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1 Introduction

In Bayesian analysis, one starts with a prior and the resultant analysis is based on
the posterior, given data. Since this involves a prior, naturally we are interested
to know to what extent the Bayesian analysis is sensitive to the choice of a prior.
Indeed, under mild conditions the prior has little or no effect if sample size is large,
so that almost same conclusions will follow from almost any reasonable prior, i.e.,
we have almost complete prior robustness.

The next natural question is whether the posterior stabilizes as the sample size in-
creases indefinitely. In this case the inference stabilizes and we want to know whether
the posterior approaches a simple form. If so, the Bayesian analysis is remarkably
simple and the approximate computation based on the simplified form is often quite
accurate, even for moderately large sample sizes. (For an example, see Berger (1985,
p. 225)). Also, if one is interested in studying the frequentist coverage probabilities
of Bayesian confidence intervals, the job is very much simplified.

The problem has been well investigated in the so called “regular” cases, where
it has been observed that for a wide variety of priors the posterior, suitably nor-
malized and centered at the maximum likelihood estimator (MLE), tends to the
standard normal distribution. This fact was first observed by Laplace (1774) and
more recently by Bernstein (1917) and von Mises (1931) and subsequently referred
to as the Bernstein-von Mises Theorem or the Bayesian central limit theorem. Le
Cam (1953, 1958) gave a rigorous proof of this result for independent and identi-
cally distributed (i.i.d.) observations. Various modifications and extensions of this
result have been made by several authors including Bickel and Yahav (1969), Walker
(1969), Chao (1970), Dawid (1970), Heyde and Johnstone (1979), Kallianpur, Bor-
wanker and Prakasa Rao (1971), Clarke and Barron (1990). A detailed discussion on
various conditions underlying the Bernstein-von Moses theorem can be found in Le
Cam (1970). Refinements of posterior normality are considered in Johnson (1970)
and Ghosh, Sinha and Joshi (1982).

In this paper, we consider a general situation including a wide variety of non-
regular cases. So far, the asymptotic behavior of posterior has not been studied in
non-regular cases except in Samanta (1988), where a non-normal limit of posterior
has been obtained for a particular type of discontinuous densities.

The main results of this paper are stated and proved in Sect. 2. It is shown that
under mild conditions the posterior is asymptotically free of the prior.

Also we observe that a weak limit of posterior probability of any Borel set always
exists under the general set up of Ibragimov and Hasminskii (1981). Indeed, it is

* This work was completed while the first author was visiting Purdue University.
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shown that posterior densities as random processes in L' space converge and the
limit is also identified. Although theoretically interesting, the weak limit itself is
not quite useful, and hence we investigate whether a suitably centered posterior
converges to a limit in a stronger sense. We confine ourselves to the i.i.d. case and
observe that a limit, if it exists, will be free of the sample sequence. Finally, we
exhibit a certain representation as a necessary condition for the existence of such
limits.

In Sect. 3, we use the results of Sect. 2 in several important families of distribu-
tions, including the exponential, gamma and a reliability change point problem. The
examples considered are regular cases, discontinuous densities and densities with
singularities. In many of the non-regular examples, the representation theorems of
Sect. 2 lead to non-existence of a.s. limit or limit in probability.

Our interest in these problems arose from the Bayesian study of the reliability
problem of Ghosh, Joshi, and Mukhopadhyay (1992a,b) and the questions raised by
Smith (1985), to which our attention was drawn by Louis Pericchi. Some of Smith’s
questions are answered here.

2 Main Results

Let {X ™), A, Pa("); 6 € ©} be a sequence of statistical experiments generated
by observation X(") ¢ X(*) where © C IR® is a Borel set with non-empty interior.
We assume that for each n > 1, there exists a o-finite measure v(") on (X)), A())
dominating the family {Po("); ¢ € O} and let the Radon-Nikodym derivative be

p(n)(z(n), 6) = (,,(n))

ap
dv(n)
Let 7(-) be a prior density (possibly improper) on ©@. The posterior density of 8
given X(®) by Bayes’ theorem, is given by

7(0)p™(X™), )

mOIX®) = O (X 0yds v

provided the integral converges. We assume that the posterior exists for all (suffi-
ciently large) n. The posterior probability of a set A C © is denoted by

(8 € A|JX™) = /A (0] X(™)do . (2.2)

Unless otherwise indicated, integrals with respect to # are taken over the whole of
e.

