7 m

Thus, according to Theorem 7, the means p of a-unimodal distributions lie in an ellipsoid
with center at the mode M, and the axes of the ellipsoid are multiples of the eigenvectors of

the dispersion matrix ¥.

In the above, we assume that the mode M is fixed at a certain point in 7. Next, we look
at the set of mean vectors g of a-unimodal distributions, when the mode M is also allowed

to vary in a sphere in RP.

Theorem 8  Let Op s be as defined before, and let

Or = U Opmr = {/’i =E(X):D(X)=1, and X is a-unimodal about M with M € },
Meq

where the Q0 is the sphere {M (M - MO)T(M -M) < ,62}.

Then the set of mean vectors p is again a sphere, and equals

~M )T ( - M,) < (Var+8) }.

@
by
Il
——
=
=

Proof : The proof is notationally slightly complex, but is indeed nothing more than a proof

of the fact that the Minkowski sum of two spheres is again a sphere.

W.lg., wetake M ' = 0. For a random vector X , a-unimodal about M with E(X ) = u
and D(X ) = I, by Theorem 7, we have (g — M )T —M) < o*. If, moreover, M € Q, then
llee 1 < Nl = M|+ |IM || < va® + B; this shows that 07 C {p : pTp < (Vo +8)}.

For proving that ©; equals the entire sphere, pick any g with |[u|| = v < Vor + 8.
Find an orthogonal matrix P such that Py = (7,0,...,0)7, and next find 0 < 711 < Vo
and 0 < 72 < B such that 7 = 7; + 7. Clearly, M ™ = (7,0,. .,0)T € Q, and for such an
M *, 3 a random vector X , a-unimodal about M *, with D(X ) = I and E(X ) = g~ such
that p* - M* = (711,0,...,0)T. Thus, p*=(p*-M")+ M, and hence p* € ©7. Now,
p = (PT&*——PTNE*)+PTMV*, and PTyu*—~ PTM* € Oprpp ;3 PTM ™ € Q, hence . € Oy,

This completes the proof m
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5 Summary and discussions

Past work in this area was directed towards finding more and more general sufficient conditions
for the validity of the mean-median-mode inequality. In contrast, we concentrate our atten-
tion to exact characterizations of the three dimensional set of means, medians and modes.
Derivation of the set involves some novel use of moment theory, and, most surprisingly, we
were able to analytically describe this set. Furthermore, this exact description enabled us to
derive some fundamental inequalities among the mean, median and mode of unimodal random
variables. We were also able to specify the region where the inequality gets violated, and found
the maximum extent to which a unimodal random variable may violate the mean-median-mode
inequality. In the multivariate case, we obtain a very pleasant ellipsoidal characterization of
the set of means of a-unimodal distributions with a fixed mode M . When the mode M is also

allowed to vary in a sphere, we prove that the mean vectors form a larger sphere.

Several open questions remain. We conjectured that the maximum deviation from the
inequality is 0.294931¢0 and we proved it for each fixed mean g, but were unable to prove it in
its full generality. In Theorem 8 we assume % = I, and that the mode M is in a sphere. The
case of a general ¥ and when the mode varies in other nicely structured convex sets (such as
an ellipsoid, or a rectangle) are hard geometric problems, and again, open for exploration. We

believe the geometric results in DasGupta and Studden (1988) are of probable relevance here.

Appendix

Proof of Theorem 4 : The derivation of m and i looks intimidating, but it is really s-

traightforward on patient verifications. First note that, by corollary 2, we only need consider
distributions of the form H = (1 - p)UM + pUM  (m < n,) satisfying Eg(Z) = —2M and
Eg(Z?) = 3(1 4+ M?). Without loss of generality, we assume M > 0. Since Eg(Z) = —-2M <
M, it follows that #; must be < 0.

Case I [m <0, m72>0]: For notational simplicity, we write 7; = —2a, 1, = 2b, where

a,b > 0. Thus, the distribution H is of the form
H=_1-p)U[-2a+M,M] + pU[M, M + 2b]. (8)

Now, Eg(Z)=-2M = p = %ﬁl\bﬁ, p >0 & a > M. Further, Eg(Z?%) = 3(1 + M?) allows us

15



to write
2 2\ _
_ 4Mb + 3(1 + M?) or b= 3(1+M?) — 4eM (9)
4(b+ M) 4(a — M)

(we will use either expression as necessary). For ease of calculations, we further subdivide Case

I to the following two subcases.

Subcase A [m[H]>M]: From 8), m[H] > M & p >3 & b< -M+ @ on
simplification (using (9)). The condition b > 0 requires —M + 3/3—?\-71_—2- > 0 & M? < 0.6; hence,
Subcase A is possible only if 0 < M < v/0.6.