The following theorem shows that under certain conditions, the posterior is in-
sensitive to the choice of prior for large n.

Theorem 2.1 Let 8y be an interior point of @ and w1, m be two prior densities
which are positive and continuous at y. We assume that the posterior m;(8]X (™) is
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consistent fori = 1,2, i.e., given any 1 > 0 and a neighborhood V of 8y, there exists
ng > 1 such that fori=1,2

(0 € VIX™) > 1 — 5 for alln > ng a.s. (65) (2.3)
Then

lim / |71 (8] X ™) — m2(0]X(™))]d8 = 0 a.s. (65) (2.4)

n—o00

Proof. From consistency of posterior, it follows that for n > ng

x(n)
(n)y _ (n) (n) 7I'2(0| )
/|,,1(0|X ) — ma(0]z'™))|do < /V7r1(0|X )1 - —_11(9|X(")) |d0+ 25 (2.5)

Let § > 0 be given. Then by continuity of w;, get a neighborhood V of 6, so that on
|4

Ti(60)(1 — 6) < mi(0) < mi(Bo)(1 + 6) (2.6)
and hence
(1= 6)m;(60)Cr < / 7 (0)p™(X™,0)d6 < (1 + 6)m:(60)Cn (2.7)
v
where
= (n)(x(n) .
Clearly

[ 7@, 00 < [ 7i@p™ ), 00
\’4
<=0 [ mOF e, 00
\4

and hence using (2.6)

(1= n)(1 - 8)p™)(=™), 9)
(1 +6)Cy

Thus we have
1-6\> _ m(8|x™) L [1+6)\?
(1‘")(1+6) S m@xmy <= T—_a) ' @8)

Now by choosing 6 and 7 small enough and putting (2.8) in (2.5), we have the desired
result.

(1+8) () n
mp( )(af ),9) .

< m(81X™) <

Remark 2.1. f F is a family of priors such that #(6y) > 0 for all 7 in F,F is
equicontinuous at 6y and (2.3) is satisfied uniformly in 7 € F, then

nli% sup {/ |71(01X ™)) — 72(0) X ™) |db: 71, 75 € .7:} =0 as. (2.9)
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Remark 2.2. The assumption (2.3) in Theorem 2.1 about posterior consistency is
generally a mild condition in the case of a finite dimensional parameter space. See,
in this connection, Diaconis and Freedman (1986) and references therein.

We now investigate the existence of posterior limit, which, if it exists, is inde-
pendent of the prior in view of Theorem 2.1. The first result, essentially due to
Ibragimov-Hasminskii (1981) (henceforth abbreviated as IH) states that under quite
general conditions, posterior probabilities of the normalized parameter converges
weakly. The set up and assumptions are described below.

Let {¢n} be a sequence of k X k positive definite matrices converging to zero.
Let 0y € int ©, ‘

u = ;10— o)
and U, = {ue R*: 0+ p,uc O} .

Then U, is a neighborhood of 0 in IR* tending to IR¥. Define the “likelihood ratio
process”

P (; 60 + pnu)

Zn(u) = Zn,p,(u) = P (z0%); 6,)

(2.10)

considered as a random function in u € U,. For studying various asymptotic prop-
erties, it is necessary to choose ¢, properly. See TH (1981) in this context where
essentially unique choice of ¢,, is shown.

From now onwards, expectations and probabilities refer to the ‘true parameter’
bo.
Conditions (IH).

1. Forsomea>0,K>0,a>0,n5>1

sup{||uz ~ u1||=* E|Z3/*(uz) = Z}/*(u1): ||ws| < Ralluzl} < R} < K(1+ R%)
(2.11)
for all n > ny.

2. Forall u € U,,n > ng
EZ}M?(u) < exp[—gn(u)] (2.12)

where {g,} is a sequence of real valued functions on [0, c0) satisfying

(a) Forfixed n > 1,9,(y) T 00 as y — oo
(b) For any N > 0, ylggo ¥ exp[—gn(v)] =0

n—o00

3. Let {Z(u): u € IR*} be a stochastic process not identically zero such that finite
dimensional distribution of Z,, converge to that of Z.
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Notation: Unless otherwise indicated, integral with respect to u is taken over the
whole set where integrand is defined. We also write

w60 + pnu)Zn(u) and £(u) — Z(u)
tnu) = J 700 + pnu)Zn(u)du d &) J Z(u)du -

Theorem 2.2 Let Conditions (IH) be satisfied and w be a prior density continuous
and positive at 8y. Then for any Borel set A in IRF,

(v € A X)) 2 % (2.13)

The proof is implicit in the proof of Theorem 1.10.2 of IH (1981).

Remark 2.3. Let A be any countable subcollection of B¥, the Borel o-field in IR*.
Then by a slight modification of the proof, it can be shown that the IR™-valued

process ([, &n(u)du: A € A) converges in distribution to the IR™-valued process
([, é(u)du: A € A) under Conditions (IH).

Let P denote the space of all absolutely continuous probabilities on IR* equipped
with the total variation norm. P is isometrically identified with the space of all
probability densities on IR¥ with L!-norm.

The next result is somewhat technical and is a strengthened version of Theo-
rem 2.2. This is used in Theorem 2.5 and is also of independent interest. Note that
by Lemma A.4, one can consider &, and ¢ to be P-valued or L'(IR*)-valued random
variables.

Theorem 2.3 The process £, converges to the process £ in Ll(]Rk).

Proof. In view of Remark 2.3, it is enough to verify that {£,} forms a tight family.
We use Lemnma A.1. The first condition is trivial and it is enough to verify that

(8)  sup{fjcar lnla + ) = En Wlduin > i, o] < 6}

and

(b) SUP{f“u”>M &n(v)du:n > no}

are arbitrarily small with probability arbitrarily close to one if one chooses § small
and M large enough.
This has been verified for (b) in IH (1981). To verify this for (a) we note that

/ |€n(u+$)—fﬂ(u)ldu
lluil<M
= ( / Zn (u)du) ™! / |Z22(u + 2) — Z2(w)||ZY *(u + z) + ZM2(u)|du
Hull<M
A( | Zp(u)du)™? Z,l/zu x -Zyzu 24y }1/2
< 4([ Zo(wa) %u“SMI (u-+2) — ZY2() )

u U 1/2 . .
{ A e T80 (2.14)
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by Cauchy-Schwartz inequality and the inequality (a + b)? < 2(a? + b2). Expression
(2.14) is in turn less than or equal to

u u—l/Z 1/2u z) — 1/2u 2 u 1/2 .
o[ i ([ 1z ) - 2

Now by Condition (IH)(1) and by Chebyshev’s inequality we have

Ké~ 8)8
PUZY(u+2) - ZH()] > e} < TG HUF DD
which can be made arbitrarily small whatever be € and M. Thus with high proba-
bility the inequality

A l<h |€n(u + 2) — €n(u)ldu < 45\/Jt_l(/ Z (u)du)!/? (2.15)

is satisfied. Clearly the last term can be made arbitrarily small uniformly in n > ng
if € is small enough. Thus the result follows.

Remark 2.4. A result similar to Theorem 2.2 for the posterior with a random cen-
tering 4 also holds if f is such that

(2210 = 00),6n() 5 (W,€() in IR* x L}(R*) .
In this case the posterior probability of a set is given by (2.33).

The above technical results give only the weak limit of posterior probabilities.
However, we have familiar examples where the suitably centered posterior goes to
a limit almost surely. In regular case, the posterior centered at the MLE goes to
a normal distribution almost surely under certain conditions. Therefore one should
investigate whether the posterior, with suitable centering goes to a limit almost
surely, or at least in probability. In the remaining portion of this section, we find
necessary conditions for the existence of such a centering under a general set up.

We confine ourselves only to the iid case where observation X(™) is an n-tuple
(X1,.-.,Xn) and p™(X() 0) = TR, f(X:,0), f(-,0) is a probability density with
respect to a o-finite measure v on a standard Borel space (X, A).

The next result shows that a limit, if it exists, must be free of the sample sequence.