Since H has no jumps, we have 1 — H(m) = %. Solving for m (and use of (9)) gives

m=2b+M-1> 2Mb;?,;tg'_;§§\l,[tM2) = 1(b) (say). b* = ﬂi%m is the only nonnegative

solution to 41(b) = 0. Moreover, ¥{(b*) < 0, and b* satisfies the required boundary conditions.

_ xy . M3—27M-(M249)!®
Hence, pJnax m[H] = ¥;(b*) = 27 (M2=3) .

Notice that, for each fixed M > 0, this Subcase restricts the median m[H] to be > M,
whereas Subcase I-B and Case ITbelow only allows m[H] < M. Thus, for those M where Case
I-A is possible (i.e., for 0 < M < 1/0.6), m = oJuax m[H]. For the same reason (since other
feasible cases allow m{H] < M), we refrain from evaluating o Slenf » m[H] O
Subcase B {m[H] < M ]: For ease of calculations, we formulate this case in terms of ‘a’.
The domain of ‘a’ is bounded by : (i) p 2 0 & a 2> M, ()b 20& a< ﬂ%é\[/[—zl:
Ay, and (i) mH] < M & a < 2—1\4"323"@ = As. Thus, ¢ € [M, min(44, Az)], and

min(A;, Az) = Ay if 0 < M? < 0.6, and = A; otherwise.

Solving H(m) = § gives m = M — 2a + a 4“2’8‘:’311/[1\"&2“'31\42 = 1o(a) (say). ¥h(a) = 0 has
only one solution a* = 4—1\/1'*3@ in the domain of ‘a’; further, ¥5(a*) > 0, i.e., a* is a local

minima.

Towards determining max m[A], note that we are really only interested in the case M2 >

0.6 (see Case I-A), which implies a € [M, A;]. Clearly, max m[H]is attained at the boundaries

of the domain of ‘a’. Thus, for v0.6 < M < /3, o nax m[H] = max{1(M),¥2(4;1)} =
ase

-B
Pa(A1) = SRS

B m[H] = 12(a*) = M°-27M+(M249)15

min 92(a) is clearly attained at a = a*, and Ca?c}i}l— 27 (M2=3)
It can be shown thatc mi}l Bm[H]<Ofor0§M< V3,and =0at M =+3 O
ase et
Case I [m <0, 72 <0]: Again, for notational convenience, we write 71 = —2a, 7o = —2b,
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where a > b > 0. Thus,
H = (1-p)U[-2a+M,M] + pU[-2b+ M, M], (10)

and from the conditions Eg(Z) = ~2M and Eg(Z?) = 3(1 + M?), we have

a-M _ 4aM - 3(1+ M?)
p— and b = 2(a— M) . (11)

p:

Now,0<p<l1l=>a>2M2>b02>0,andb>0%6a2> 31IM2 = A} (from (11)). Thus,
a > max(M, A}) = A}. Depending on the position of m[H], we subdivide Case IIinto following

subcases.

Subcase A [m[H] < —-2b+M]: From (10), m{H] < -2b+ M & (1 -p)le > 1lea<
_I\Lt@ = A%. Thus, A} < a < A3, however, for M? < 0.6, A} < A}; hence this subcase is

possible only if 0.6 < M? < 3.

As before, solving H(m) = ; gives m = M—2a—a ‘w—‘s%%ﬁ%ﬂ = 13(a) (say). ¥s(a)

turns out to be increasing for a € [A}, A3], (¥5(a) > 0); hence oo max Am[H] = P3[A3] =

3—-M+/6-M?2 . _ « _ (M?2-3)?
e\ and o min m[H] = ¥3[A]] = S—IG-MQ'L >0 0O

Subcase B [m[H]> —-2b+M]: m[H]> -2b+ M = a > A}; thus a > max[A], 43] = A]

if M2 < 0.6, and = A} for M? > 0.6. Following similar steps as in Case II-B, we get

2_ a . x*
m=M - a3 3_121 =, Nﬂ_3 = 1P4(a) with ¥j(a) < 0 Va. Thus, o max m[H] = 4[A3] =
i 2 i =1l = O
o max m[H] (if M* > 0.6) and colin m([H] Jim Pa(a) =0

Combining all the cases, we know from Case I-A that for 0 < M < v0.6, m =

max m[H]. For /0.6 <M < V3,1 = max{ max m[H], max m[H]} = Cma)glm[H].

Case I-A Case I-B Case II

For m, wenotethat min m[H]and min _m[H]areboth > 0, whereas min m[H]<
Case II-A Case II-B Case I-B

0. The proof of Theorem 4 is therefore complete m
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