Proposition 2.1 Let § = 6(Xy,...,X,) and T = T(Xy,...,X,) be symmetric
functions of X,,...,X,, which may or may not involve fy. Put v =T"1( — 9) and
let A € BE.

Suppose for each sample sequence X, there exists ¢(X) such that

(v e AIX™) 5 o(x) . (2.16)

Then ¢(X) does not depend on the sample sequence X .
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Proof. The posterior density of v is
7(0 + To)Ip_, (X, 6+ Tv)

x(v|X™) = - - (2.17)
[ 7m0+ Tv) I, f(Xi,0 + Tv)dv
This is a symmetric function of X3,...,X,, and so is
(v € AIX™) = / (| Xy . (2.18)
A

By going through a subsequence, if necessary, (2.16) can be assumed to hold a.s. By
an application of the Hewitt-Savage zero-one law (Chow-Teicher, 1988), it follows
that ¢(X) does not depend on X.

Often it is true that P
> (2.19)

where X is a p.d. matrix. In such cases, one may assume that T = ¢ 1.

The following definition will be useful.

Definition 2.1 An R*-valued random variable 6 = 0(X1,...,Xn), symmetric in its

arguments, is called a proper centering if for each A € BY, there ezists a non-random
Q(A) such that

sup{|r(p71(8 - 6) € AIX™) —Q(A): A B*} S0 . (2.20)

0 is called a semiproper centering or wide sense proper centering if for each A € BF,

x(e7 16 - 0) € AlX™) 5 Qa) . (2.21)

Remark 2.5. If (2.20) is satisfied, it automatically follows that Q(-) is an absolutely
continuous countably additive probability, and if (2.21) is satisfied, then Q(-) is a
finitely additive probability. Proposition 2.1 makes clear why Q(-) must be non-
random.

Proposition 2.2 Let § be a proper centering such that W, = 9051(9—00) converges
weakly to @ random variable W. Then for any countable subcollection A of B¥, the
IR* -valued process {m(p;1(60—0) € A|X(™): A € A} converges weakly to the process
{Q(A-W): A€ A}

Proof. By weak convergence theory in IR™, it is enough to prove the result for a
finite collection {A4,,...,A,}. Since Q is absolutely continuous, the mapping

z— (Q(AL —z),...,Q(Ar — 2))
is continuous by Lemma A.2 and hence
QAL ~ W), ..., Q(Ar — Wn)) 5 (Q(AL = W), ..., Q(A, — W)) .
Also

max |m(¢7(0 — 6o) € 4:|X ™) — Q(Ai — W)

< sup{|m(p; (6 - ) € AIX™) — Q(4)]: A € B*}

which goes to zero in probability. By Slutsky’s theorem, the result now follows.



8 Ghosh, Ghosal, Samanta

Proposition 2.3 Assume Conditions (IH) and let 6 be a proper centering. Then
©n1(8 — 89) is weakly convergent.

Proof. We first show that W,: = ¢;1(f — ;) is tight. If not, there exists ¢ > 0 such
that for any A > 0, there is a subsequence {n'} of {n} for which

P{|[Wail}> A} >¢e foralln' . (2.22)
Put
u=p (0 — o)
v=p;'(0-9)
Then
m(v € A|1X(M) = / &n(u)du (2.23)
A+W,

Fix a bounded set A and using arguments of IH (1981), find M large enough so

that [ &n(u)du can be made as small as desired with probability close to one
lull>M
uniformly in n > ng. Choose A > 0 large enough such that ||z|| > X implies

A+ C{||lu|| > M} (2.24)

combining (2.22) to (2.24), it follows that one must have Q(A) = 0. Clearly this
cannot be true for every bounded set. So W, is tight.
If W and W’ are two subsequential limits, then by Proposition 2.2,

QUA-W)2QUA-W') forallAcB* .
An application of Lemma A.3 completes the proof.

Remark 2.6. The conclusion of Proposition 2.3 is still valid even if Conditions (IH)
are not satisfied, instead there exists a proper centering f such that ¢ 10 - 6p) is
tight.

Theorem 2.4 Assume Conditions (IH) and let Z(u) = exp[Y (u)]. If a proper cen-
tering 0 exists, then there ezists a random variable W such that
o710 - 60) S W (2.25)

and for almost al u € RF, ¢(u— W) is non-random, equivalently for almost all
Upg, U1 € IR
Y(u; — W) —Y(uo — W) is non-random.

Proof. By Proposition 2.3, such a W exists.
By Lemma A.3, (:= {Q(A — W): A € B*} is an Mg-valued random variable.
Fix a countable field A which generates B¥. By Remark 2.3 and Proposition 2.2

( /A E(u)du: A€ A) 2 (QUA-W): A€ A) (2.26)
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and hence ¢ 4 E.
Since P{¢ € Mq} =1, we also have P{¢ € Mg} = 1. Define ¢ as in Lemma A.3
and hence by (2.26)

€4 E) 2P = (W) (2:27)
Define a map A: P x IR¥ — P by A(Q, z) = Q* where Q*(A) = Q(A+=z) forall A
in B¥.
By Lemma A.3, for a fixed @, A is continuous in # whereas for fixed z, A is an
isometry in Q. Thus (2.27) implies that

A€, 97HE)) £ AC, W) (2.28)

Putting %~1(£) = W*, we have W* £ W and

/ £(u)du = Q(A) for all A€ B* |
AfWH

le.,

/ E(u—W*)du = Q(A) for all A € BF . (2.29)
A
The conclusion is now immediate.

The next result shows that a proper centering, if it exists, is essentially unique.

Proposition 2.4 Assume Conditions (IH) and let 6 and § be two proper centerings.
Then the associated probabilities and weak limits are shifts of each other.

Proof. Let )1, Q2 denote the associated measures and Wy, W, denote the weak limits
of ¢ (6 — 60) and ¢~1(§ — o) respectively (which exists by Proposition 2.3). By
Proposition 2.2, it follows that P-valued random process {Q1(A— W ): A € B*} has
the same distribution as {Q2(A — Wa): A € B*}. Hence it follows that @, € Mg,,
say, Q2(A) = Q1(A + ¢). Using arguments similar to Theorem 2.4, it follows that

Wo 2 Wy +ec.

Remark 2.7. Conditions (TH) are used only to guarantee the existence of the stated
weak limits. So one can use Remark 2.6 instead of Proposition 2.3.

In the remaining part of this section, we give a partial answer to the question
whether a semiproper centering exists.

Definition 2.2. A semiproper centering § is called regular if there exists a contin-
uous function A from P to RF such that

071 (0 = 60) = A(€n) (2.30)
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Theorem 2.5 Assume Conditions (IH) and let § be a regular semiproper centering
with assoctiated measure ). Then Q) is countably additive and there exists a random
variable W satisfying

(a) o5 (8 — 60) > W
(%) &(u — W) is non-random for almost every u

Further, if 0 is another regular semiproper centering with associated weak limit
W', then W' is a shift of W.

Proof. By Theorem 2.3, it follows that (a) is satisfied with W = A(§) and

(En 07 (0 — 60)) 2 (6, W) . (2.31)

For any Borel Set A in IR¥, the map (f,z) — fA_}_z f(u)du from L'(IR¥) x R®
to IR is continuous by lemma A.2. So (2.31) now implies that

r(ps1(0 — 0) € AX™) 4 / £(u)du (2.32)
A4+W
combining (2.21) with (2.32)
A{(u —W)du = Q(4) . (2.33)

Since the left hand side of (2.33) is countably additive, so is @ and this proves the
first part.
Also (2.33) implies that

QA+W)= /Af(u)du (2.34)

from which the second part follows as in Proposition 2.4.
The condition on & is likely to be satisfied if it is taken as a quantile of the
posterior.

3 Examples

We now apply the results established in Sect. 2 to several important families of
distributions.

Ezample 3.1. Regular case. It is well known that in the usual regular cases the pos-
terior distribution centered at the MLE converges to a normal distribution in total
variation norm a.s. In these cases, the limiting likelihood ratio process is given by

Z(u) = exp(u'A — %u'lu)

where I is Fisher’s information matrix and A is a random vector having distribution
Ni(0,I). Indeed, if one assumes conditions of Sect. II1.3.1 of TH (1981), then Con-
ditions (TH) of Sect. 2 are satisfied. One can easily see that the necessary condition
stated in Theorem 2.4 is satisfied with W = I"1 A.
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Ezample 3.2. Non-Regular Case — Densities with Jumps. We consider the set up
and assumption of IH (1981, Chap. V, p. 242). We have a sequence of i.i.d. obser-
vations with values in IR and common density f(z,#) with respect to the Lebesgue
measure where the parameter set © is an open interval (finite or infinite) in IR. Let
f(z,0) possess r jumps at z1(0),...,z.(6) and let

pi0) = lim f@0),6:0)= Jm fz,0), i=12..r.

We fix 6, € @ and write p;, ¢i, z; and z} in place of p;(fo), ¢i(fo) z:(66) and z}(6y)
respectively. It is shown in IH (1981) that Conditions (IH) of Sect. 2 are satisfied in
this case with p(n) = n~1.

Whether a limit of the posterior exists or not depends on the nature of the jumps.
Below we consider several important special cases.

Case 1. Assume that for each ¢ = 1,2,...,r one of the numbers p; and g¢; is zero.
Set

F+={i:q:'=0 and :L':- >0}U{i2pi=Oand 1;:_ <0},
I = {iZQi-:Oand .’L'; <0}U{Zp,:03nd m:. >0}

.
and c= Z(p,- — gzl .
i=1

Subcase 1A. Suppose that both I't and I'~ are nonempty. In this case the limiting
likelihood ratio process is given by
_feuif - <u< Tt
Z(w) = {0, otherwise

where 7~ and 71 are independent exponentially distributed random variables with

parameters a = Y, (¢; —pi)z} and S = Y (p; — ¢i)z! respectively.
ier- ier+
If ¢c = 0, we have

_JGEr+ )L <u<rt
£(u) = {0, otherwise,

and in case ¢ # 0, we have

ceSt  — +
£(u) = P if ‘r'<u<'r ,
0, otherwise .

In both cases, it is clear that the necessary condition of Theorem 2.4 is not satisfied
and hence no a.s. limit of posterior exists. Simple examples of this kind are shifts of

U(0,1) (with ¢ = 0) and U(6,28) (with ¢ # 0).

Subcase 1B. Suppose that one of I'" and I'* is empty. In case '~ is empty (the
other case is similar), we have

_ feexp{e(u—11)}, ifu<rt
¢(u) = {0, otherwise

and the necessary condition of Theorem 2.4 holds with W = —r+.
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Indeed a limit has been obtained in Samanta (1988) for a special situation of
Subcase 1B, where the support of the density is an interval which is either increasing
or decreasing in §. Samanta (1988) assumed conditions similar to those of Weiss and
Wolfowitz (1974, Chap. 5) and a uniform integrability type condition on log f and
obtained an exponential limit. In these situations there exists a statistic Z, such
that the set {(X3,...,X,): f(Xi,0) > 0 for all i} can be expressed as {Z,(X) > 6}
or {Z.(X) < 0} according as the support is decreasing or increasing in 8. This Z,
acts as a proper centering.

Important examples of this case are shifts of exponential density, U(0, ) etc.

Case 2. We now consider the case when both p; and g; are positive. We only consider
the case with r = 1 and =} > 0.
In this case we have

vt(u)logZ, ifu>0

Y(w)= {—u‘(u) log L, ifu<0

where v*(u) and v~ (—u) are independent homogeneous Poisson process with rates
p1z] and g2} respectively. One can show that the necessary condition of Theo-
rem 2.4 is not satisfied.

An important example of this kind is the change point problem with

_ J aexp(—az), if0<z<?
fl=,6) = {bexp{—a0 —b(z - 0)},if > 6, G-

where @ > 0, b > 0 (a > b) are known constants and § > 0 is the parameter of
interest. See in this connection Basu, Ghosh and Joshi (1986) and Ghosh, Joshi and
Mukhopadhyay (1992a,b).

Ezample 3.3. Non-Regular Case — Densities with Singularities. We consider a se-
quence of i.i.d. observations with density f(z — @) where 0 is a real parameter and
f(z) admits the representation

_Jo, ifz <0,
f(=) = {p(:c)|a:|°‘ ifz>0

in a neighborhood of zero, where p(z) is a continuous function with p = p(0) > 0.
In this case we say that f(z) has a singularity of order « at the point zero provided
—1 < a < 1. This example is a special case of singularity treated in IH (1981)
where it is shown that in presence higher order singularity (smaller value of a), the
singularities of lower orders do not affect the asymptotic analysis. In this example,
we assume that there is only one singularity of the highest order « and the following
conditions hold:

(1) There exists a number A > 1+ a such that for any neighborhood N of zero,

/Nc IF2 (2 = ) = (@) Mz = 0(RY)

(2)
/ [z|® f(z)dz < oo for some & > 0.
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Under these assumptions, Conditions (IH) of Sect. 2 are satisfied with ¢, =
n~1/0+2) and Y(-) = log Z(-) is given by

o ;flog |1 — {(v(dz) — Ev(dz))

o0
Y(u)= —P{(ll — 4|* -1 - alog|l - Z|)|z|*d=
+p- 4, ifu>r
—00, fu<T

a

where v is a non-homogeneous Poisson process with rate function A(z) = ﬁal}-i-_ﬁ
and 7 is the first jump of the process v.

We consider the case a # 0. The case o = 0 is treated in Example 3.2. Let W
be a random variable and u; > ug be real numbers to be chosen later. In order that
Y(u; — W) — Y(up — W) be non-random it must be true that the set where it is
positive, i.e., the set {W 47 < ug} is trivial. Using this fact for different uo, one can
show that W + 7 must be constant, say W = ¢ — 7. We choose u; > ug > ¢. Putting
up = Ug — ¢, Uy = u3 — ¢ we have

Y(U1 - W) - Y(UQ - W)
=Y (u+7) - Y(p+7)

T / 7
- ——ap/ Mog[i — 27| _log |1 — B0 T [jpods
0 T x

_p/ l9(u} + 7, 2) — g(ug + 7, 2)]z%d=
0

4
(1) — (o + 7))
00 ' !
+a/ Moglt — 27| _1og |1 — T (jp(dx)
, z z
where u u
ST L B P
o(u,z) = |1 - 21~ 1~ log|1 - |
and

v(dz) = v(dz) — Ev(dz) .

Clearly the first three terms are functions of 7 only. If Y(uy — W) — Y (up — W) is
non-random, then the conditional distribution of Y (u3 — W) — Y (uo — W) given
is also degenerate. Therefore

x z

00 z—u
= / log | ——fi(dx)
0 Up

r —

00 ! '
/ llog|1 — 17| 1og|1 — 2 T 15(az)
i

has also a degenerate conditional distribution given 7. Here

j(dz) = p(dz) — Ep(dz) and p(z) = v(7 + z).
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However, given 7, g is again a non-homogeneous Poisson process with rate function

p(7 + z)°. Thus the conditional variance of f log [%&]u(dm) is

/ log? | 2241 |@+ryu>o

This contradiction implies the non-existence of a limit of posterior.
Important examples of this kind are the gamma density

1 -5 a=-1 3
_ ez, ifz >0
ﬂ”‘{m ifz<0
and the Wiebull density

_ [ az* lexp(—2z®), ifz >0
(=) = { ife<0

where 0 < o < 2.
Another example is provided by

f(@)= {B“””
where 0 <a<2,b>0and a < b.

The case when f(z) admits a representation

_ Ja@)|z|*, if2<0
R B

in a neighborhood of zero is exactly similar and hence omitted.

-l(1—z)-1 ifo<z<1
otherwise

Ezample 3.4. A Two Parameter Case. Suppose that the observations are i.i.d. with
a common density

exp{—b2(z — 61)}, = > 64,
otherwise,

f(z,601,02) = {

where —00 < 6; < oo and 63 > 0 are two unknown parameters. As mentioned
in Examples 3.1 and 3.2 (Case 1), if 61, is known, the posterior goes to a normal
distribution and on the other hand if 6, is known it has an exponential limit. If both
6, and @, are unknown, the limiting likelihood ratio process is given by

1,2 ;
Zuuy = Grien b= b0 sy
where ¢ > 0 and I > 0 are constants depending on 8y, #; and A and 7 are indepen-
dent random variables following N (0, I') and exponential distribution with parameter
c respectively. It is interesting to note that (3.2) is the product of the likelihood ratio
processes obtained in the non-regular case when 0, is known and in the regular case
when #; is known. It is easy to see that the necessary condition of Theorem 2.4 is
satisfied in this case. We also expect, but don’t have a proof yet, that Condition (IH)
hold for this example. Indeed, proceeding in a manner similar to that in Samanta
(1988, Chap. 3 and 4) one can show that the posterior has an a.s. limit which is a
product of exponential and normal.



Convergence of Posterior 15

Remark 3.1. There is a large class of non-regular cases like Examples 3.4 where in
addition to a parameter §; with respect to which the problem is nonregular there
are other parameters §; with respect to which the problem is regular. Smith (1985)
studied a class of such examples in the context of maximum likelihood estimation.
Another important example is the change point problem given by (3.1) with both
a and b unknown. If Condition (IH) can be shown to be satisfied in all these cases,
one may use our Theorem 2.4 to study the limiting behaviour of posterior.

Remark 3.2. For the change point problem with both a and b unknown, by direct cal-
culations as in Chernoff and Rubin (1956), Ghosh, Joshi and Mukhopadhyay (1992b)
show that the marginal of 8 concentrates on O(n~1)-neighborhood of 6. This fact
is then used to show that the conditional posterior of a and b given ¢ and z,,...,z,
is approximately normal and free of # (similar to the phenomenon noted in Exam-
ple 3.4). One may then use this result to get a reference prior for a, b given 6. For
6 a uniform distribution seems most natural. Also a similar method of investigation
seems to work in other examples mentioned in Remark 3.1.

Remark 3.3. If no a.s. limit of posterior exists, one may try to find a simple approx-
imation to the posterior which is free of prior. This may help in simulation and also
makes the computations simpler.

4 Appendix

Lemma A.l. A subset I' of L'(IR¥) has norm-compact closure iff

(a) sup{||fll: f€ '} < 00
(b) lim sup{ f lfz+y)— fW)|dy: fel'} =0
IRk

[I=ll—0

(c) Alim sup{ [ |f(¥)ldy:feTl}=0
e llyli>x

For a proof, see Dunford and Schwartz (1957).

Lemma A.2. For any f € L(IR*), the mapping from IR¥ into L' (IR*) which takes
z to fy:= f(-— z) is continuous.

Lemma A.3. Let 0 be an absolutely continuous probability on R* and let Mg =
{Qz: z € R*} where Q,(4) = Q(A — z).

Then the mapping 1 sending = to Q, is a homeomorphism of R* onto Mg and
Mg is closed in P.

Proof. Clearly ¢ is onto. To show it is one-to-one, let ¥(z1) = ¥(z2) for some
z1 # z2 and call § = z; — z5. Then Q(A) = Q(A + §), and so for any n > 1,
Q(4) = Q(A + né).

If A € BF is bounded, Q(A + n6) — 0 implying Q(A) = 0. Clearly this cannot
happen for every bounded set A, and hence ) is one-to-one.

% is continuous by Lemma A.2. If ¢(z,) — v¥(z), then {z,} should be bounded,
since otherwise, @Q;(A4) = nli’lglo Q(A—=z,) = 0 for all bounded set A, a contradiction.

Since 1 is one-to-one, all the subsequential limits should be equal to z. Hence z, — z.
It is easy to show that Mg is closed in P. '
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Lemma A.4. Let (2,£) be a measurable space and x: 2 — P be a map. Then x is
measurable iff for all A in B*, the map x4 defined by

xa(w) = x(w)(4)
is measurable.

Proof. Since @ — Q(A) from P to IR is continuous only if part is trivial.
For if part, let F be a countable field generating B*. Then for any Q, Qo € P

1@ — Qoll = sup{|Q(A4) — Qo(A)|: A € F}

by a well known fact in measure theory, (see Halmos (1974, Theorem 13.D) for
example).
Now {w: ||z(w) — Qol| < z} = [ {w:|za(w) — Qo(4)| £ z} € £ by hypothesis.
AcF
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